# Using the ClassPad300Plus in Analysis to Solve a System of Linear Differential Equations 

Ludwig Paditz, University of Applied Sciences Dresden (FH), Germany


#### Abstract

: In real life situations quantities and their rate of change depend on more than one variable. For example, the rabbit population, though it may be represented by a single number, depends on the size of predator populations and the availability of food. In order to represent and study such complicated problems we need to use more than one dependent variable and more than one equation. Systems of differential equations are the models to use. The nonlinear systems are very hard to solve explicitly, but qualitative and numerical techniques may help us to get some information on the behaviour of the solutions. Let us consider the ClassPad300Plus (with the new operating system OS 03.01) and discuss on some new exercises in analysis, e.g. solving a linear system of differential equations. We know several ways to get a solution. The techniques for studying systems fall into the following three categories: analytic, graphic and numeric. We can transform a system of equations in one equation of higher order and we have for linear systems with initial conditions the possibility to use the Laplace transformation. On the other hand we can transform a system of differential equations in a system of difference equations, i.e. sequences of numbers given by the help of recursive equations. These sequences are used as a discrete mathematical model for differential equations. The ClassPad300 has the dSolve- and the rSolve-function to study systems of differential and difference equations respectively and additionally the Laplace and inverse Laplace trans-formation. Finally we have the possibility to generate large dSolve- or rSolve-terms by the help of commands for strings and characters. Thus the calculator can generate the large syntax for the used dSolve- and rSolve-function. This is a convenient method to input a long command row not manually but by the help of a program.


By the help of several examples the interactive work with the ClassPad300Plus is considered. The student can solve difficult exercises of practical applications step by step using the symbolic calculation and the graphic possibilities of the calculator. Sometimes several fields of mathematics are combined to solve a problem.

References:
http://www.sosmath.com/diffeq/diffeq.html
http://www.informatik.htw-dresden.de/~paditz/Pendulum_Program.pdf
http://www.informatik.htw-dresden.de/~paditz/LaplaceTrānsf2006.pdf

## Example of finding the mathematical model and several ways of solution:

[^0]http://www.htw-dresden.de/~kaestner/www/pa/pendel/pendel_text.htm
A complete analytic model of the inverted pendulum controlled by a DC motor is derived in three parts, the pendulum-cart dynamics, the friction model, and the motor dynamics. Here we will study the dynamics of the DC motor by the following equations, cp .
http://www.sei.cmu.edu/pub/documents/99.reports/pdf/99tr023.pdf
http://ieeexplore.ieee.org/iel5/41/33886/01614147.pdf



Solution of the linear system with unknown coefficients A1, A2, ..., C2, C3.
Determination of the coefficients with the initial conditions $y 1=1, y 2=-1, y 3=1$ for $x=0$ :


View window: $-0.05<x<8$ and $-1<y<1$ and graphical representation of $y 1, y 2, y 3$


View window: $8<x<16$ and $-0.03<y<0.01$
Solving the system of order 3 by the help of one equation of $3^{\text {rd }}$ order for y 1 :


For the Laplace transformation again used the initial conditions $y 1=1, y 2=-1, y 3=1$ for $x=0$.
Finally another way of solution is the transformation in difference equations:
$y^{\prime}(t)=(y(t+T)-y(t)) / T$ for small $T$, say $T=0.1$.
Now the new system is $x(t+T)=x(t)+T *$ matAK $* x(t)=(I+T *$ matAK $) * x(t)$.
We use the fixpoint iteration $x_{k+1}=(I+T *$ matAK $) * x_{k}$ with $x_{0}=\left[\begin{array}{lll}1, & -1, & 1\end{array}\right]^{T}$ and create 3 lists.
Here matAKI $=I+T *$ matAK .
The program DefLis3D creates the lists.

| ＊Edit Etrl I／O Misc |  | 3 |
| :---: | :---: | :---: |
|  | ¢ | 多 |
|  |  |  |
| ```local ヨ: =eq(ヨ, a,1,N)〒list1 li}t1\geqslantli\xita=li\xit1\geqslantli\xitb=li\xit1\geqslantli\xit``````For 2*i To N Step 1``````Next Return``` |  |  |



| ＊Edit Calc SetGraph |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | \％ |
| lizt1 | lista | liztb | liztc |  |
| 462462 | 3． $565 \mathrm{E}-8$ | －1．92e－8 | $-1.93 \mathrm{E}-8$ |  |
| 463463 | $3.373 \mathrm{E}-8$ | －1．85E－8 | $-1.86 \mathrm{E}-8$ |  |
| 464464 | $3.187 \mathrm{E}-8$ | －1．79E－8 | $-1.8 \mathrm{E}-8$ |  |
| 465465 | 3． $1088 \mathrm{E}-8$ | －1．73E－8 | $-1.73 \mathrm{E}-8$ |  |
| 466466 | $2.835 \mathrm{E}-8$ | －1．66E－8 | $-1.67 \mathrm{E}-8$ |  |
| 467467 | $2.668 \mathrm{E}-8$ | $-1.6 \mathrm{E}-8$ | $-1.6 \mathrm{E}-8$ |  |
| 468468 | $2.508 \mathrm{E}-8$ | －1．54E－8 | $-1.54 \mathrm{E}-8$ |  |
| 469469 | $2.353 \mathrm{E}-8$ | －1．48E－8 | $-1.48 \mathrm{E}-8$ |  |
| 476470 | $2.205 \mathrm{E}-8$ | －1．42E－8 | $-1.42 \mathrm{E}-8$ |  |
| 471471 | $2.063 \mathrm{E}-8$ | －1．36E－8 | $-1.36 \mathrm{E}-8$ |  |
| 472472 | $1.926 \mathrm{E}-8$ | －1．3E－8 | $-1.3 \mathrm{E}-8$ |  |
| 473473 | $1.796 \mathrm{E}-8$ | －1．25E－8 | $-1.24 \mathrm{E}-8$ |  |
| 474474 | $1.671 \mathrm{E}-8$ | －1．19E－8 | $-1.18 \mathrm{E}-8$ |  |
| 475475 | $1.551 \mathrm{E}-8$ | －1．14E－8 | $-1.13 \mathrm{E}-8$ |  |
| 476476 | $1.437 \mathrm{E}-8$ | －1．08E－8 | $-1.08 \mathrm{E}-8$ |  |
| 477477 | $1.328 \mathrm{E}-8$ | －1．03E－8 | $-1.02 \mathrm{E}-8$ |  |
| 478478 | 1．225E－8 | －9．87E－9 | $-9.78 \mathrm{E}-9$ |  |
| 479479 | $1.126 \mathrm{E}-8$ | －9．39E－9 | $-9.29 \mathrm{E}-9$ |  |
| 486480 | 1． $032 \mathrm{E}-8$ | －8．92E－9 | $-8.82 \mathrm{E}-9$ |  |
| 481481 | 9．43E－9 | －8．46E－9 | $-8.36 \mathrm{E}-9$ |  |
| 482482 | 8．584E－9 | －8．62E－9 | －7．91E－9 |  |
| 483483 | 7．781E－9 | －7．59E－9 | －7．48E－9 |  |
| 484484 | 7．021E－9 | －7．18E－9 | －7．06E－9 |  |
| 485485 | $6.303 \mathrm{E}-9$ | －6．78E－9 | －6．66E－9 |  |
| 486486 | $5.624 \mathrm{E}-9$ | －6．4E－9 | $-6.28 \mathrm{E}-9$ |  |
| 487487 | $4.984 \mathrm{E}-9$ | －6．02E－9 | －5．9E－9 |  |
| 488488 | $4.381 \mathrm{E}-9$ | －5．67E－9 | $-5.54 \mathrm{E}-9$ |  |
| 489489 | 3．814E－9 | －5．32E－9 | －5．2E－9 |  |
| 496490 | $3.281 \mathrm{E}-9$ | －4．99E－9 | $-4.87 \mathrm{E}-9$ |  |
| 491491 | $2.782 \mathrm{E}-9$ | －4．67E－9 | $-4.55 \mathrm{E}-9$ |  |
| 492492 | $2.314 \mathrm{E}-9$ | －4．37E－9 | $-4.25 \mathrm{E}-9$ |  |
| 493493 | $1.876 \mathrm{E}-9$ | －4．08E－9 | －3．96E－9 |  |
| 494494 | 1． $468 \mathrm{E}-9$ | －3．8E－9 | －3．68E－9 |  |
| 495495 | 1． $688 \mathrm{E}-9$ | －3．53E－9 | －3． $41 \mathrm{E}-9$ |  |
| 496496 | $7.34 \mathrm{E}-10$ | －3．27E－9 | －3．16E－9 |  |
| 497497 | 4． $07 \mathrm{E}-10$ | －3． $0.3 \mathrm{E}-9$ | －2．91E－9 |  |
| $\begin{aligned} & 498 / 498 \\ & 499 \end{aligned}$ | 1．03E－10 | －2．58E－9 | －2．68E－9 |  |
| 560560 | －4．3E－10 | －2．37E－9 | －2． $26.4 \mathrm{E}-9$ |  |
| Cal＊ |  |  |  |  |
|  |  |  |  |  |
| ［ 1］$=1$ |  |  |  |  |
| Deg Auto Decimal 县 |  |  |  |  |

By the help of these lists we get the same graphical representations of $y 1, y 2, y 3$ ．
Finally we use the sequence menu to create the sequences given in lista，listb，listc．
The file for the classpad manager you can download here：
http：／／www．informatik．htw－dresden．de／～paditz／paper＿charlotte＿2007．vcp
The program DefSeq3D creates the equations for the sequence menu．
Contact：paditz＠informatik．htw－dresden．de



[^0]:    The following mathematical model due to an inverted pendulum, ср.
    http://www.fh-
    kempten.de/deu/hochschule/fachbereiche/fbe/labore/digital/homepage/swpr/ss98/Staude_Sommer/Pendel/Pendeleng l.htm
    http://instruct1.cit.cornell.edu/courses/ee476/FinalProjects/s2003/es89kh98/es89kh98/Inverted_Pendulum_Balancer. mov
    http://www.htw-dresden.de/~kaestner/www/pa/pendel/simulation14/InversesPendel.html
    http://www.htw-dresden.de/~kaestner/www/pa/pendel/pendel_modell.htm

