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Abstract 
There is pedagogical evidence that in order to fully understand any abstract notion, several 
different embodiments or incarnations of that concept must be considered, and the learner must 
not only be aware of them, but also be confident enough to juggle them and move between them 
according to the context. In this study I intend to analyze how multiple representations support a 
better and deeper understanding of mathematical subjects. It is about gaining the flexibility of 
moving from one representation to another as one aspect of knowledge and understanding. This 
ability to recognize one concept in different forms and representations broadens and deepens 
knowledge and allows connections between notions and concepts, thus strengthening problem 
solving skills.  (Even, 1998) 
 
Introduction 
A representation is defined as any configuration of characters, images or concrete objects that 
can symbolize or represent something else (Kaput, 1985; Goldin, 1998 and Dewindt-King). 
Modes of mathematical representations may involve words, graphs, tables, and equations. 
Symbol manipulation skills include being able to carry out arithmetic and algebraic procedures. 
In this paper I promote raising awareness about the role of multiple representations and the 
designing of supporting learning material that provide students with coordinated, multiple 
representations, one of which is coordinated visual and verbal representations (Kozma, 2003), all 
for the purpose of enlightenment and evolution of the students cognitive skills. Learning is 
characterized as becoming attuned to learning activities that result from interactions between the 
students and their material and representational resources as they engage in inquiry (Kozma, 
2003). “The presentation of information in both visual and verbal forms increases recall and 
problem solving transfer by helping learners encode this information in both visual and verbal 
forms and integrate these forms in long-term memory” (Janvier al., 1987).  There is enough 
evidence in science education on the effect of multiple representations on mature understanding: 
for instance experts are able to group a cluster of diverse problems or situations into a large 
meaningful group based on underlying principles, using conceptual terms to label their clusters 
by resorting to a greater variety of representations; while at the same time, and for the same 
cluster, novices or students would organize that group based on “surface” features, using terms 
that merely describe the surface features of the groups (Kozma, 2003). It is known by empirical 
research that the student’s construction of a mathematical object is based on the use of several 
semiotic representations (Hitt, 1998). The learner’s handling of different mathematical 
representations will permit ways of constructing mental images in the sense of Vinner and Tall. 
By concept image, Tall and Vinner (1981) refer to something non- verbal associated in our mind 
with the concept name: it can be a visual representation or even a collection of impressions or 
experiences, which may be translated into verbal forms.  Many times the richness of the learners’ 
concept image will depend on their handling of the representations used.  
The inclination to remain restricted to one representation system (say algebraic and symbolic) 
might produce errors in problem solving situations. According to Aspinwall (Aspinwall et al., 
1997) “symbol manipulation has been over emphasized, and in the process the spirit of calculus 
has been lost”.  One wonders why individuals in general get attached to the algebraic system of 
representation.  And why do students avoid visual reasoning? It could be partially due to the fact 
that teachers continue emphasizing in their instruction on non- visual methods.  
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In general, instructors intensively use algebraic representations in order to avoid confusion 
between mathematical objects and their representations (Hitt, 1998). However, by doing so, they 
neglect or under-emphasize the geometric and intuitive or global representations. For some 
reason, people in general tend to assume that algebraic systems are more formal than other non 
symbolic representations;  
 
Literature Review 
Recent research indicates that the ways in which students think about mathematical concepts in 
general may be surprisingly different from what we might expect (Ferrini et. al, 1993).  
Techniques for understanding mathematical representations are rarely directly covered in class, 
and lack of this understanding underlies many of the misconceptions that impede student 
progress in subsequent classes (Brenner et. al., 1997). It is a fact that there is a lot of research on 
the topic of theoretical and practical translation between and within representations (Goldin, 
1987, Janvier 1987, Moschkovich, Schoenfeld and Arcavi, 1993, Monk, 1988).  Kaput, Janvier 
(Janvier et. Al, 1987) distinguished between signifier and signified: the internal representation is 
the signified, which can be illusive since such an internal representation cannot be directly 
observed. Whereas the external representation is the signifier which acts as stimulus on the 
senses such as the case with computer graphics or charts, or in general any embodiment of ideas. 
Usually the relation between the external and internal representations is expressed in the form: 
“external” means or signifies “internal”. According to Goldon (15), it is a system of coordinates 
of the form (external, internal) paired up according to a given rule. That set of rules for 
organizing the external representation is referred to as Syntax. However the way the 
interpretation is assigned belongs to Semantics.  A shape of a graph supports the semantics of the 
representation. Mason (1987) suggests that when designing a lesson, an instructor would benefit 
from a spiral movement based on the distinction between iconic and internal representations of a 
concept. At any stage, a question may induce movement back down the spiral to restore 
confidence. The distinction between iconic and non-iconic representation was first used by 
Bruner (1966), who was considered a pioneer in the study and uses of representations in 
pedagogy. A common distinction today is drawn between the operational approach to a concept 
as a process, and a structural approach as an object. In many cases in calculus the distinction is 
made between the global/qualitative and the pointwise/local approach. When it comes to 
functions, the pointwise approach is used for plotting, reading or dealing with discrete points on 
the graph, or when one is interested in studying the behavior of a function over a specific set of 
points. It is often observed that translating a functional relationship between data pairs into 
algebraic symbols is one of the very difficult tasks for students (Kieran, 1993).  
 
Illustrative cases of handling multiple representations 
The way in which instructors convey the material sets the tone of how students would react to it 
and defines the distance between the learner and the new material. Students can be indirectly or 
directly trained to look for indicators that suggest the appropriate representation to be used in a 
certain context.  

  Polar versus Cartesian coordinates:  Calculus textbooks in general do not motivate 
enough the introduction of polar coordinates, which leaves students puzzled in face of 
this bizarre way of giving addresses to points in the plane (or space); according to them 
life was going fine with the rectangular way of locating points.  One way I handled this 
dilemma was to introduce in a dry manner those new polar coordinates and even do a 
little practice and applications, and then ask the students themselves about what they 
think could have been the source of this sudden need for new types of coordinates. This is 
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some of what I heard: “While the Cartesian coordinates reflect the erroneous flatness of 
the earth (or plane), polar coordinates suggest that the earth is round”. Also “since we 
perceive and see through our eyes, and since the iris of the eye seems to be divided into 
orbits and rays the closest to our vision, this configuration can be easily described by 
polar coordinates, (r=constant) for the orbits and (theta=constant) for the rays. Long 
discussions follow as to what shapes and graphs are more readily expressed by polar 
coordinates and which figures call for the Cartesian coordinates. Such questions raise 
awareness about the multiplicity of the representation of points and sets of points in the 
plane, and automatically place the learner at the higher level of a “Chooser”.  Of course 
such discussions and debates will only be meaningful and useful if they follow enough 
drilling on routine exercises that secure the required confidence with working with the 
new coordinate system and even with translating between the two systems. Another 
instance of choosing between polar and Cartesian is in complex variables, when students 
have the option of referring to the complex number as z=a+ib,or z=re^(itheta). They can 
be also be asked to choose the appropriate representation depending on the context. They 
always come up with the right answers when properly directed and guided: they’d rather 
go for the polar form in case they are interested in multiplication, in raising to a power, or 
in finding the roots of the unity (while solving for z in z^n=1), while they would always 
resort to the Cartesian representation when the problem involves say, addition. Also when 
they want to determine the image of a certain region in the domain under a complex 
function, their choice of the representation would depend both on the function and the 
domain of integration. A similar choice has to be made when evaluating a double 
integral: the nature of the integrand and the domain of integration determine the 
appropriate form to be used. If a change of representation needs to be performed, it must 
be preceded by a sketch of the domain of integration. Such a sketch is also required for 
determining the ideal order of the variables (dxdy or dydx).  Note that this requirement (of 
a sketch) is also an evidence of how it is indispensable to switch sometimes from the 
symbolic manipulation (of integration) into its geometric representation. 

  The “iconic” integral sign: Instructors should never miss a chance to solicit students’ 
comments around the adoption of new (mathematical) symbols: in one of my calculus 
classes, a student once commented on the (iconic) representation of the symbol of 
integration (after I had introduced the formal Riemann sums followed by integrals and 
the fundamental theorems of Calculus) by noticing that the slanted S symbol seems like a 
“curved, continuous” metamorphosis or evolution of the “discrete pointwise sum” 
presented by the sigma symbol of summation (of the areas of the rectangles). This sharp 
comment reveals that the student does not perceive the icon as an alien symbol imposed 
by some higher authority, but rather as a choice, and somehow suggests that the student 
participated in its creation. 

  Proof writing: wise choice of external representations as “typical elements”: when 
one intends to show set inclusion (A subset of B), the key to a successful naturally 
flowing proof falls many times in a wise choice of the form of the typical element of A 
(that needs to be shown also element of B). This clever preference of the typical element 
may guarantee a successful proof. In Abstract Algebra for instance, in order to show that 
the coset aH is included in the coset bH, students who start the proof by writing “let ah 
be an element of aH for some h in H” have a better chance at completing the proof than 
those who start by writing, say “let x be an element in aH.” The iconic representation ah 
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is key to the proof; it is as if by doing so, that student implicitly acknowledges the 
definition of the coset aH. 

  Multiple representations of derivatives: In traditional outdated textbooks it is 
introduced as the limit of that ratio ∆y/∆x as ∆x tends to zero (rate of change).  In physics, 
it is introduced as a velocity; graphically, it is the slope of the tangent line to the curve at 
a given point; and technically it can be calculated by applying a set of rules and 
techniques, as in the addition rule, quotient rule, chain rule, and so on. A typical calculus 
student is not always able to surf between these representations and to recognize that all 
these forms are equivalent. Same for the case of the different forms of the partial 
derivative: in order to verify that students have firmly established the desired links 
between the various representations of the partial (or directional) derivative, the 
instructor, and after the conventional traditional introduction and the drilling exercises 
can ask the students to find say the slope of the line tangent at the point (2, 3,f(2,3)) to the 
intersecting curve between the surface z=f(x,y) and the plane x=2. Having the correct 
answer (fy (2,3)) is a sign of a deep understanding of the partial derivative. This exercise 
is equivalent to asking a person for that (dictionary) term corresponding to a certain 
meaning as it appears in a dictionary, rather than ask them for the meaning of the term 
itself. In other words, it is equivalent to asking for the translation between two 
representations in the unusual direction.  

  Set Theory: proofs with Venn Diagrams versus symbol driven proofs: what is more 
natural, and what is more rigorous? Some teachers do not consider a Venn diagram 
proof a real proof, although students like to resort to this proof and find it simple and 
meaningful. Those teachers would rather see symbols in rigorous template-like 
statements of the form “let x be an element of … Let us show that x is also and element of 
…” However, students find Venn diagrams quite convincing because the visual 
representation of sets appeals to them. As with any other type of proof, there is always a 
chance that students may be applying a template without understanding why it works, or 
what makes it work. I have some reservation against the abuse of those Diagram proofs. 
If we consider the case of De Morgan’s Law, ~(AUB)=( ~A)∩( ~B). One would assume 
that students using the Venn Diagram proof are aware that the universal set is being 
partitioned by the two sets A and B into the four (non-overlapping) sets A-B, B-A, A∩B, 
and finally ~ (AUB), for only in case they are should this proof be accepted. But in 
general instructors fail to diagnose such an understanding or to even highlight it enough 
in their lectures. (Strange enough that in most textbooks the subject of a partition comes 
later in the course). Same for the case of the inclusion-exclusion principle, which is 
directly verified by Venn diagrams, at least for the case of two or three sets. One wonders 
if all the diagram or visual proofs hide a certain assumption that can be abused or 
overlooked.  

Conclusion 
Once learners are made aware of the different representations of one concept, the next step 
would be to make a choice about which representation is the most appropriate and meaningful at 
a given situation. In APOS terms (Dubinski, 1989), making a choice will be the “process”, 
whereas the different representations would be the tools, or “objects”.   
On the other hand, some researchers argue that adding more representations and personifications 
to a concept does not guarantee necessarily more meaningful internal representation, and may 
keep the process as a whole at the surface level. A balance would naturally be the best. Students 
should be allowed to explore any new representational system until it becomes meaningful to 
them personally. Instructors always strive for that magic balance between the multiple 
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embodiments of a concept and the need for connections between those meanings and those 
external representations.  
Finally, as an evidence of the indispensability of moving between representation systems to solve 
certain problems, what is better than the role of Analysis in the proof of the fundamental theorem 
of Algebra, the two A fields that otherwise seem parallel. 
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