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Abstract 
The restriction of lessons in analytical geometry to the treatment of straight lines and planes 
leads to a dearth of shapes in the lessons as well as to situations where students gain only "static" 
conceptions of parametric equations and, in particular, fail to grasp the associated functional 
relationships between parameter values and points. The inclusion of computer visualizations and 
the creation of simpler animations by students can help incorporate frequently ignored points of 
view – especially the point set notions, functional relationships as well as dynamic aspects – and 
"give them life" when tackling parametric equations of straight lines and other geometric objects. 
For this purpose, by using straight lines as well as circles, spirals, helices and trajectory 
parabolas conceived as trajectories we can submit suggestions and map out approaches. You can 
find sample files, videos and supplementary materials on the website www.afiller.de/3dcg for all 
content described in this article. 

Introduction, Problem 
Parametric equations of straight lines and planes are standard content of lessons in analytical 
geometry. An introduction to parametric equations is usually very quickly followed by 
assignments on the transformation of parameters in coordinate form and vice versa, the study of 
positional relationships, calculations of intersecting points as well as distance and angle 
calculations. Two important and related aspects in analytical geometry, which could be well 
understood using parametric equations, have not been shown to adequate advantage: 

  Students acquire only a rudimentary perception of geometrical objects as point sets. 
  Students mostly fail to recognize functional relationships between parameter values and associated 

points. Recognition of this type of relationships naturally requires a view of geometrical objects as 
point sets but it goes much further than this inasmuch as the dependence of the location of points in 
space is to be understood from parameters. 

To prevent the subject from developing into the concrete and objective aspect of the limited 
concept of parametric equations, embrace the point set notion and focus on functional 
relationship, there are two approaches that should merit special attention: 

  Students construct the points belonging to several parameter values in an equation of the kind 
atPP ⋅+= 0  and recognize that these points lie on a straight line. Parametric equations of straight 

lines can be introduced based on this assumption. Even the parameter-dependent description of 
various curves is possible in this way. Furthermore, reverse considerations and comparisons of 
various parameterizations of the same objects make sense in this connection. 

  The dynamic view of straight lines and other curves as paths can be highlighted whereby students 
link a concrete meaning to parameters. The interpretation of the parameter as time establishes 
relationships with the description of motion in physics. 

Using graphic software or CAS for the treatment of parametric equations 
The use of computer graphics elements in the lesson creates possibilities where the two above-
mentioned approaches to the more detailed treatment of the point set notion and dynamic aspects 
are implemented. The "construction" of straight lines, curves and planes from points requires 
only software, which the student can use to make corresponding graphical representations. The 
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creation of animations (videos) is especially suitable for the development of a dynamic view of 
parametric equations. This is where positions of objects or the position of the observer is 
described depending on a time parameter. An argument for the creation of animations to obtain a 
dynamic view of parametric equations is that most students are generally interested in making 
videos. Parameter-dependent descriptions are necessary when using suitable software. 
To assemble a given straight line or curve as point sets using parametric equations and to be able 
to create parameter-dependent animations, computer algebraic systems as well as the 3D-graphic 
software, POV-Ray, among others1, can be used. These software packages can also be used for 
visualizations and calculations in other areas of the core field of analytical geometry. You can 
find examples using POV-Ray below. 

Straight lines and planes as point sets 
Introduction of parametric equations by considering individual points 
To introduce the parametric equation of straight lines students can be given the following type of 
assignment: 
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  Represent point P as well as vector a  (as an arrow, starting from P). 
  Represent the points aP ⋅+ 5,0 , aP + , aP ⋅+ 5,1 , aP ⋅+ 2  as well as aP ⋅− 5,0 , aP − , 

aP ⋅− 5,1  and aP ⋅− 2 . 
  View the representation from various directions. 

Figure 1 shows a solution to this assignment using POV-Ray and the "anageo"-extensions for the 
simple representation of objects of analytical geometry available from the website [4]. 
The following commands are entered: 
 #declare a = <-2.5,1,-1.5>; 
 #declare P = <0.5,1,1.5>; 
 pluspunkt(P, schwarz) 
 vektoranpunkt(P, a, silbergrau)  
 punkt(P–2*a, blau_matt) 
 punkt(P–1,5*a, blau_matt) 
    ...  
 punkt(P+1,5*a, blau_matt) 
 punkt(P+2*a, blau_matt)  

Figure 1: Points of a straight line
It becomes clear in Fig. 1 that all points represented lie on a straight line. After representing 
larger numbers of points by reducing parameter distanc s it is shown that all points of the 
straight line going through P whose direction is given by 

e
a  can be represented with  in the 

form 
R∈t

atP ⋅+ . 

Using loops to represent large numbers of points 
To generate larger numbers of points and thereby actually make it obvious that the objects can be 
"fully assembled" by inserting any parameters (or parameter pairs) in the parameter equations of 
                                                 
1 For more about the use of 3D computer graphics elements and POV-Ray, please see [1], [2] and [3]. POV-Ray is 
freely available from www.povray.org. You can find a short guide to this software's application especially for 
lessons in analytical geometry as well as associated files on the website [4]. 
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straight lines, curves and planes, elementary programming constructs are used. Loops, among 
others, make it possible to generate such a large number of points so that the result can no longer 
be visibly differentiated, say, from straight lines or pathways. Students can thereby get a "plastic 
impression" of the point set character of geometric objects. 
The graphics represented in Fig. 2 and 3 can be created in POV-Ray using loops: 

 
Figure 2: 60 points of a straight line 

 
Figure 3: 400 points of a straight line 

 #declare i=-200; 
   #while (i <= 200) 
     punkt(P+i*a/100  blau_matt) 
   #declare i=i+1; 
   #end 
Provided the condition 200≤i  is met, this command creates a small sphere with the center point 

aiP ⋅+ )100/(  and the value of the loop variables i is raised by 1. Any number of "points" can 
be represented by changing the values 200 and 100. 

Time as parameter – generating simple videos 
As was already mentioned, creating videos is a very motivating task for many students. Using 
suitable software coordinates or other features, which are described by numbers, can be 
expressed based on a time parameter (in POV-Ray clock). It is possible, for example, to 
generate a video with straight-line uniform motion of a sphere by2   
 #declare a = <-2.5,1,-1.5>; 
 #declare P = <0.5,1,1.5>; 
 punkt(P+2*clock*a  blau_matt) 
The motion track becomes clearer when the "track" of the moving object is displayed simulta-
neously as pathway between the starting point and the respective position reached. This is 
possible in POV-Ray using the already described illustration of straight lines or pathways as 
point sets. 
Parametric equations in animations acquire an aspect that does not affect the geometric shape of 
these objects: the velocity of motion. For example the two parametric equations below: 
 (1) atPtX ⋅+=)(    and  

 (2) atPtX ⋅+= 2)(  

(with ) describe the same half-line.  +∈ Rt Figure 4

                                                 
2 For technical aspects of the creation of videos using POV-Ray, we refer you to the help section of the program or a 
brief guide available on the website [4] (Downloads).  
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If these parametric equations are used to generate animations, then (1) yields a uniform and (2) a 
constantly accelerated motion on these half-lines. This can be recognized in Figure 4 through the 
distances of the points; the same amount of time elapses between two adjacent points. 

Vector parametric equations – the oblique projection 
If vector descriptions and procedures come to the fore in the lessons, one can delve deeper into 
the above-mentioned aspect of the velocity of motions. Animations allow you to establish links 
to the physics lessons, work out functional aspects by considering various functions , which 
replace the time parameter as well as create simple simulations. An example is the oblique 
projection. This can be interpreted as motion assembled from uniform motion and constantly 
accelerated motion. By adding a linear component in t  and the acceleration vector multiplied 
with  to the equation  

)(tf

2t
21 ⋅+⋅+0 2

tgtvxx =  

of the oblique projection, we get the trajectory parabola. 
A corresponding animation can be generated in POV-
Ray by means of the following commands (see Figure 
5). 
 #declare x0 = <-2.5,0,0>; 
 #declare v0 = <5,5,0>; 
 #declare g = <0,-10,0>; 

Figure 5: Trajectory parabola

 sphere { x0 + v0*clock + g/2*clock*clock  0.25} 
Parametric equations of circles and several other curves 
The representation of geometric objects given by parametric equations by means of point sets as 
well as the creation of animations through the time-dependent description of coordinates is not 
limited to linear objects (straight lines and planes). On the contrary, considerations and 
representations that are significantly more interesting and more appealing in terms of shape are 
possible using curves (as well as surfaces). Circles are well suited as starting points for the 
description of curves through parametric equations. 
Parametric equations of circles 
Students from secondary level I are already familiar with the most 
important foundation of parametric equations of circles in the plane – 
the customary sinus and cosine function on the unit circle with the 
designations used in Figure 6 as 
 αα y=sin  ;  α αx=cos . 

A generalization on circles in center location with any radius r is easily 
possible from which the parametric equation 
 αα cos⋅= r)(x  ;  α αsin)( ⋅= ry )2;0[  with πα ∈  

 

                                                

Figure 6
can be derived of a circle of the plane whose center point lies in the origin of coordinates.3 If 
different quantities have to be animated, it then makes sense in terms of clarity to standardize the 
interval of the animation parameter (time) and to write the above parametric equation in the form 

 
3 By adding center point coordinates this parametric equation can be generalized on any circles in the plane: 

, . Mxrx +⋅= αα cos)( Myry +⋅= αα sin)(
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 )2cos()( trtx ⋅⋅= π  ; )2sin()( trty ⋅⋅= π  with . )1;0[∈t
Parametric equations of circles which lie in space on coordinate planes or planes parallel to them 
arise by representing one of three coordinates as constants, for example,  . With these 
considerations, students can create animations of circular motions. In POV-Ray, for example, the 
command 

htz =)(

 sphere { < 10*cos(2*pi*clock), 0, 10*sin(2*pi*clock) >  1 } 

creates the animation of a sphere on a circular trajectory (see 
Figure 7). Since the representation of motion trajectories used often 
makes sense to obtain an overview of the process of animation, the 
"track" of the sphere can also be depicted so that when looking at 
the animation it is obvious which path the object has covered. The 
procedure here corresponds to the generation of a multitude of 
small spheres already described for straight lines (see Figure 2). 

Figure 7
Camera animations 
If instead of a geometric object the position of the "camera" from which the scene is viewed is 
described as time-dependent, we get an animation where the view of all objects of a scene 
changes. For example, with 
 camera{ location < r*cos(2*pi*clock), 4, r*sin(2*pi*clock) > 
   angle 12   look_at <0,0,0>          } 
a camera flight can be simulated in POV-Ray on a circular path where the camera remains 
directed at the origin of coordinates.4 With regard to the necessary mathematical considerations, 
it does not matter whether students create the animation of an object moving on a trajectory or a 
camera animation where the view of an entire scene changes. From experience it is known that 
the latter is more interesting for most students. However, to make motion curves visible, it is 
recommended to not only create camera animations but also to animate visible objects. 

Variations of circles: spirals and helices 
After the treatment of parameter equations of circles it stands to reason to describe "cognate" 
curves as parameters by making suitable changes to them. The following questions, which 
students will ask in connection with camera animations, can be tackled: 

1. How can the camera circle around an object and simultaneously approach it? 
2. In a circular motion, how can the camera simultaneously change its height so that objects 

can be viewed from different heights? 
Of course, both questions can also be formulated so that they pertain to the course of curves. In 
order to realize the first property students can (at least with assistance) work out that the constant 
r, which was used for the radius of the circle previously under consideration, is replaced by a 
function  of the temporally changing parameter t, e. g. by )(tr )1( tr −⋅ , if the distance to the 
center point during the course of the animation should decrease from r to 0 (for ). This 
notion yields the parametric description of an Archimedes' spiral: 

]1;0[∈t

                                                 
4 You can find several examples of camera animations on the website [4]. 
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 )2cos()1()( trtx ⋅ t⋅−⋅= π  
 )2sin()1()( trty ⋅ t⋅−⋅= π   ]1;0[∈t

)2( t⋅

  htz =)(  .
On this basis, objects or the camera can move along an 
Archimedes' spiral (for which the commands described 
above should be varied). The shape of the spiral is better 
visible when two revolutions are run and this can be 
done by replacing π  with )4( t⋅π  in the 
trigonometric terms of the parametric equation (see Fig. 
8). Figure 8: Archimedes' spiral
 

In the discussion of question 2 above, students may easily 
recognize that for the time-dependent alteration of the 
"height" the previously constantly held third coordinate has to 
be replaced with a function of the parameter. If a linear 
function is selected (in the simplest case  or ty = tz =  – 
depending on which coordinate was held constant in the 
description of circles), then the circle equation yields the 
equation of a helix, e. g:  
 )t⋅4cos()( rtx ⋅= π  
      tt =) t

)t⋅
y(

tz
]1;0[∈

 4sin()( r ⋅= π  . 
By combining the two considerations which led from the 
circle to the spiral or to the helix (parameter-dependent 
descriptions of the radius and the "height" in the original 
parametric equation of a circle) we get using linear functions 
in t a conical spiral with parametric equation of the form 
 )t⋅4cos()1()( trtx ⋅−⋅= π  
      tty =)( ]1;0[∈t

)t⋅ 4sin()1() tr ⋅(tz −⋅= π . 
Figure 10: Conical spiral

Figure 9: Helix 

 
Other variations of the previously considered curves emerge by using nonlinear function terms in 
t for the height or the radius. One can then formulate the task of changing the parametric 
equation of the helix so that its points depart at first very slowly and then more quickly from 
those of the originally considered circle. Variations of the Archimedes' spiral are likewise 
possible. Multiplying the trigonometric terms in the parametric equations with different factors 
also allows you to create elliptical orbits as well as orbits on "elliptical spirals" and "elliptical 
helices". 
 
Summary 
The above examples show that with simple elementary mathematical tools which tie up with the 
secondary level I lessons it is possible to make models of interesting curves and create 
animations based on them. However, the time needed to do this must not be underestimated. 
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Even for seemingly simple functional considerations which, say, lead from circles to spirals or 
helices, students in my seminars needed quite a lot of time. As they found these considerations 
interesting, they fell into the joy of experimentation and were willing to spend a relatively large 
amount of free time on them. This could also apply to many school students since the creation of 
interesting videos, as already mentioned several times, is a motivating endeavor for youth 
everywhere. 
Through variations on parametric equations of curves and the resulting description of "new" 
curves, we get rich possibilities for functional considerations where students – based on 
qualitative descriptions of desired curve progressions – ponder the function terms through which 
these can arise and check their considerations using software.  
Vector calculus is not needed to describe geometric spirals as well as spirals that are especially 
interesting with regard to the creation of camera animations. It makes more sense here to work 
with coordinate descriptions. However, interesting considerations of motion trajectories are also 
possible based on vector line equations. From the standpoint of teaching mathematics, I consider 
the above-mentioned subject matter especially worthy of mention because the activity triggers 
sophisticated considerations about functional relationships which often inadequately appear in 
the current dominant treatment of parametric equations in lessons. 
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