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ABSTRACT. Mathematics and computer science are strongly intertwined, and each subject could be seen as 
complementary to the other. Most pupils in mathematics classes on the secondary level expect to use it in 
computer-related applications. The paper explores possibilities of teaching these two subjects in a uniform 
fashion, so that each subject helps a better understanding of the other.  
1. A computer metaphor replaces the classical "platonic" nature of mathematical objects, as they are presented to 
students, by an ostensive model. This approach stresses algorithmic nature of mathematics on the one hand, and 
facilitates introduction of the basic concepts of computer science, on the other hand. 
2. The language of the set theory with its relatively simple syntax and independence on technical features of 
specific programming languages provides a suitable basis for introducing students to formal language needed for 
work in computer-related industries with its incessant transitions between formal (human-computer) and 
informal (human-human) communications.  
I conclude with a description of my work with mathematics teachers trying to advance the above ideas. 
 
I. Introduction 
As a result of the computer revolution there is a large increase in high school graduates that continue 
their professional education in mathematics-related subjects. The needs of these people are different 
from those who never study mathematics after secondary school, as well as from professional 
mathematicians. From the point of view of a mathematics teacher there has never been so large a 
population that is not naturally inclined to study mathematics but needs it professionally. So the 
challenge to the science of mathematics education posed by the modern society in this context can be 
personalized in a student that is not naturally inclined to mathematics but has to receive solid 
mathematical background to be prepared to work in computer-related technologies.  
Two chief aims of secondary school mathematics (except applications) are teaching students to work 
with a symbolic language (algebra) and the mathematical way of thinking associated with exact 
formulations and logical deductions. Since there are almost no theorems in the school-level algebra, 
this purpose has been traditionally fulfilled by geometry. Lately geometry began to be seen as a tool to 
teach students about space rather than about formal thinking. The reason is that translation of 
geometry to a rigorous axiomatic theory (accomplished by Hilbert) is unsuitable for presentation to 
non-specialists. 
One can discern two points where computer revolution requires changes in emphasizes in school 
mathematics education: 1) stress on algorithmic nature of mathematics; 2) competence in formal 
communications. Both a symbolic language and the mathematical way of thinking are crucial for these 
goals. However, mathematics needed for computer specialists is very different from traditional 
mathematics. “The sort of mathematics that arises in a computing context is not necessarily what most 
people would consider to be mathematics at all. Its character may seem like that of ‘mere’ 
organization, symbol management, or data manipulation” Truss (1999, Preface). So major changes in 
emphasizes should be made in each of the two directions. Some of these changes, in particular those in 
teaching algebra, can help to present mathematical subjects in clearer, less abstract terms. Let us 
discuss these changes. 
One of the main difficulties in understanding mathematical discourse involves dealing with "platonic" 
objects with no tangible correlates. The traditional way of teaching mathematics is based on abstract 
thinking in terms of these objects. Abstractness of mathematics (and in particular that of algebra) is a 
perpetual root of negative feelings towards mathematics among generations of high school students. 
This abstractness stems from the platonic model of mathematics, which is natural to mathematics 
teachers. "A basic and often implicit underlying philosophy of mathematics in teaching is that of 
'sufficiently liberal platonism' which teachers have acquired during their university studies and then 
taken with them to school." (Seeger and Steinbring, 1994). My experience is that many students who 
would like to continue their studies and work in computer-related fields believe that "computers are a 
part of our life while mathematics is not!" I think that platonism plays an important part in creating 
this feeling of mathematics irrelevance.  
Recent developments in mathematics education show that reification, i.e. thinking in terms of objects, 
is an important part in absorption of new material (Sfard, 1991, Dubinsky, 1995). The nature of 
mathematical objects is a serious philosophical problem. Most working mathematicians (and certainly 
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the vast majority of mathematics teachers) are not interested in this question, may be because there is 
no solution in view. It should be noted that there is no agreement even on the question what is a 
natural number (see classical work by Benacerraf, 1965, and Steinhart, 2002, for latest developments). 
It is only natural that our students have difficulties in creating models of unknowns, parameters, etc. 
So it is worthwhile to supply them ostensive models of mathematical objects. “One of the many 
features of computer programs … is that they present objects. Thus they can be used to support 
reification” (Mason, 1989). Moreover, a computer itself is a tangible object, so a model of 
mathematics based on a computer metaphor presents an opportunity to replace the classical platonic 
model in relevant areas of mathematics education. In sec.II I bring an example of algebra presented in 
terms of a computer metaphor. 
The most important component of the mathematical way of thinking for workers in high-tech 
industries is the ability to express themselves in a rigorous language, where each word and expression 
has an unambiguous meaning. Professional communications with a computer (defining problems, 
formulating models, writing computer programs) proceed in such language. This need implies serious 
changes in the relative importance of various parts of mathematical discourse as it appears in the 
classroom (Khait, 2003):  
a) The classical use of definitions in mathematics is in introducing new concepts (Vinner,1991). The 
computer revolution has introduced a new aspect to the role of definitions. A competent professional 
has to construct new definitions of various computer objects (e.g. structures or classes) and understand 
definitions constructed by colleagues. Definitions in computer programming have different levels of 
importance and depth: one does not expect to develop a deep intuitive understanding of each object 
created for particular needs of an occasionally encountered program; one has, however, to understand 
these definitions, that is, their meaning in terms of operational consequences.  Thus, the work with 
definitions has to become a purpose in itself rather than a more or less appropriate means for 
something else.   
b) Programmers usually do not prove the correctness of their algorithms. However, to become a good 
programmer one has to develop intuition and logical thinking to analyze programs. Working on proofs 
in an appropriate context helps to develop such intuition. So the main reason for teaching proofs to this 
population is that a proof helps students to assure themselves that the statement under consideration is 
indeed true and to develop relevant intuition. Statements relevant for work in computer environment 
are very different from geometrical propositions: there is only a play with abstract definitions with no 
visual component.  
In sec.III I present examples of using the set-theoretical language to develop skills of formal 
communications and logical deductions.  
II. Computer as an ostensible metaphor in mathematics education 
      Here is a simplified, "virtual" computer that can help to 
reify algebra.  It could be seen as a device somewhat like a 
food processor: basic frame with modular hardware. The 
hardware is composed of cells (called in computer jargon 
memory cells) and processing units. Inputs are inserted in 
special input cells. The content of these cells can be copied 
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further processing to other cells whose content can be both copied and modified. An output is returned 
at the outlet (e.g. special output cells) and can be taken (copied) from there for any use. For each type 
of object there are cells of a suitable structure. More complex cells are built to contain more complex 
objects. These cells are formed by arrangement of simpler cells.  For each processing unit there is a 
specific type of allowed input, so that only objects of this type can serve as inputs. No two units can be 
used simultaneously. New units can be added to a device. 
Computer model "invites" writing mathematics in algorithmic style that helps to emphasize its 
algorithmic nature. Teaching algebra along these lines transfers the stress from numerical problems to 
solutions of generic (parameterized) problems. A natural way to do mathematics in algorithmic style is 
writing in simple pseudocode. Such pseudocode, used below, is based on the four standard control 
structures (assignment, conditioning, FOR-loop and WHILE-loop) (Harel, 1993). 
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Example. Linear equations.  
We begin with a simple linear equation and later its solution algorithm will be used to solve a more 
complex linear equation. equation ax=b  
Regular style Algorithmic style 
1. a=0 SimpleLinearEquation(a,b)  [SLE(a,b)] 
1a  b=0:  x any real number   IF a=0 THEN IF b=0 THEN RETURN (-∞,∞); 
1b   b≠0:    No Solution                       ELSE RETURN “No Solution”; 
2. a≠0: x=b/a   ELSE RETURN b/a; 
Apparently the two representations are rather similar, however, there are important differences in 
meanings assigned to various symbols helping to create tangible models for mathematical objects: 
1. Parameters a and b in SimpleLinearEquation(a,b)  [SLE ] are inputs inserted in specific cells. 
2. The computed value of the unknown is the output. The command  'RETURN b/a' leads to a delivery of the 
result at the outlet. Thus, a clear distinction between parameters (as inputs) and unknowns (as outputs) is 
established. 
3. SLE is an algorithm object (see citation from Mason above).  
4. The functional form of writing SLE(a,b) emphasizes the dependence of the solution on parameters.  
 5. Algorithmic style naturally focuses attention on special cases encouraging use of the “IF” clause, while in the 
traditional way the unconditional “x=b/a” answer is a common mistake. 
Furthermore, this algorithm can be used in solution of other equations, turning attention to reduction as an 
essential tool of mathematics: the "return to the previous problem" line does not usually appear in standard 
mathematics textbooks, while using previously written procedure is natural in algorithmic style: 
equation a1x+b1=a2x+b2   
Regular style Algorithmic style 
   a1x+b1=a2x+b2   LinearEquation(a1,b1,a2,b2) 
    (a1-a2)x=b2-b1        a:=a1-a2; b:=b2-b1; 
return to the previous problem      Sol:=SLE(a,b); 
       RETURN Sol; 
Let me summarize. The work on expressions with parameters reveals the algorithmic nature of algebra. A 
computer style representation of solution algorithms both emphasizes the algorithmic features of algebra and 
highlights hierarchical nature of mathematics (i.e. a reduction of more complicated problems to simpler ones). 
After seeing initial examples students should be encouraged to write new algorithms themselves. This leads to a 
shift of the teaching process from solutions of equations with numeric coefficients towards designing algorithms 
for equations with parameters. From the computer metaphor point of view a solution of an individual numerical 
equation amounts to inserting specific inputs and switching on a suitable processing unit. In practical terms it 
means to perform a manual run of the corresponding algorithm. Manual execution of explicitly written 
algorithms is in itself an important skill, essential for work in computer environment. Using a simple model of a 
“virtual computer” we can explain the meaning of unknowns, parameters and solutions of equations and 
inequalities in terms of ostensible objects. A pseudocode, in contrast with a real programming language, does not 
shift the attention from mathematics to interaction with a computer so that mathematics remains mental activity 
independent of actual technical devices. 
III. Preparing students to communicate with computers 
Let us discuss separately work with definitions and theorems.  
Definitions. 
Out of the various parts of mathematical discourse, the most radical changes should happen in a relative 
importance of formal definitions. This is because defining becomes a standard working tool used to introduce 
occasional definitions needed for some specific purposes. In terms of concepts and concept images (Tall and 
Vinner, 1981) mastering mathematical language moves the stress towards atomic concept images, associated 
with standard logical connections and quantifiers (Khait, 2003), which serve as bricks for definition construction. 
To illustrate what I mean by learning to work with "occasional" definitions here is an example of a question from 
the final examination of the course "Introduction to mathematical thinking" that uses the elementary set theory 
and the theory of relations as its subject matter. The course is given during the first semester to the first year 
college students (software engineers and industrial management engineers) and to mathematics teachers.  
Consider the following definition 
Let A1,A2 be disjoint sets, A=A1∪A2. We say that a relation R defined on A has property # if every a∈A satisfies 
the following conditions 
1) for every b∈A2 (a,b)∈R AND (b,a)∉R; 
2) for every b∈A1 (a,b)∉R AND (b,a)∈R. 
a. Define the property of NOT #. 
b. Give an example of a relation with the property # on the set A={1,2,3,4}. 
Proofs. 
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 While in the discussion of definitions the formal aspect was stressed, proofs are important mainly for human use 
and so here the intuition should be emphasized. The elementary set theory provides a lot of simple statements 
that could be proved or refuted by writing a line or two of mathematical text. During a single lesson the student 
can work on ten theorems/counterexamples. These proofs and refutations emphasize basic logical structures used 
in mathematics and in formal communications in general.  
Here are examples of such statements: Let R and S be two relations over a set A. Prove or refute by an example 
the following statements 
1. If R and S are transitive, then a. R∪S is transitive; b. R∩S is transitive. 
2. If  R∪S is transitive, then R and S are transitive. 
3. If  R∩S is transitive, then R and S are transitive. 
Now one can substitute "transitive" by "reflexive" or "symmetric" or "antisymmetric" and so obtain another 
bunch of true or false (but always simple) theorems to help students to learn proper mathematical thinking. 
Let me summarize. Capabilities to communicate in a formal language should be in focus of mathematics 
education of the students under consideration. A typical situation when a mathematical idea expressed in the 
classroom “is seldom the pupil’s expression of the pupil’s formulation of the pupil’s idea” (Pimm, 1987) cannot 
be solved by reduction of rigor, because vague formulations are useless in computerized environment. Informal 
additional explanations in the form of “hand waving” cannot help either in communication with an inhuman 
object or with a colleague not present in the room. In many cases there is no other form to express a non-trivial 
technical idea but that of the standard mathematical language. And if such a form is unavailable, “the bodiless 
thought will return to the palace of shadows”( Vygotsky, 1934). 
IV. Conclusions 
The purpose of my work is to unify teaching of mathematics and computer science. I think that the move should 
be made by mathematics education since it has to make itself relevant to students and since the following 
relation basically holds: 
( (Computer Science) – (Technical Details) ) ⊆Mathematics 
My experience of work with secondary school mathematics teachers, computer science teachers and with first 
year students in engineering colleges is of increasing divergence between the needs of the students and 
approaches of the teachers. Mathematics teachers who are unaware of computer-related applications of 
mathematics create an impression of irrelevance of their subject among students interested to work in high-tech 
industries. Many mathematics teachers do not like computers and even put it as a reason for becoming 
mathematics teachers. ("Otherwise I would become a programmer with a better pay and status.") Teachers 
deterred from computers naturally discourage student development in this direction. On the other hand, computer 
science teachers without proper mathematical background often see their job as focused on technicalities of 
particular languages and software neglecting deeper nature of their subject. 
At first encounter with algorithmic style many of my teacher students react negatively. However, after the basic 
rules of pseudocode writing are understood and advantages of this approach are exposed, there is usually a clear 
change of mind of a rather large part of the class, which is not bad taking into account the well-known 
conservatism of experienced teachers. Some teachers become enthusiastic implementing the algorithmic style, in 
particular because it helps to establish better contacts with their pupils who learn programming. The set-
theoretical language is not foreign to secondary school mathematics teachers, however, many of them lack 
practical experience with those logical structures that are not usual in standard geometric proofs.  
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