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Abstract

This paper will start with an infinite geometric series and apply algebraic transformations to
generate several new series, including transcendental functions. The purpose of this discussion
isto prepare students for studying power seriesin calculus. Thisis often achallenge for second
semester calculus students as they have to master the concepts of power series and apply the
principles of calculus to power series. This processis often more successful if the students have
a better understanding of power series.

Power Series Explorations|n Precalculus

Theexpression 1 + x + X2 + x"3 + X + .... isan infinite geometric series with common ratio
r=xandfirsttermal = 1. Theinfinitesumiss = al/(1-r) = 1/(1-x)if |r| = |x]| < L
Thatis, 1+ X+ x"2+x"3+xM+ ... = 1/(1-x),if | x|<1l

If p1O(X) =1+ X + X2+ x"3 + x4 + ... + x 0 isthe tenth partial sum then we can confirm the
equality by graphing y1(x) = f(x) =1/ (1 —x) and y2(x) = p10(x) using the window (-1, 1) X

(0, 10). Another method for obtaining thisresult isto divide 1 by 1 —x synthetically, using x as
the zero of the divisor:

x]1 0 0 O 0 0
X X2 xM3 xM xM5 ... D L/(1-X) = 1+X+XM2+ X3+ XM+ X5+ ...
1 x x"2 x"3 xM x"5 ...

We can repeat this process for the rational function g(x) =1/ (1 + x).

Wedivide 1 by 1 + x synthetically, using -x as the zero of the divisor:
x| 1 0 0 O 0 0
X X2 -xM3 xM x5 ... DL/ (L+X) = 1-X+XP2-X"3+ XM x5+ L.
1 -x x*2 -x"3 xM -x"5 ...

We can also consider 1 —x + x"2 —x"3 + x4 — x5 + ... asan infinite geometric series with

common rationr = -x and first term al = 1. Theinfinitesumiss=al/(1-r) = 1/(1--xX) =
1/@A+x)if|r|=]x]=|x]|<1l
Another way of obtaining a series representation for g(x) = 1/ (1 + X) isto use
gx) = 1/(A+x) = 1/(1--x) = f(-x) = L+-x+(-X)"2+ (-x)"3+ (-X)"4 + (-X)"5 + ...
= 1-X+xX"2-x"3+xM-—x"5+ ..
If g10(X) =1 —X + X2 —x"3 + x4 — .... + x"10 is the tenth partial sum then we can
graphically confirm the equality by graphing
y3(X) =g(x) =1/ (1+x) and y4(x) = g10(x) over (-1, 1) x (O, 10).

Consider the function h(x) =f(x) +g(x) =1/(1—-x) + 1/(1+x) = 2/ (1 —x"2). It seems
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reasonable that this can be represented by the sum of the corresponding
infiniteseries; h(X) =1+ X+ x"2+x"3+xM+ x5+ ...+ 1 =X + X "2 = x"3 + x4 —x"5 + ...
=2+ 2XN2+ 2XM + 2xM6 + L Lif [ x| < 1.

We can confirm this by graphing y5(x) = h(x) and y6(x) = r12(x), where r12(x) is the partia
sum of degree 12. Another way of obtaining a series representation for h(x) is to use:
h(x) = 2f(x"2) = 2(1 + x"2 + (X"2)"2 + (X*2)"3 + (X 2)M + (X 2)"5+ ..) =2+ 2X"2 + 2X"4 + 2X"6 + ...
Note that thisis still an infinite geometric serieswith al = 2 and r = x"2.
Therefore the infinite sumish(x) =2/ (1 —x"2).
Let us apply four basic transformations to f(x). if we use avertical shift of one, then
fIX) =1+1/(1-X)=1+1+x+xX"2+xX"3+xM+x 5+ .. or
fIX)=(2—-X)/(1—-X) = 2+ X+ X2+ x "3+ x4+ x5+ ...
Thisis not ageometric series but it's clear that the infinite series representation isvalid only if | x | < 1.
If we use a horizontal shift of one unit to the left, then
f2)=f(x+1)=1/(1-(X+1))=-1/x=1+X+1D)+ X+ D)2+ X+ D3+ (X + )M+ (X +1)"5+ ..
Thisisan infinite geometric serieswithal = 1andr =x + 1. Theinfinitesumis1/(1—-(x+1)) =
-1/x,where|x+1|<1 = -1<x+1<1 = -2<x<0. Wecan confirm this graphically using
y7(x) = f2(x) and y8(x) = s10(x), where s10 is the 10" partial sum. If we use avertical stretch of 2 then
f3(X)=2f(x) =2/ (1 —X)=2(L + X + X2+ X 3+ x4 + x"5 + ..

=2+ 2X + 2X"2 + 2X"3 + 2xM + 2xM5 + ... which is an infinite geometric serieswith al = 2
andr = x. Thereforetheinfinitesumis2/(1—x) =f3(x). If we use ahorizontal stretch of 2 then
fAX) =f(x/2) =1/ (1—-x/2) =2/ (2—X) =1+ X/2 + (X/2)"2 + (XI2)"3 + (XI2)"4 + (X/2)"5 + ...
isan infinite geometric serieswith al = 1 and r = x/2 so the infinite sumis 1/ (1 —x/2) = f4(x),
where [ x/2|< 1 or -2<x < 2. We can confirm this graphically using y9(x) = f4(x) and
yO(x) = t10(x) where t10(x) is the tenth partial sum.
Let usinvestigate the consequences of examining powers of f(x) and their associated infinite series.
fX) - T(X) = (L+ X+ X2+ xX"3+ XM +x"5+..) - (L+ X+ X2+ X 3+ x M+ x5+ ..) 2>
1/Q1-x)2=1+(1+Dx+(1+1+Dx2+(1+1+1+)x"3+(1+1+1+1+DxM+ ...
1/(1-x)"2=1+2x+ 3x"2+ 4x"3 + 5x"4 + 6x"5 + ... Thisisnot ageometric series.

We can confirm this result graphically using y1(x) = 1/ (1 —x)"2 and y2(x) = p10(x), where p10(x) isthe
tenth partial sum. The series appears to converge for | x | < 1. We natice that the nth coefficient can be
represented by n or nC1. Continuing this pattern, we have:

[fOO1M3=1f(X) - [f(X)]*2 or 1/ (1—-x)"3=1/(1-X)-1/(1-x)"2 =>
1/(1-x)"3=(L+x+x"2+xX"3+xM+x"5+..) - (1+2x +3x"2 +4x 3+ 5x"4 + 6x"5 + ...)
=1+(QA+2x+(1+2+3)x2+(L+2+3+4Yx"3+(1+2+3+4+5xM+ ...
=1+ 3X + 6x"2 + 10x"3 + 15x"4 + 21x"5 + ... Thisis not a geometric series.
We can confirm this result graphically using y3(x) = 1/ (1 —x)"3 and y4(x) = p10(x), where p10(x) is

the tenth partial sum. the series appearsto converge for | x | < 1. We notice that the nth coefficient can
be represented by n(n + 1) / 2 or (n + 1)C2. Continuing this pattern, we have:
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[FEQIM =f(x) - [f()]*3 or 1/ (1—-x)"=1/(1-x)-1/(1-x)"3 >
1/ (1-x)M=(1+Xx+x"2+xX"3+xM+x"5+..) - (1+3x +6x"2+10x"3 + 15x"4 + 21x"5+ ...) =
=1+(1+3)x+(1+3+6)x"2+(1+3+6+10)x3+(1+3+6+10+15xM+ ... =
=1+ 4x + 10x"2 + 20x"3 + 35x™4 + 56x5 + ... Thisis hot a geometric series.
We can confirm this result graphically using y5(x) = 1/ (1 —x)"4 and y6(x) = p10(x), where p10(x) is

the tenth partial sum. The series appears to converge for | x | < 1. We notice that the coefficients are
determined by a series. If we naively approach the problem of determining aformulafor the coefficients,
we can do an analysis of differences:

1410 20 35 56 236 10 152123 456=>111 = thethirddifferencesare

constant so the original sequence may be generated by athird degree polynomial. The nth coef is

an"3 + b2 + cn +d. Using thefirst four coefficients, we obtain:

l=a+b+c+d 4=8a+4b+2c+d, 14=27a+9+3c+d, 20=64a+ 16b+4c+d.

Solving, we have: a= 1/6, b= 1/2, ¢=1/3, and d = 0. Therefore the nth coefficient is

(/6)M3+ (U2)n2+ (U3)n = n(n"2+3n+2)/6 = n(n+1)(n+2)/6 = n(n+t1)(n+2) /3! = (n+2)c3.

[f)IN5=f(X) - [f(x)]*4 or 1/ (1—-x)"6=1/(1-Xx)-1/(1-x)"4 =>

1/(1-=x)"5=(1+X+xX"2+x"3+xM+x"5+..)(1+4x+10x 2 + 20x"3 + 35x"4 + 56x"5 + ...) =
=1+(1+4)x+(1+4+10)x"2+(1+4+10+20)x"3+ (1 +4+ 10+ 20+ 35)x 4 + ...
=1+ 5x + 16x"2 + 35x"3 + 70x™M + 126x"5 + ... Thisis not ageometric series.

We can confirm this result graphically using y9(x) = 1/ (1 —x)"4 and y0(x) = p10(x), where p10(x) isthe

tenth partial sum. The series appears to converge for | X | < 1. We notice that the coefficients are

determined by a series. If the coefficients follow a similar pattern to the previous series then the general

coefficient should be n(n + L)(n + 2)(n + 3) / 4! or (n + 3)c4. We can confirm thisby lettingn=1, 2, 3, 4,

5, and testing the first five coefficients. We obtain 1, 5, 15, 35, and 70. Therefore if the coefficients are

generated by a quartic polynomial then it must be the one we found since the solution isunique. The

appearance of afactoria in the denominator leads us to severa questions: suppose the coefficients are

simply 1/ n!, or (-1)n/ nl, or some subset of these? We could ask similar questionsif the denominator
were simply ninstead of n!. Aswe explore these questions we obtain some surprising results.

If the nth coefficientis1/n! thenwehavef(x) =1+ x +x"2/2! +x*3/3! + x4 [ 4 +x"5/5! + ...
Graphing thisover [-2, 3] x [0, 20] we obtain a graph that appears to be an exponentially increasing
function. If we compare it with y = e*x we abtain an almost perfect match.

I the nth coefficientis(-1)*n/ n! thenwehaveg(x) =1 —x+x"2/2! —x"3/ 3l + x4 [ 4l —x"5/5! + ...
Graphing thisover [-3, 2] x [0, 20] we obtain a graph that appears to be an exponentially decreasing
function. If we compareit withy = e*-x we obtain an almost perfect match. This should not be
surprising asf(-x) =1 —x + x"2/ 21 —=x"3/ 3! + x4 [ 4l —x"5/5! + ... = g(X).

If the nthterm isx™(2n) / (2n)! thenwe havef(x) = 1+ x"2/2! +x™M [ 4l + X6/ 6! + x"8/8! + ....
Graphing thisover [-3, 3] x [0, 10] we obtain a graph that appears to be symmetric with respect to the
y-axis. We would expect this of an even function. It also appears to be a combination of exponentialy
increasing and decreasing functions. |f we compare f(x) with y = cosh x = (e"x + e*-x) / 2 we obtain an
amost perfect match.

If thenth termisx™(2n+ 1) / (2n + 1)! thenwehaveg(x) = x +x"3/3! +x"5/5 + X 7/ 7' + ...
Graphing thisover [-3, 3] x [-10, 10] we obtain a graph that appears to be symmetric with respect to the
origin. We would expect this of an odd function. It also appearsto be a combination of exponentialy
increasing and decreasing functions. If we compare g(x) withy = sinh x = (e"x —e"-x) / 2 we obtain an
almost perfect match.
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If thenthtermis (-1)*n - x*(2n) / (2n)! then we havef(x) =1 —x"2/2! + x4/ 4l —x"6/ 6! + x"8/ 8! —
Graphing thisover [-6, 6] x [-1, 1] we obtain a graph that appears to be symmetric with respect to the
y-axis, which we would expect of an even function, and is periodic. If we compare f(x) withy = cos x we
obtain an amost perfect match.

If the nthtermis (-1)*n - x*(2n + 1) / (2n + 1)! then we have f(x) =X —x"3/ 3 + X5/ 5l = x 7 [ 7! + ...
Graphing thisover [-6, 6] x [-1, 1] we obtain a graph that appears to be symmetric with respect to the
origin, which we would expect of an odd function, and is periodic. |If we compareit withy =sinx we
obtain an amost perfect match.

Let’sdo asimilar analysis when the denominator is ninstead of n!. If the nth coefficientis1/n thenwe
havef(x) = x + x"2/2+x"3/ 3+ xM [ 4+ x"5/5+ ....Graphing thisover [-1, 1] x [-1, 4] we obtain a
graph that appears to be an exponentially increasing function. If we compareit withy =e*x —1we
observe that the curves diverge as x approaches 1. It appears that there may be asymptotic behavior as x
approaches 1 but it is not obvious which function this might represent. We will continue with our
investigations to see if we can gain further insights that will help us.

If the nth coefficient is (-1)(n—1) / nthenwe have g(x) =x —x"2/2+x"3/3—-x"4 [ 4+ x"5/5— ...
Graphing thisover [-1, 1] x [-4, 2] we obtain a graph that appears to be a logarithm function shifted 1 unit
totheleft. If wecompareit withy =1In (x + 1) we obtain avery close match. Notice that

g(-x) = -x=x"2/2-x"3/3-x"4[4-x"5/5— ... =-f(X). Thereforef(x) =- g(-x) =-In (-x + 1).
Graphing this function and series over [-1, 1] x [-1, 4] confirms that the series
X+x"212+x"3/3+x M [4+x"5/5+ .... represents f(x) = -In (1 —x) over (-1, 1).

If the nthtermisx®(2n) / (2n) thenwe have h(x) = x"2/2+x™M [ 4+ x"6/6+ x"8/8 + ....
Graphing this over [-1, 1] x [0, 1] we obtain a graph that appears to be symmetric with respect to the
y-axis, which we would expect of an even function. Notice that h(x) = (1/2)f(x"2). If we compare the
serieswith y = -.5In (1 — x"2) we aobtain a close match.

If thenthtermisx®(2n—1)/ (2n—1) thenwehaveq(X) = X + X3/ 3+ x"5/5+ X \7/7+ ....
Graphing thisover [-1, 1] x [-2, 2] we obtain a graph that appears to be symmetric with respect to the
origin, which we would expect of an odd function. q(x) =f(x) —h(x) = -In (1 —Xx) + .5In(1 —x"2).

If we compare the series representation of g(x) with f(x) —h(x) = -In (1 —x) + .5In (1 —x"2) over

[-1, 1] x [-2, 2] we obtain a very close match.

If thenthtermis(-1)*(n—1) -x*2n—-1) / (2n— 1) thenwehaver(x) =x —=x"3/3+xX"5/5-x"7/7+ ..
Graphing thisover [-1, 1] x [-1, 1] we obtain a graph that is symmetric with respect to the origin, which
we would expect of an odd function, and may have horizontal asymptotes. If we comparer(x) withy =
arctan x, we obtain an aimost perfect match.

If the nthtermis (-1)*(n—1) - x(2n) / (2n) then we have s(x) = x"2/2—-x" [ 4+ x"6/6—-x"8/8 + ...
Graphing thisover [-1, 1] x [0, .5] we obtain a graph that is symmetric with respect to the y-axis since
s(x) isan even function. s(x) issimilar to h(x) = -.5In (1 — x"2). If we experiment with the signs, we
observe that s(x) is almost a perfect match for y = .5In (1 + x*2) over [-1, 1] x [0, .5].

These explorations require a thorough knowledge of the graphs of the toolkit functions as well asa
thorough understanding polynomial algebra. They alow precal culus students to experiment with many

different power series and devel op an understanding of how an infinite series can represent afunction
over someinterval. They may even obtain results that are often omitted in calculus courses.
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