16. LA RESISTENZA A FATICA: EFFETTO DELLA SOLLECITAZIONE MEDIA

I componenti di macchina sono soggetti a storie di carico variabile nel tempo con differenti modalità; in fig.1 sono mostrati alcuni tipici andamenti della tensione rispetto al tempo:

- a) tensione alternata simmetrica,
- b) tensione pulsante con ciclo dello zero,
- c) tensione pulsante.

Nelle figure sono mostrate storie temporali di tipo sinosuidale, ma le definizioni valgono per funzioni delle sollecitazioni di forma differente, ma nelle quali gli estremi (massimi e minimi) rimangono costanti nel tempo.

Fig.16.1 - Esempi di storie di carico con diversi valori di tensione media.

In fig.1 sono usati i seguenti simboli:

- σ_{\min} tensione minima,
- $\sigma_{\rm max}$ tensione massima,
- σ_m tensione media,
- σ_a tensione alternata,

queste ultime definite come:

$$\sigma_m = \frac{\sigma_{\max} + \sigma_{\min}}{2} \qquad \sigma_a = \frac{\sigma_{\max} - \sigma_{\min}}{2} \qquad (16.1,2)$$

L'effetto di sollecitazioni diverse da quella alternata simmetrica sulla vita a fatica può essere ricondotto all'effetto di una tensione media sulla resistenza a fatica per tensione alternata.

Sperimentalmente si osserva che il valore di σ_f corrispondente a un determinato numero di cicli N_f diminuisce al crescere di una σ_m positiva. Una σ_m negativa è quasi ininfluente poiché le zone di discontinuità nel materiale possono reagire a compressione e non generano zone di concentrazione di tensione.

Per affrontare il problema in teoria si dovrebbe poter disporre delle curve di Wöhler per diversi valori della tensione media. Poiché, in generale, le informazioni a disposizione sono quelle del diagramma di Wöhler per $\sigma_m=0$, il problema della vita a fatica in presenza di tensione media è quello di ricondurre la coppia di valori σ_m , σ_a (oppure σ_{max} , σ_{min}) effettivamente agenti al valore σ_f cui corrisponde lo stesso numero di cicli di vita N_f sul diagramma di Wöhler.

Nella caratterizzazione delle sollecitazioni di fatica possono essere utilizzati due ulteriori parametri caratteristici:

$$R = \frac{\sigma_{\min}}{\sigma_{\max}} \qquad A = \frac{\sigma_a}{\sigma_m} = \frac{1-R}{1+R} \qquad (16.3a,b)$$

I diagrammi di Haigh e Goodman-Smith

Le coppie di valori σ_m , σ_a cui corrisponde una certa vita N_f possono essere rappresentate su un piano avente in ascisse il valore σ_m e in ordinate il valore σ_a . Il punto di partenza è sempre il valore $\sigma_a = \sigma_f$ per $\sigma_m = 0$ che proviene dal diagramma (o dall'equazione) di Wöhler. La tensione σ_f è la resistenza a fatica per la durata N_f dell'elemento reale che tiene conto di tutti gli effetti relativi a finitura, gradiente e dimensioni. Nel caso di vita infinita naturalmente $\sigma_f = \sigma_f$.

Si osserva che i punti sperimentali possono essere interpolati da una curva che viene definita *diagramma di Haigh* (fig.2). Poiché la realizzazione di diagrammi di questo tipo per vari valori di N_f richiede una mole di dati sperimentali eccessiva, sono stati proposti dei metodi di rappresentazione semplificati che possono essere effettuati dalla semplice conoscenza della corrispondente σ_f , della tensione di snervamento σ_s e di quella di rottura σ_r .

In alternativa è possibile rappresentare i valori σ_m , $\sigma_{max} \in \sigma_{min}$ cui corrisponde una certa vita N_f su un piano avente in ascisse il valore σ_m e in ordinate il valori $\sigma_{max} \in \sigma_{min}$. Le curve interpolanti i risultati sperimentali costituiscono il *diagramma di Goodman-Smith*.

Diagramma di Haigh semplificato

Il diagramma di Haigh fornisce la tensione alternata σ_a (in ordinate) *per fissato numero di cicli di vita* N_f al variare della tensione media σ_m (in ascisse). La sua determinazione richiede una notevole mole di dati sperimentali, di conseguenza sono state proposte delle rappresentazioni approssimate che risultano conservative rispetto a questi ultimi.

Fig.16.2 - Diagrammi di Haigh sperimentale e semplificato.

La fig.2 mostra la curva rappresentativa di un diagramma di Haigh derivato da dati sperimentali e il corrispondente diagramma semplificato che può essere impiegato per scopi di verifica o progetto.

La costruzione del diagramma viene effettuata nei seguenti passi (fig.3):

- 1. sull'asse σ_{media} si riportano la tensione di snervamento per trazione σ_s e compressione σ_{sc} e la tensione di rottura σ_r , sull'asse $\sigma_{alternata}$ si riportano la σ_s e il valore di tensione alternata σ_f , corrispondente agli N_f cicli cui il diagramma è riferito (valore letto sulla curva di Wöhler)
- 2. si traccia una linea (1) da $\sigma_{alternata} = \sigma_{sc}$ a $\sigma_{media} = \sigma_{sc}$ per tensioni medie di compressione,
- 3. si traccia una linea (2) da $\sigma_{alternata} = \sigma_s$ a $\sigma_{media} = \sigma_s$, per tensioni medie di trazione,
- 4. si traccia una linea orizzontale (3) da $\sigma_{alternata} = \sigma_f$ per tensioni medie di compressione,
- 5. si traccia una linea (4) da $\sigma_{alternata} = \sigma_f a \sigma_{media} = \sigma_r$ per tensioni medie di trazione.

La curva limite risultante è la spezzata mostrata in fig.3.

Le linee (1) e (2), dette rette di *Langer*, delimitano le coppie di valori σ_m , σ_a per le quali la tensione massima del ciclo si mantiene al di sotto di quella di snervamento, cioè: $|\sigma_{max}|=|\sigma_m+\sigma_a|\leq\sigma_s$. Nella parte delle $\sigma_{media}>0$ la retta di Langer (2), è descritta dalle seguenti equazioni:

$$\frac{\sigma_m}{\sigma_s} + \frac{\sigma_a}{\sigma_s} = 1 \qquad \qquad \sigma_a = \sigma_s - \sigma_m \qquad (16.4a,b)$$

la prima delle quali è posta in forma segmentaria, nella quale sono esplicitate entrambe le intersezioni con gli assi.

Le linee (3) e (4) costituiscono una semplificazione delle curve di fatica per tensione media variabile e delimitano i valori σ_m , σ_a per i quali la vita a fatica è maggiore o uguale a quella corrispondente a σ_f , cioè: $N \ge N_f$. Nella parte delle $\sigma_{media} > 0$ la retta (4), detta retta di *Goodman*, è rappresentata dalle equazioni:

$$\frac{\sigma_m}{\sigma_r} + \frac{\sigma_a}{\sigma_f} = 1 \qquad \qquad \sigma_a = \sigma_f - \frac{\sigma_f}{\sigma_r} \sigma_m \qquad (16.5a,b)$$

I punti di intersezione delle 2 rette di Langer (1) e (2) con la retta (3) ($\sigma_a = \sigma_f$) e con la retta di Goodman (5) hanno rispettivamente coordinate:

$$\sigma_m = \sigma_f - \sigma_s, \ \sigma_a = \sigma_f \qquad \qquad \sigma_m = \sigma_r \frac{\sigma_f - \sigma_s}{\sigma_f - \sigma_r}, \quad \sigma_a = \sigma_s - \sigma_r \frac{\sigma_f - \sigma_s}{\sigma_f - \sigma_r}$$
(16.6a-d)

Il diagramma di Haigh per tensioni *tangenziali* medie e alternate deve essere costruito solo nel caso di elementi con intaglio, in quanto in elementi senza concentrazione di tensione una tensione tangenziale media non influisce sulla durata e la retta (4) del diagramma risulta orizzontale.

Il diagramma può essere costruito allo stesso modo di quello per tensioni normali utilizzando come punti limite:

- τ_{j} : per N_f elevato, per materiali duttili, $0.48\sigma_j < \tau_j < 0.60\sigma_j$, per materiali fragili $0.8\sigma_j < \tau_j < 0.9\sigma_j$; per valori di N_f prossimi a 1000 cicli, $0.67\sigma_f < \tau_j < 0.8\sigma_j$;
- $\tau_r: 0.67 \sigma_r < \tau_r < 0.8 \sigma_r$, a seconda del materiale.

Il diagramma di Goodman o Smith semplificato

Il diagramma di Goodman-Smith fornisce le tensioni massima σ_{max} e minima σ_{min} (in ordinate) per fissato numero di cicli di vita N_f , al variare della tensione media σ_m (in ascisse). Questo diagramma fornisce le stesse informazioni del diagramma di Haigh, ma è particolarmente usato in quanto permette di visualizzare contemporaneamente tutte le componenti di tensione.

Fig.16.4 - Costruzione del diagramma di Goodman-Smith: (a) i passi da 1 a 3, (b) passi da 4 a 5, (c) esempio.

Il tracciamento del diagramma di Goodman si effettua nei seguenti passi visualizzati in fig.4:

- sull'asse delle ordinate si riportano le tensioni di rottura e snervamento $\sigma_r e \sigma_s e i valori + \sigma_f e \sigma_f$
- si traccia la retta σ_{media} che è a 45° dall'origine,
- sulla retta σ_{media} si individua il punto *A* corrispondente al valore σ_r e da questo si tracciano le congiungenti con i valori + σ_f e $-\sigma_f$, ottenendo le rette σ_{max} e σ_{min} ,
- sulla retta σ_{media} si individua il punto *B* corrispondente al valore σ_s e da questo si traccia la parallela all'asse σ_{media} , la cui intersezione con la retta σ_{max} è data dal punto *C*,
- dal punto *C* si traccia la verticale fino all'intersezione con la retta σ_{min} che è data dal punto *D*, quindi si traccia la congiungente tra *D* e *B*.

Le curve limite risultanti (spezzate) sono rappresentate nella fig.4b,c.

Quando la tensione media è di trazione, il danneggiamento è definito dalla linea di tensione massima σ_{max} o dalla tensione di snervamento.

Quando la tensione media è di compressione, il danneggiamento è definito da due linee parallele a + σ_i e - σ_i nel semipiano delle ascisse negative.

Verifica a fatica sui diagrammi

I diagrammi presentati possono essere utilizzati per effettuare calcoli di verifica a fatica e, in taluni casi, anche di progetto. In generale, nella verifica si confronta la tensione limite relativa al materiale con la tensione massima nell'elemento; in particolare il coefficiente di sicurezza *n* è dato dal rapporto tra i suddetti valori. Nel caso statico il valore limite è rappresentato in modo univoco dalla tensione di cedimento del materiale, σ_s o σ_r , mentre nel caso della fatica esso deve essere opportunamente determinato in quanto, in generale, la tensione media e la alternata dipendono in modo differente dai carichi agenti.

Diagramma di Haigh

Sul diagramma di Haigh (fig.5a-d) lo stato di sollecitazione è rappresentato con un punto *P* di coordinate [σ_a , σ_m]; un aumento del carico esterno provoca uno spostamento del punto verso la retta limite in una direzione che dipende dalla nuova combinazione di tensioni medie e alternate che si viene a creare. Al variare dell'entità dei carichi, le tensioni σ_a , σ_m possono variare secondo 4 modalità di principale interesse:

- 1. si mantiene costante il rapporto tra la tensione alternata e la tensione media,
- 2. si mantiene costante la tensione minima,
- 3. si mantiene costante la tensione media,
- 4. si mantiene costante la tensione *alternata*.

Il luogo dei punti che rappresenta le coppie $[\sigma_a, \sigma_m]$ al variare del carico esterno in tutti questi casi è una retta passante dal punto di coordinate $[\sigma_a, \sigma_m]$ assegnato, di inclinazione differente a seconda del caso, definita *retta di carico*.

La retta di carico interseca uno degli assi nel punto O', rappresentativo dello stato tensionale che si verifica quando i carichi di fatica si annullano (fig.5a-d).

Il punto limite P' di coordinate $[\sigma'_a, \sigma'_m]$, corrispondente alla situazione assegnata, può essere ottenuto dall'intersezione tra la retta di carico e la retta limite di equazione (5).

Il coefficiente di sicurezza, a sua volta, può essere ottenuto come rapporto tra i segmenti della retta di carico compresi tra il punto O' e i punti P' e P rispettivamente, cioè n=O'P'/O'P.

Nel caso in cui si mantiene costante il rapporto tra la tensione alternata e la tensione media, la retta di carico ha coefficiente angolare $r=\sigma_a/\sigma_m$ ed equazione $y=\sigma_a/\sigma_m x$. Quando i carichi di fatica cessano, infatti, il punto rappresentativo dello stato tensionale O' coincide con l'origine degli assi e la retta può essere tracciata congiungendo O con il punto assegnato P (fig.5a). Il coefficiente di sicurezza è dato dalle seguenti espressioni:

$$n = \frac{O'P'}{O'P} = \frac{OP'}{OP} = \frac{\sigma'_a}{\sigma_a} = \frac{\sigma'_m}{\sigma_m} \qquad n = \frac{\sigma_f \sigma_r}{\sigma_m \sigma_f + \sigma_a \sigma_r} = \frac{1}{\left(\frac{\sigma_m}{\sigma_r} + \frac{\sigma_a}{\sigma_f}\right)}$$
(16.7a-b)

$$\sigma'_{m} = \frac{\sigma_{m}}{\sigma_{m}/\sigma_{r} + \sigma_{a}/\sigma_{f}} \qquad \sigma'_{a} = \frac{\sigma_{a}}{\sigma_{m}/\sigma_{r} + \sigma_{a}/\sigma_{f}} \qquad (16.7c-d)$$

essendo

Nel caso in cui il valore della tensione minima σ_{\min} si mantiene costante, quindi ad aumentare è la sola σ_{\max} , in base alle relazioni (1,2), si osserva che un *incremento* della sollecitazione esterna provoca un *uguale incremento* della tensione media e dell'alternata ($\Delta \sigma_a = \Delta \sigma_m$). In conseguenza di ciò la retta di carico, passando per il punto assegnato *P*, forma un angolo di 45° con l'asse orizzontale e assume equazione $y=x-\sigma_{\min}$ (o $y=x+\sigma_a-\sigma_m$) come mostrato in fig.5b. Il punto O' ha coordinate [σ_{\min} , 0]. Il coefficiente di sicurezza è dato dalle seguenti espressioni:

$$n = \frac{O'P'}{O'P} = \frac{\sigma'_a}{\sigma_a} = \frac{\sigma'_m - \sigma_{\min}}{\sigma_m - \sigma_{\min}}, \qquad n = \frac{\sigma_a - \sigma_m + \sigma_r}{\sigma_f + \sigma_r} \frac{\sigma_f}{\sigma_a}$$
(16.8a-b)

essendo

$$\sigma'_{m} = \frac{\sigma_{m} - \sigma_{a} + \sigma_{f}}{\sigma_{f} + \sigma_{r}} \sigma_{r}, \ \sigma'_{a} = \frac{\sigma_{a} - \sigma_{m} + \sigma_{r}}{\sigma_{f} + \sigma_{r}} \sigma_{f}$$
(16.8c,d)

Se la tensione media σ_m si mantiene ragionevolmente costante, la retta di carico è la parallela all'asse σ_a passante dal punto assegnato (fig.5c) di equazione $x=\sigma_m$. Al cessare dei carichi il punto O' assume coordinate [σ_m , 0]. Il coefficiente di sicurezza è dato dalle seguenti espressioni:

$$n = \frac{O'P'}{O'P} = \frac{\sigma'_a}{\sigma_a}, \qquad \qquad n = \frac{\sigma_r - \sigma_m}{\sigma_r} \frac{\sigma_f}{\sigma_a}$$
(16.9a,b)

essendo

$$\sigma'_m = \sigma_m, \qquad \sigma'_a = \frac{\sigma_r - \sigma_m}{\sigma_r} \sigma_f$$
 (16.9c,d)

La retta di carico relativa al quarto caso, σ_a costante, è una parallela all'asse σ_m passante dal punto *P* assegnato, avente equazione $y=\sigma_a$. Al cessare dei carichi il punto O' assume coordinate [0, σ_a]. Il coefficiente di sicurezza è dato dalle seguenti espressioni:

$$n = \frac{O'P'}{O'P} = \frac{\sigma'_m}{\sigma_m}, \qquad \qquad n = \frac{\sigma_f - \sigma_a}{\sigma_f} \frac{\sigma_r}{\sigma_m}$$
(16.10a,b)

essendo

$$\boldsymbol{\sigma}_{m}^{\prime} = \frac{\boldsymbol{\sigma}_{f} - \boldsymbol{\sigma}_{a}}{\boldsymbol{\sigma}_{f}} \boldsymbol{\sigma}_{r}, \qquad \boldsymbol{\sigma}_{a}^{\prime} = \boldsymbol{\sigma}_{a}$$
(16.10c,d)

Nel caso di elevati valori della σ_m , in aggiunta alle condizioni (7-10), si deve considerare la sicurezza rispetto allo snervamento la cui retta limite è descritta dalle eq.(4a,b). I coefficienti possono essere ottenuti dalle (7b-10b) sostituendo σ_s al posto di $\sigma_r e \sigma_i$:

$$n = \frac{\sigma_s}{\sigma_m + \sigma_a} \qquad \qquad n = \frac{\sigma_s + \sigma_a - \sigma_m}{2\sigma_a} \qquad (16.11, 12)$$

$$n = \frac{\sigma_s - \sigma_m}{\sigma_a} \qquad \qquad n = \frac{\sigma_s - \sigma_a}{\sigma_m} \tag{16.13,14}$$

Le rette a *n* costante, cioè i luoghi delle coppie σ_m - σ_a cui corrisponde lo stesso coefficiente di sicurezza sul diagramma di Haigh, per i 4 casi descritti, hanno le seguenti espressioni:

$$\sigma_a = -\frac{\sigma_f}{\sigma_r} \sigma_m + \frac{\sigma_f}{n} \qquad \qquad \sigma_a = \frac{\sigma_f (\sigma_m - \sigma_r)}{\sigma_f - n (\sigma_r + \sigma_f)}$$
(16.15,16)

$$\sigma_a = -\frac{\sigma_f}{n \,\sigma_r} \sigma_m + \frac{\sigma_f}{n} \qquad \qquad \sigma_a = -\frac{n \,\sigma_f}{\sigma_r} \sigma_m + \sigma_f \qquad (16.16,17)$$

In fig.6 sono mostrate le 4 rette per n=1.5, $\sigma_{f}=50$, $\sigma_{r}=100$; il punto rappresentativo della sollecitazione è $\sigma_{m}=10$, $\sigma_{a}=28.3$ cui corrisponde un coefficiente di sicurezza pari a 1.5, 1.39, 1.59, 4.33 nei 4 casi di carico.

La bisettrice sul piano σ_a - σ_m è la retta avente equazione $\sigma_a = \sigma_m$ che coincide con la linea di carico corrispondente alla tensione pulsante con ciclo dello zero. Poiché passa per l'origine e per ciascun punto si ha $\sigma_a = \sigma_m$, essa risulta rappresentativa simultaneamente dei casi 1 e 2; in particolare è la retta di carico corrispondente a $\sigma_a/\sigma_m=1$ (caso 1) e $\sigma_{min}=0$ (caso 2). Le rette rappresentative del caso 2 sono tutte parallele alla bisettrice, poiché hanno coefficiente angolare pari a 1; in particolare si verifica $\sigma_{min}<0$ per le rette si trovano a sinistra della bisettrice e $\sigma_{min}>0$ per quelle che si trovano a destra. In fig.6 si può osservare che le rette ad *n*=costante corrispondenti ai casi 1 e 2 si intersecano in corrispondenza della bisettrice. In base a questa e alle altre osservazioni fatte, si deduce che, fissato il punto rappresentativo della sollecitazione *P*, quando la σ_{min} del 2° tipo di retta di carico risulta *negativa*, tale tipo di carico dà luogo al minore coefficiente di sicurezza fra i 4 descritti. Viceversa, se $\sigma_{min}>0$, è la retta di carico del 1° tipo a dare luogo al fattore di sicurezza minore.

Rette di carico passanti per P assegnato e rette a n=1.5 costante per i 4 casi di carico.

Le eq.(7b-10b) consentono di valutare il coefficiente di sicurezza per un numero di cicli di vita N_f assegnato introducendo le tensioni σ_m e σ_a agenti e il valore di resistenza a fatica $\sigma_f(N_f)$ letto sul diagramma di Wöhler o calcolato con la nota espressione analitica

$$\sigma_f = \left(\frac{N_f}{K}\right)^{\mu} = a N_f^b \tag{16.19}$$

Si sottolinea nuovamente il fatto che la tensione σ_f presente nelle formule e sui diagrammi è la resistenza a fatica dell'elemento reale (non quella del provino a flessione rotante) che tiene conto di tutti gli effetti relativi a finitura, gradiente e dimensioni.

Per quanto concerne l'eventuale concentrazione di tensione, la procedura consigliata è quella di moltiplicare le tensioni medie e alternate nominali per l'apposito coefficiente K_{tf} (invece di correggere la tensione σ_f moltiplicandola per il coefficiente k_f e utilizzare le tensioni medie e alternate nominali). Nel caso di materiali fragili sia la tensione nominale media che quella alternata devono essere moltiplicate per K_{tf} , mentre nel caso dei duttili è possibile amplificare solo la componente alternata. Si deve anche verificare che sia $K_t(\sigma_m + \sigma_a) = K_t \sigma_{max} < \sigma_s$. L'effetto della concentrazione di tensione è trattato specificamente nell'ultimo paragrafo.

Le tensioni agenti $\sigma_m e \sigma_a$ possono essere espresse in funzione delle forze e dei parametri geometrici di progetto. In alcuni casi è possibile imporre il coefficiente di sicurezza ed esplicitare le relazioni rispetto ad un parametro da determinare, come nel caso degli alberi di trasmissione, ottenendo delle espressioni di progetto.

Diagramma di Goodman o Smith

. ..

Nel diagramma di Smith i cicli di carico aventi lo stesso rapporto $q = \sigma_{max}/\sigma_m$ sono rappresentati da una linea di carico passante per l'origine e il punto P. Nel caso in fig.7 i valori relativi al ciclo di esercizio ($\sigma_m e \sigma_{max}$) sono rappresentati da P; i valori limite corrispondenti ($\sigma_m e \sigma_{max}$) sono rappresentati da P' determinato dall'intersezione tra la linea di carico e la curva limite di Smith. Il coefficiente di sicurezza si calcola in modo analogo al caso precedente.

Se si mantiene costante la tensione minima, la linea di carico passa da *P* e dal punto di intersezione tra la retta σ_{min} =cost e la bisettrice O'.

Se la tensione media σ_m si mantiene ragionevolmente costante, il punto limite si trova sulla retta ortogonale alla bisettrice passante *P*. Nel caso in cui si mantiene costante la tensione alternata, il punto limite si ottiene tracciando la parallela alla bisettrice passante per *P*.

Fig.16.7- Verifiche sul diagramma di Smith.

<u>Criteri di danneggiamento nel piano $\sigma_m - \sigma_a$ </u>

In alternativa alla retta di Goodman di eq.(5) e descritta nel precedente paragrafo, sono stati proposti diversi criteri di danneggiamento. Ciascuno fornisce le coppie di valori delle sollecitazioni σ_m , σ_a per i quali si ha il cedimento per fatica ad un numero di cicli N_f assegnato. Il valore di N_f è quello corrispondente al valore di σ_f letto sul diagramma di Wöhler [cioé $N(\sigma_a, \sigma_m)=N(\sigma_f)$] che viene introdotto nel criterio insieme ad un parametro di resistenza del materiale (σ_s , o σ_r). Questi criteri forniscono delle rappresentazioni semplificate del diagramma di Haigh.

Il criterio di danneggiamento di *Goodman*, già visto nel precedente paragrafo, è rappresentato da una linea retta da [0,σ_f] a [σ_r,0] (fig.2,3,5,7-8). Questo criterio non limita la possibilità di snervamento. Se si limita anche lo snervamento il diagramma che si ottiene è quello rappresentato in fig.3 dal lato σ_m≥0. L'equazione nel piano σ_m-σ_a è data dalle (5) qui riscritte:

$$\frac{\sigma_m}{\sigma_r} + \frac{\sigma_a}{\sigma_f} = 1 \qquad \qquad \sigma_a = \sigma_f - \frac{\sigma_f}{\sigma_r} \sigma_m \qquad (16.5a,b)$$

• Il criterio di danneggiamento di *Soderberg* è rappresentato da una linea retta da $[0,\sigma_j]$ a $[\sigma_s,0]$ (fig.8-9). Questo criterio limita anche lo snervamento e viene usato per il dimensionamento degli alberi. Tutte le espressioni dei coefficienti di sicurezza relativi a questo criterio possono essere ottenute dalle (7b-10b) sostituendo la σ_s al posto della σ_r . L'equazione nel piano σ_m - σ_a può essere scritta come:

$$\frac{\sigma_m}{\sigma_s} + \frac{\sigma_a}{\sigma_f} = 1 \qquad \qquad \sigma_a = \sigma_f - \frac{\sigma_f}{\sigma_s} \sigma_m. \tag{16.20a,b}$$

 Il criterio di danneggiamento di *Gerber* è rappresentato da una parabola passante da [0,σ_j] a [σ_r,0] (fig.9), localizzata abbastanza centralmente rispetto ai risultati sperimentali. La possibilità di snervamento deve essere verificata:

$$\left(\frac{\sigma_m}{\sigma_r}\right)^2 + \frac{\sigma_a}{\sigma_f} = 1 \qquad \qquad \sigma_a = \sigma_f \left[1 - \left(\frac{\sigma_m}{\sigma_r}\right)^2\right] \qquad (16.21a,b)$$

Il criterio ASME è rappresentato da un'ellisse passante da [0, σ_f] a [σ_s,0] (fig.9). Nonostante la presenza della σ_s nell'equazione, si deve valutare la possibilità di snervamento poiché la curva interseca la linea di snervamento. L'equazione nel piano σ_m-σ_a può essere scritta come:

$$\left(\frac{\sigma_m}{\sigma_s}\right)^2 + \left(\frac{\sigma_a}{\sigma_f}\right)^2 = 1 \qquad \qquad \sigma_a = \sigma_f \sqrt{1 - \left(\frac{\sigma_m}{\sigma_s}\right)^2} \qquad (16.22a,b)$$

La condizione per la quale la tensione massima è pari allo snervamento ($\sigma_{max} = \sigma_m + \sigma_a = \sigma_s$), già vista nei paragrafi precedenti, è rappresentata dall'espressione di *Langer* (fig.3,5,8):

$$\frac{\sigma_m}{\sigma_s} + \frac{\sigma_a}{\sigma_s} = 1 \qquad \qquad \sigma_a = \sigma_s - \sigma_m \qquad (16.4a,b)$$

Fig.16.8 - Criteri di Soderberg e di Goodman.

Fig.16.9- Criteri di danneggiamento nel piano σ_m - σ_a

Determinazione della vita N_f

I criteri descritti consentono, in alternativa alla verifica, di valutare la vita a fatica N_f corrispondente a una sollecitazione di valor medio e ampiezza σ_m e σ_a assegnati. In questo caso s'inseriscono le tensioni σ_m e σ_a nelle eq.(4,20-22) e si ricava la σ_f corrispondente. A questo punto il problema della determinazione della vita a fatica in presenza di sollecitazione media viene ricondotto a quello di sollecitazione alternata simmetrica con ampiezza σ_f . Nel caso del criterio di Goodman, ad esempio, si ottiene:

$$\sigma_f = \sigma_G = \frac{\sigma_a}{1 - \sigma_m / \sigma_r}$$
(16.23)

La tensione ottenuta con l'eq.23 è definita *tensione equivalente di Goodman*. La tabella 1 riassume i criteri introdotti e il valore di tensione equivalente σ_{f} ottenibile.

Criterio	Goodman	Soderberg	Gerber	ASME
Tipo equazione	$\frac{x}{a} + \frac{y}{b} = 1$	$\frac{x}{a} + \frac{y}{b} = 1$	$\left(\frac{x}{a}\right)^2 + \frac{y}{b} = 1$	$\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1$
Espressione criterio	$\frac{\sigma_m}{\sigma_r} + \frac{\sigma_a}{\sigma_f} = 1$	$\frac{\sigma_m}{\sigma_s} + \frac{\sigma_a}{\sigma_f} = 1$	$\left(\frac{\sigma_m}{\sigma_r}\right)^2 + \frac{\sigma_a}{\sigma_f} = 1$	$\left(\frac{\sigma_m}{\sigma_s}\right)^2 + \left(\frac{\sigma_a}{\sigma_f}\right)^2 = 1$
Espressione di σ_{f}	$\sigma_f = \frac{\sigma_a}{1 - \sigma_m / \sigma_r}$	$\sigma_f = \frac{\sigma_a}{1 - \sigma_m / \sigma_s}$	$\sigma_f = \frac{\sigma_a}{1 - \sigma_m^2 / \sigma_r^2}$	$\sigma_f = \sigma_a \sqrt{\frac{1}{1 - \sigma_m^2 / \sigma_s^2}}$

Tabella 16.1 - Riassunto dei criteri di danneggiamento.

In corrispondenza a questi valori di σ_f si determina il numero di cicli di vita N_f sul diagramma di Wöhler. L'operazione può essere effettuata in modo analitico utilizzando l'equazione di Wöhler; nel caso del criterio di Goodman (5), ad esempio, si ottiene:

$$N_f = K \left(\frac{\sigma_a}{1 - \sigma_m / \sigma_r}\right)^{-\mu} \qquad \qquad N_f = a^{-1/b} \left(\frac{\sigma_a}{1 - \sigma_m / \sigma_r}\right)^{1/b} \tag{16.24a,b}$$

Le eq.(24a,b) sono le espressioni delle curve di Wöhler che mettono in relazione l'ampiezza della tensione alternata con il numero di cicli N_f in presenza di tensione media costante assegnata. Esplicitando le (24) rispetto a σ_a si ottiene:

$$\boldsymbol{\sigma}_{a} = \left(1 - \frac{\boldsymbol{\sigma}_{m}}{\boldsymbol{\sigma}_{r}}\right) \left(\frac{N_{f}}{K}\right)^{\mu} \qquad \boldsymbol{\sigma}_{a} = \left(1 - \frac{\boldsymbol{\sigma}_{m}}{\boldsymbol{\sigma}_{r}}\right) a N_{f}^{b} \qquad (16.25a,b)$$

Dalle (25) è possibile verificare che, in base ai criteri lineari di Goodman (e di Soderberg, sostituendo $\sigma_r \operatorname{con} \sigma_s$), la presenza di una tensione media costante riduce tutte le ampiezze della curva di Wöhler di un fattore costante, indipendente dal numero di cicli. In coordinate logaritmiche le (25) risultano parallele alla curva di Wöhler originale e traslate verso il basso in misura proporzionale al valore di σ_m .

La determinazione di σ_f può essere effettuata graficamente se si utilizzano i criteri lineari di Goodman o Soderberg. In questo caso, descritto in fig.10, è sufficiente tracciare la retta passante dal punto σ_r (o σ_s) e dal punto $[\sigma_m, \sigma_a]$ assegnato. L'intersezione con l'asse $\sigma_{alternata}$ fornisce il valore di σ_f . Dopo avere valutato il logaritmo di quest'ultimo si entra nel diagramma di Wöhler e si determina N_f dall'intersezione con la retta di vita limitata. Se $\log \sigma_f < \log \sigma_l$ non vi è intersezione e la vita risultante è infinita.

Fig.16.10 - Determinazione di σ_f ed N_f a partire dai valori di σ_m e σ_a assegnati.

Effetto della concentrazione di tensione sulla tensione media

Come accennato precedentemente, il coefficiente relativo alla concentrazione di tensione deve essere applicato alla tensione media e a quella alternata in modo differente per materiali fragili e duttili. Nel seguito si suppone che le tensioni siano tali da *non superare lo snervamento*, cioè sia $\sigma_{max}=K_t(\sigma_m+\sigma_a)<\sigma_s$.

Materiali fragili

Nel caso dei materiali fragili omogenei la concentrazione di tensione ha effetto sul cedimento statico. Al tendere a zero della tensione alternata, la tensione nominale (media) al cedimento coincide con quella di rottura diviso per il coefficiente di concentrazione delle tensioni:

$$\sigma_{n,\text{am}} = \sigma_r / K_t \tag{16.26}$$

Per tensione media nulla, ovviamente, la tensione nominale al cedimento è il limite di fatica moltiplicato per k_f o diviso per K_f . Per i materiali fragili si ha $K_{tf} \approx K_t$ da cui

$$\boldsymbol{\sigma}_{f} = \boldsymbol{\sigma}_{f}^{\prime} \boldsymbol{k}_{f} = \boldsymbol{\sigma}_{f}^{\prime} / \boldsymbol{K}_{t}$$
(16.27)

L'effetto sul diagramma di Haigh è visualizzabile in fig.11a. Di solito è preferibile non alterare le tensioni limite e amplificare le tensioni nominali per il fattore di concentrazione come segue:

$$\sigma_m = K_t \sigma_{m,nom} \quad \sigma_a = K_t \sigma_{a,nom} \tag{16.28,29}$$

L'effetto di quest'operazione sul diagramma di Haigh è visualizzabile in fig.11b.

La valutazione della σ_f per assegnati $\sigma_{m nom}$ e $\sigma_{a nom}$ può essere effettuata tramite la seguente espressione

$$\sigma_f = \frac{\sigma_a}{1 - \sigma_m / \sigma_r} = \frac{K_t \sigma_{a,nom}}{1 - K_t \sigma_{m,nom} / \sigma_r}$$
(16.30)

Materiali duttili

Nel caso dei materiali duttili la concentrazione di tensione non ha effetto sul cedimento statico; il modo più conservativo di operare è quello di utilizzare le relazioni (28-30) sostituendo il coefficiente K_{tf} al posto di $K_{t.}$

In alternativa è anche possibile trascurare l'effetto della concentrazione delle tensioni sulla resistenza statica, determinando le tensioni limite sul diagramma (fig.11a) come:

$$\sigma_{n,\text{am}} = \sigma_r \qquad \qquad \sigma_f = \sigma_f' / K_{tf} \qquad (16.31,32)$$

Anche in questo caso è preferibile non alterare le tensioni limite e amplificare le tensioni nominali ottenendo:

$$\sigma_m = \sigma_{m,nom} \qquad \sigma_a = K_{tf} \ \sigma_{a,nom} \tag{16.33}$$

La valutazione della σ_f per assegnati $\sigma_{m nom}$ e $\sigma_{a nom}$ può essere effettuata tramite la seguente espressione:

$$\sigma_f = \frac{\sigma_a}{1 - \sigma_m / \sigma_r} = \frac{K_{tf} \sigma_{a nom}}{1 - \sigma_m / \sigma_r}$$
(16.34)

Fig.16.11 - Effetto della concentrazione di tensione per materiali fragili e duttili: a) riduzione dei valori limite; b) incremento delle tensioni $(P_f \text{ tensioni teoriche fragile e duttile nel caso più conservativo, <math>P_d$ tensioni teoriche duttile).