
The Mathematics Education into the 21st Century Project 
Proceedings ooff  tthhee  IInntteerrnnaattiioonnaall  CCoonnffeerreennccee 

The Decidable and the Undecidable in Mathematics Education 
Brno, Czech Republic, September 2003 

 

 166

Mathematical Problems and Mathematical Structures 
George Malaty, University of Joensuu, Finland, george.malaty@joensuu.fi 

 
1. Mathematical Problems and Problem-Solving 
Mathematics structures have been discovered and developed through solving 
mathematical problems. One of the main roles of schools is to preserve human 
culture, including the mathematical culture. Thus, in teaching/learning of each 
mathematical topic, schools had used to offer mathematical problems. Since the end 
of the 'New Math' movement, at the end of the 70s of the last century, this situation 
has changed in different parts of the world, especially in the so-called 'Western World' 
(Malaty 1998 and Malaty 1999). As a reaction to the 'New Math', the 'Back-to-Basics' 
movement replaced the 'New Math' to put emphasis on mastering arithmetical skills. 
As mastering arithmetical skills is not a sufficient objective for mathematics 
education, towards the year 1985 a new slogan was worked out to make some balance 
with the mechanical character accompanied the teaching of arithmetical skills. This 
was the slogan 'Problem-Solving'. According to the new slogan, mathematics 
educators became interested in collecting and developing problems to be used in 
teaching mathematics at schools. The type of problems chosen was of puzzle type, 
where no need to structured mathematics. In addition, this type of problems was 
described as unrelated to a particular educational level (Pehkonen 1992, 4). These 
mentioned characteristics were relevant to the unstructured school mathematical 
curricula, which among others were appreciated to meet with the lack of qualified 
mathematics teachers in particular Western Countries. On the other hand, these 
characteristics of problems attracted educators, who were not specialised in 
mathematics education, to the bright slogan 'Problem-Solving'. Some of these 
educators have taken part in developing a theoretical frame for 'Problem-Solving'.         
2. Structured or Unstructured Mathematics? 
The 80s and 90s of the last century saw the spread of problems like matchsticks 
problems (Malaty 2002) and others, where no need of structured mathematics. The 
claiming of being unrelated to a particular educational level is another question. One 
of the problems found relevant for all was the problem of the 3 × 3 magic square. The 
magic pattern of the problem attracted teachers to offer the problem to even first 
graders of primary school. In such cases, where young children were asked to solve 
the problem at home, the real solvers were children's parents and other adults. In some 
cases, children announced that nobody was able to solve the problem at home.  
The problem could be solved through inquiry of different cases, but it needs to at least 
simple judgement to appreciate some cases and exclude others. Trial and error is not 
the proper strategy needed, but systematic inquiry of mathematical thinking. The 
magic number patterns of the problem was the reason to make Chinese saw in their Lo 
shu magic square (Figure 1) the origins of science and mathematics (Swetz 1994, 35). 
 
Lo shu means Lo Books and Lo was one of flooding rivers 
of ancient China. By a legend, the magic square of 
Figure 1 was a curious figure on the divine turtle shell. 
                                                           (Figure 1)  
          

Lo shu magic square figure by its form and mysteries represents understanding of 
number patterns of a structured mathematics. At the corners of the squared shape, 
black pearls strings represent even numbers, other strings of white pearls represent 
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odd numbers. The form of black pearls represents divisibility by two of even 
numbers. The odd numbers mystery is related to having all the odd numbers from 1 to 
9 on a cross, where 5 is in the middle. Odd numbers were regarded as symbol of 
completeness and non-divisibility. This was the reason of Arabic talisman related to 
'khamsah wa khomisah', or 'five and the small 5', which is seen today in Arab World 
in a decoration of human palm form.  
The solving of the magic square problem could be made in different ways, where 
understanding of number relations, is always needed. One of the appropriate strategies 
for solving the problem is to find out the number at the central small square.  
(a + e + i) + (g + e + c) +  
(d + e + f) + (b + e + h) = 
15 + 15 + 15 + 15 
⇒ (a + b + c) + (d + e + f) 
+ (g + h + i) + 3 e = 60 
⇒ 15 + 15 +15 + 3 e = 60 
⇒ 3 e = 15 
⇒ e = 5 
  
As 5 is an odd number the sum of a and 
i must be even and as well the sum of g 
and c.  

                 (Figure 2) 
The sum of two numbers is even if both numbers are even or both numbers are odd. 
Assume that a and i are odd numbers and as well g and c.  In this case the sum of a and 
g in the top row is then even and therefor d must be odd. In this case at least all the 6 
numbers e, a, i,  g, c and d are odd numbers. This case is impossible, as from 1 to 9 
there are only 5 odd numbers.  
Assume that a and i are odd numbers, and g and c are even numbers. The sum of a and 
g is then odd and therefore d has to be an even number. Similarly f, b and h have to be 
even. This means that from 1 to 9 we have to find 6 odd numbers, which is 
impossible. In a similar way g and c could not be odd numbers.  
From the above discussion a, i, g and c have to be even numbers. Thus, a has to be one 
of 4 cases. It could be 2, 4, 6 or 8. Respectively i could be 8, 6, 4 or 2. In each of these 
cases g could be of two different cases. This means that there are 8 different solutions 
to the problem. Children can show that these 8 cases are only one case with three 
images by rotation, where the other four cases are images by reflection to the obtained 
four cases.  
3. To Whom? When? and How? 
In writing my paper, I used the Internet sites 'Google search' to verify some parts of 
the legend around the Lo shu square. Search for 'Lo shu' brought 3 370 sites and 
search for square "Lo sh" brought 953 sites. At least, most of the sites, related to the 
search square "Lo shu", are related to mathematics teaching, among them sites of the 
Math Forum. It is difficult to say that I was able to investigate all the sites, but those 
to which I get to access did not gave me precise answers to the questions related to the 
age of students to whom the problem could be offered. As well, there was no answer 
to the question, when this problem is adequate to be offered. Even the question related 
to the way of introducing the problem 'How?' was not discussed clearly.  
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The written proof above is mine, and I got to know about the 'Lo shu' legend, and 
about the idea of proof, at the age of 14. This was only for students of second grade of 
senior secondary school, who got more lessons in mathematics. It was a part of a 
week lesson on the history of mathematics (Lotfy and Abu Alabbas 1958, 37 - 39). 
 
Proposing the problem to us at that age and with our structured knowledge on algebra 
was a reasonable choice to understand the magic of the Lo shu square. The problem's 
given allow to construct only 8 first grade equations. The given seems not enough to 
find values for 9 variables to fit in the 9 small squares. The form of the square allowed 
us to get the ninth needed equation, i.e. the equation 3 e = 15 used above in the proof. 
 
Indeed the problem could be offered to 
first graders of primary school, but it 
has to fit with their structured 
knowledge. For instance, offering 
numeral 5 written in the middle square 
could help few students to find out the 
solution, but this could be a good 
relevant problem to students of age 10. 
For first graders of primary school, the 
Lo shu magic square could be a good 
relevant problem for most of the 
students if we offer beside 5 in the 
middle square one of the even numbers 
and one odd number like in Figure 3. 

The question is not absolute in referring to a problem as a good one. We have to 
answer first the questions 'To Whom?', 'When?' and 'How?' 
For children of age 11 to 14, depending on the content of the curriculum and the level 
of children group, we can lead the children to find the mentioned above proof. Yet 
this is not enough. We have to ask students to find other proof, which could be 
slightly different one.  If this request does not help, we have to go back to the 
previous proof and ask children to think about the other way we can use to continue 
the proof after the step of finding out 5 as the value of the number of the middle 
square. Again if this consoling does not help, we have to ask about the numbers we 
investigated in the previous proof after finding the number of the middle square. If 
this again does not help we have to ask about the possibility of choosing other 
numbers for investigation, other than a, i, g and c (Figure 2).  
4.1.Arithmetical Problems 
Since the beginning of primary school we can offer appropriate mathematical 
problems, which is in need for elementary elements of mathematical structures, and 
which can help in building up mathematical structures. Here is one of such problems 
offered to first grader students of Hungary (Hajdu 1998 ,66). We have made some 
changes in the figures used, but the idea is still the same as in the original form. In 
Hungary, the most appreciated principle on mathematics teaching is the Spiral 
principle. We can see from the example's discussion below, how teaching of a simple 
problem for first grader could be a basic experience for solving system of equations in 
the future. This simple example includes the idea of solving system of 5 First Grade 
Equations on 5 variables. 

(Figure 3)
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In Figure 4 each different shape represents different number larger than 0. The sum of 
the four numbers on the same line equals 8. What is the number represented by each 
figure?  
It is important in teaching solving such problems to encourage students to find 
different strategies for solving the problem, discuss all the students proposed 
  

                (Figure 4) 
      
strategies, and facilitate the discovery of other ones.  In each time, when a student 
proposes a strategy, the teacher has to ask about the reason of its choosing. Not only 
right conclusions have to be discussed, it is more worthwhile to discuss wrong 
conclusions. This is the way to develop all the classroom students' abilities to solve 
problems and building up mathematical structures. The setting of the figures of the 
problem shows that solving a problem has not to start from left to right, as the 
mechanical teaching of arithmetic propose to children.   
The best strategy is to start by finding out the number represented by pentagon. The 
most important to discuss with students is why they prefer to start with this figure. The 
reason here is that pentagon is the only figure appearing on the upper line to the right.
Asking for finding other strategy could lead to find first the number represented by a 
triangle. The reason this time is the appearing of the triangle 3 times on the vertical 
line (down). The number, which the triangle represents on this line, must be less than 
3. Three is impossible as it makes the value of three figures equals 9. Two could not 
be the right number as it leads to obtain also 2 as the number represented by a circle. 
Thus the triangle represents 1. Other solution strategies have also to be discussed. We 
have mentioned before to the fact that, neither each problem is in need for structured 
mathematics, nor each problem can facilitate the building of mathematical structures. 
Here we have to add that not every teaching can develop students' mind. Asking 
children to justify their strategies and cultivating the habit of searching for the cause is 

=   

=

=

=

=
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the way we have to take to make mathematics teaching promote children's mind 
(Malaty 1988).  
4.2. Types of Arithmetical Problems 
Arithmetical problems, which are in need of understanding structured mathematics and facilitating 
building up mathematical structures are not only related to equations, variables or figures. Also 
mentioning to 'Word Problems' as a proper arithmetical problem is not absolutely right. From one hand 
not each arithmetical problem is a Word Problem, and from the other hand  
the so-called 'Word Problem' could be not a problem at all.  
Let us give an example of a 'Word Problem'. Mary's grandfather gave her some amount of money as a 
birthday gift. Three fifths of the offered money Mary used to buy a valuable mathematical dictionary. 
Five sevenths of the remained money she saved on her account and she still have a remainder of 12 
Euros. How many Euros the grandfather had offered to Mary?  
Can we say that the mentioned above 'Word Problem' is a proper problem? It could be and could be 
not. If children have not solved before a similar one it could be then a proper problem; otherwise it is a 
drill on performance skills and not a problem.  
Arithmetical problems are not only related to equations, variables, or 'Word Problems'. Let us 
investigate other type of arithmetical problems by an example. Use the number 2 three times to 
construct expressions, of the values: a) 6, b) 8, c) 3, d) 1, e) 2. 
5. Timing Factor and Problem's Value 
The value of the problem and its affect on developing children thinking depends among others on 
timing. For instance offering the mentioned above 'Word Problem' after learning using letters as a 
symbol of a variable makes the problem less meaningful in developing children's thinking. Such 
problem has to be offered earlier and just after studying the relation between multiplication and 
division, and multiplying by fractions. So, it could be relevant to children of Grade 5. Some of these 

students may come to the next shortcut: Grandfather's offer = 
5
2

 ×  
7
2

 ×  12 Euros. The most important 

is to ask these children to explain, to all of the classroom children, how they came to get this statement. 
The same problem could be relevant to some students of Grade 3 or even lower depending on student's 
level. The most needed pre-request in this problem is the understanding of fraction concept. For 
younger children solving the problem reflects having high abilities of problem solving in structured 
mathematics. 
The other problem mentioned in the previous chapter (4.2.) can be of different meaning regarding 
timing. This problem is a relevant one to children of Grade 2, who have learnt about the four 
arithmetical operations. They can give solutions in a form like the next: a) 2 + 2 + 2, b) 2 ×  2 ×  2, c) 2 
+ 2 ÷  2, d) 2 - 2 ÷  2, e) 2 + 2 - 2. 
The same problem could be presented to children of higher grades to achieve other objectives, like 
measuring the understanding of the role of brackets. In this case, we can beside the mentioned above 
solutions get others. For part b the solution could be 2 ⋅ ×  (2 + 2) and the solution of part e could be  (2 
+ 2 ) ÷  2. 
Timing could be a decisive factor not only in ranking problem's level, but even in converting an 
exercise on operation performance into a proper mathematical problem. Let us introduce an example to 
explain this fact. 
 
Write the missing symbol >, < or = to obtain a true statement: a) 4  +  9             6  +  9, 

b) 6 + 7             8 + 3, c) 
3
5

             
4
9

, d) 
17
19

           
11
13

. Here, parts a and b are proper problems when 

we offer them before learning addition up to not more than 9. Parts c and d are proper problems, when 
they are introduced before learning about 'changing into similar fractions'. It is remarkable to notice 
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that problems like those of parts a and b are of special meaning in creating a pre-request for achieving 
understanding in Algebra, in learning solving equations and inequalities. Parts c and d from one hand 
are measuring the understanding of the concept of fraction and from the other hand partaking in 
building the concept of fraction.   
6. Textbooks and Teachers: From Simple Drills into Mathematical Problems 
Today it is common to find textbooks, which are putting emphasis on mastering arithmetical skills. 'Problem-
Solving' in textbooks are mainly unrelated to certain school mathematics topics and therefore they are wrongly 
thought to be relevant to every child of every school Grade. Strategies of introducing and discussing these 
problems are not worked out in teachers' books, only answers are provided there as tricks. We do need to have 
other types of textbooks, which take care of the nature of mathematics and its historical growth as a culture.  
From the first grade, textbooks have to make children search always for elegant solutions even for exercises, 
which could seem putting emphasis on algorithmic drills. The last example of the previous chapter could 
illustrate this idea for lower grades of primary school, here we add other examples for the higher grades of 
primary school (Malaty 2003). Simplify in elegant way the next expressions: a) 8.91 + 25.7 + 1.09, b) 7.15 - 9.42 
+ 12.85 - 0.58, c) 18.9 - 6.8 - 5.2 - 4.1, d) 3.17 + 10.2 + 0.83 + 9.8, e) 15.21 - 3.9 - 4.7 + 6.79, f) 76.73 + 3.27, g) 
0.16× 0.25, h) 0.93 ×  54.7986 + 0.07 ×  54.7986, i) 24 ×  17 + 17 ×  6, j) 9 ×  7 + 43 + 34. 
Finding elegant solution here is a joyful work of Problem Solving. The joy getting from solving one part gives 
motivations to solve other parts. Children have to learn to analyse the problem to find the elegant idea and learn 
to make syntheses by logical writing of solutions. These abilities are needed in learning mathematics to assist 
students in building up mathematical structures in their mind. This could attract some students to be those, upon 
their shoulders could lie the task of deserving and developing mathematics. To simplify these expressions, the 
type of thinking needed is the same which children shall need later in dealing with more symbolic expressions in 
learning algebra. In an indirect way children learn to develop, understand and appreciate the properties of 
number system such as commutativity, associativity and distributivity.    
Teachers are the most decisive factor in implementing such teaching. Education of teachers has to help them to 
understand the nature of mathematics and its structures. As well, this education has to encourage them to act in a 
creative way. Among others they have not only to encourage student to find different solution to a problem but 
as well to be able to facilitate the discovering of these solutions. We need also to encourage the creativity of 
teachers to modify textbooks problems and add new ones of their own. For instance, let us reflect briefly, but as 
well critically, on the discussion in chapter 5 regarding the second problem of chapter (4.2.). We have not 
discussed the next solutions: for part a 2 × 2  + 2 or 2 + 2 × 2, for part b (2 + 2) ×  2, for part c 2 ÷  2 + 2, for 
part e 2 ×  2 ÷  2 or 2÷ 2 ×  2. Also the teacher has to ask children about 'what was the larger number obtained 
in these expressions' and 'what was the smallest one'. The teacher can ask about the possibility of getting larger 
number and the possibility of getting smaller number. Here children can find that 0 is the smallest possible 
number  (2 -2) ×  2, 2 ×  (2 - 2), (2 - 2) ÷  2. They also can learn analogy and propose to investigate the 
possibility of getting the missing numbers between 0 and 8, which are 4 and 5. This can open the door to 
children to construct other problems like using 3 instead of 2 or using 2 four times instead of three. This is the 
type I can appreciate regarding the so-called open-ended problems or in Pólya's terms constructing mushroom of 
problems.  
7. Final remarks 
In this paper I discussed mainly arithmetic problems. This is due to two reasons. The first one is that the 
mechanical way of teaching arithmetical skills, since the 'Back-to-Basics' movement, was the reason of the 
spread of the puzzles of 'Problem Solving'. Therefore it is important to show that developing arithmetic teaching 
can offer proper arithmetical problems, which can help in building mathematical structures, among them 
algebraic structures. The second obvious reason is that in one paper is difficult to discuss more than a limited 
area.  
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