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Spreadsheet Investigations in Modular Arithmetic 
Steve Sugden, Bond University, Australia 

Abstract 
Modular arithmetic has sometimes been regarded as a bit of a curiosity, at least by those 
unfamiliar with its importance to both abstract algebra and number theory, and with its numerous 
applications. However, with the ubiquity of fast digital computers, and the need for reliable 
digital security systems such as RSA, knowledge of this important branch of mathematics is now 
considered almost essential for IT professionals. Indeed, computer arithmetic is, ipso facto, 
modular. This paper describes the use of a modern graphical spreadsheet (Microsoft’s Excel) to 
clearly illustrate the basics of modular arithmetic, and to solve certain classes of problems. Via 
conditional formatting and observation of patterns in Excel, students may gain structural insight, 
form and test conjectures, and solve problems. 

1. Background 

1.1. The practical utility of number theory 
In our society of the 21st century, it seems that even the most sublime of human pursuits may be 
called upon to justify its existence in terms of dollars contributed to some “practical” cause. 
Given such hard constraints, it can be difficult to defend certain esoteric branches of 
mathematics. But for the advances of information technology of the past few decades, a defence 
for number theory in terms of “pragmatics” may have been something of a challenge. Despite 
Hardy’s claim that “I have never done anything useful” [1], the “practical” utility of number 
theory nowadays is undeniable; its application to mathematical cryptography and cryptology 
alone being enough to stay the cries of the pragmatists. 

1.2. The teaching of modular arithmetic 
In the Australian state of Queensland, modular arithmetic is currently out of vogue in the high-
school curriculum, being relegated to an “optional” topic in Mathematics C. State-wide, this unit 
was taken by about 10% of seniors in 2006 [2]. Previously described as “clock-arithmetic”, at 
least at high-school level, modular arithmetic is often presented as something of a curiosity, with 
little practical application. Perhaps with the advent and dominance of digital timepieces, this 
terminology has faded. Created by Gauss in his Disquisitiones Arithmeticae [3] in 1801, modular 
arithmetic was indeed regarded as a curiosity at that time. 

The situation regarding coverage of modular arithmetic seems to be somewhat better at tertiary 
level, where the material may be treated from a slightly more mature standpoint, with a view to 
obvious applications. However, in the author’s experience, few IT graduates appreciate the fact 
that integer arithmetic (the only kind which is exact) on a digital computer is none other than 
modular arithmetic. This is so, since all integer operations are performed modulo some power of 
2. This is the nature of a digital, binary CPU. To graduate with a degree in CS or IT and not 
know this seems incredible, at least to this writer. 

1.3. “No maths please, and we don’t care much for programming either!” 
Increasingly, we see the watering-down of IT degrees: less programming, little or no low-level 
programming, and often no units on operating systems, compilers, theory of programming 
languages. There is nowadays considerable pressure, at least in the author’s own country 
(Australia), to accommodate fee-paying students who make no secret of their aversion not only 
to mathematics, but also to computer programming. This then begs the question: “Why are such 

http://en.wikipedia.org/wiki/Disquisitiones_Arithmeticae�
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students enrolled in an IT degree?” To enrol in IT, but then eschew not only maths but 
programming sounds crazy to my ancient ears (and also to many of my ageing colleagues). 
Perhaps we are old fashioned in our belief that CS/IT is a scientific discipline, in which 
appropriate, and rigorous mathematics is a necessary part of the “toolkit” for a practitioner. 

1.4. Early days 
I confess that I have always found number theory non-trivial. In the primary classroom, in the 
late 1950s and early 1960s, I learned of prime numbers, factorization of integers, highest 
common factor (nowadays called gcd – greatest common divisor), lowest common multiple, and 
other curiosities. I was educated in various schools in New South Wales, Australia. At Sydney 
Technical High School, in 1968, my last year of secondary school, I studied “theoretical 
arithmetic”, which, of course, is number theory by another name. From 1974-1978 I was enrolled 
part-time in a coursework program Master of Scientific Studies at the University of Queensland. I 
took a unit Analytic Number Theory taught by Professor Clive Davis. I was at first disappointed 
when he told me that I was the only one to enrol, and assumed that it would be cancelled. Not so, 
and he ran the whole thing as if the lecture room were full of students. I found it very interesting 
and we covered, among other topics, the Prime Number Theorem, the transcendence of e and π, 
plus lots of interesting material on the Riemann zeta function (actually first defined by Euler). 
Material on additive number theory (partitions of integers) was also covered. 

1.5. Today 
These days, I am at Bond University, where unfortunately, there is very little mathematics: just a 
few units of statistics plus Business Mathematics and Analytical Toolkit (discrete mathematics 
plus some very basic statistics for IT students). Recently I wrote elsewhere about the difficulties 
encountered at Bond while trying to get across the basics of discrete mathematics to IT students. 
I also described my response to this problem: in a nutshell, it is the use of Excel to convey 
mathematical principles to students whose algebra is, in many cases, almost non-existent [4]. 
Several negative factors usually conspire to create a huge problem here, but the most significant 
component is always the very poor mathematical knowledge and skillset of a typical IT student 
at Bond. It is my impression that this problem is not confined to Bond, but essentially ubiquitous 
in Australia. Recent anecdotal evidence seems to indicate that the situation is perhaps even worse 
in the UK, USA and Canada. 

1.6. Formalism is a problem 
From my perspective, there seems today to be an almost total lack of ability and/or experience on 
the part of many students to deal with formality in mathematics. I refer to formal definitions, 
formal manipulation of symbols, i.e., algebra, and formal or semi-formal reasoning using 
accepted principles of logic. Whatever their high-school mathematics curriculum was, the 
students appear to have emerged with very poor problem-solving skills, little facility for algebra, 
and not much appreciation of the wide applicability of mathematics to solve a range of problems. 
They even a lack of knowledge of “standard tricks”, such as quick checks for divisibility (sum of 
digits is a multiple of 3 or 9, or last digit is even). Is 127652761865675448 a prime? The 
calculator is quickly sought for “difficult” problems like 6 x 7, or even 6 + 7! How do we deal 
with such atrocious levels of mathematical understanding when students are enrolled at 
university for degrees where basic maths is required? I have written of the possibility of a partial, 
stopgap solution in [4]. 
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2. Some applications of modular arithmetic to IT 

2.1. Hashing 
Hashing, or scatter storage, is the process where a key (usually some text string) must be mapped 
to an array location (index or address). The usual approach is to use a fairly simple function of 
the key, modulo n, where n is prime. The function needs to be simple, or more precisely, 
efficiently computable, as the only advantage of using hash functions for record retrieval is 
speed; everything else is negative. 

2.2. Simultaneous linear congruences (SLCs) 
( )
( )
( )

1 mod3

2 mod 5

5 mod 7

x

x

x

≡

≡

≡

 

Solution of SLCs such as the set of three shown above may be viewed as computing the 
intersection of several arithmetic sequences, i.e., what set, or sequence is formed by the elements 
common to each sequence? Viewed from this perspective, the possibility of an empty sequence 
arises. For example, one cannot have x both congruent to 1 (mod 4) and to 0 (mod 2). Necessary 
and sufficient conditions for the existence of solutions are given by the Chinese Remainder 
Theorem, but I do not even mention this in class. I merely show how to find the general solution 
(or prove its non-existence) by algebra. This approach is complemented by one or two Excel 
models. The simple version of the Excel model merely lists the arithmetic sequences defined by 
the linear congruences. The intrinsic function COUNTIF is then used to identify solutions, which 
are highlighted by conditional formatting (CF). I require the students to be familiar with both 
algebraic and Excel methods. Where appropriate, this is my approach in general. 

2.3. Modular inverse and modular exponentiation 
The RSA public key system of encryption [5] relies on, among other things, efficient 
computation of modular inverse and modular exponential (see next section). Briefly, the private 
and public keys are mutual inverses with respect to the system modulus, which is the product of 
two large, distinct primes. In the simplest application of RSA, these two keys are the encryption 
and decryption keys respectively. Suppose we wish to compute the inverse of 4 with respect to 
modulus 11. Denoting this quantity by x, it may be defined as the solution, or a solution of the 
equation 4x ≡ 1 (mod 11). The perennial questions of existence and uniqueness arise, plus of 
course, how to compute the inverse if it exists. 
I have found that many students miss even the entire concept of modular inverse, answering 
“0.25” to the question “compute -14  (mod 11) ". Thus, I go out of my way to avoid this 
misconception. I just use a table in Excel, so to “compute” mod inverse, we simply consult the 
table. It becomes clear via conditional formatting when the inverse does not exist. I then ask the 
students to contemplate why inverse does not always exist, but when it does, it is unique. For 
many more examples where CF patterns are used to illustrate principles or solve mathematical 
problems, see [9, 10]. 
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11
1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10
2 2 4 6 8 10 1 3 5 7 9
3 3 6 9 1 4 7 10 2 5 8
4 4 8 1 5 9 2 6 10 3 7
5 5 10 4 9 3 8 2 7 1 6
6 6 1 7 2 8 3 9 4 10 5
7 7 3 10 6 2 9 5 1 8 4
8 8 5 2 10 7 4 1 9 6 3
9 9 7 5 3 1 10 8 6 4 2

10 10 9 8 7 6 5 4 3 2 1  
Figure 1 

Students can easily see that modular inverse is obtained by table lookup. They are also 
required to complete an assignment on RSA [6]. For this, they must write functions for 
modinv and modexp in VBA (Excel-hosted). Even though such functions are each 6 or 7 
lines of code, they struggle. The algorithm for modinv is essentially linear search. Just like 
table lookup: start at 1, keep looking until you find a 1 in the row of interest, or see that it is 
not there (non-existence of inverse). To compute ( )nx mod m  is also an essential step of the 
RSA encryption (and decryption) process. Naive code for these is shown below; the code for 
modular inverse assumes its existence. 
 
Function modexp(x As Long, n As Long, m As Long) As Long 
   modexp = 1 
   Do While n > 0 
      modexp = (modexp * x) Mod m 
      n = n - 1 
   Loop 
End Function 
 
Function modinv(t As Long, m As Long) As Long 
    modinv = 0 
    Do 
        modinv = modinv + 1 
    Loop Until modinv * t Mod m = 1 
End Function 

2.4. Discovering properties of primes 
I use modular multiplication tables with CF in Excel to clearly show certain patterns. Two 
sliders (also known as scrollbars) are employed: one for the modulus and one to specify a 
value to highlight wherever it appears in the table. For example, we may highlight 1, thus 
clearly illustrating the concept of modular inverse. Also in the model is automatic counting 
of the frequency of each residue in the table, and that of the special value in each row. It then 
becomes obvious when modinv fails to exist, and when it is unique. If we search for 0, then 
some very interesting patterns occur. Why do such special arrangements of 0 occur for the 
numbers 14, 22, 26, 34, 38, 46? 
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14
1 2 3 4 5 6 7 8 9 10 11 12 13

1 1 2 3 4 5 6 7 8 9 10 11 12 13
2 2 4 6 8 10 12 0 2 4 6 8 10 12
3 3 6 9 12 1 4 7 10 13 2 5 8 11
4 4 8 12 2 6 10 0 4 8 12 2 6 10
5 5 10 1 6 11 2 7 12 3 8 13 4 9
6 6 12 4 10 2 8 0 6 12 4 10 2 8
7 7 0 7 0 7 0 7 0 7 0 7 0 7
8 8 2 10 4 12 6 0 8 2 10 4 12 6
9 9 4 13 8 3 12 7 2 11 6 1 10 5

10 10 6 2 12 8 4 0 10 6 2 12 8 4
11 11 8 5 2 13 10 7 4 1 12 9 6 3
12 12 10 8 6 4 2 0 12 10 8 6 4 2
13 13 12 11 10 9 8 7 6 5 4 3 2 1

Modu

 

22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  
2 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20  
3 3 6 9 12 15 18 21 2 5 8 11 14 17 20 1 4 7 10 13 16 19  
4 4 8 12 16 20 2 6 10 14 18 0 4 8 12 16 20 2 6 10 14 18  
5 5 10 15 20 3 8 13 18 1 6 11 16 21 4 9 14 19 2 7 12 17  
6 6 12 18 2 8 14 20 4 10 16 0 6 12 18 2 8 14 20 4 10 16  
7 7 14 21 6 13 20 5 12 19 4 11 18 3 10 17 2 9 16 1 8 15  
8 8 16 2 10 18 4 12 20 6 14 0 8 16 2 10 18 4 12 20 6 14  
9 9 18 5 14 1 10 19 6 15 2 11 20 7 16 3 12 21 8 17 4 13  

10 10 20 8 18 6 16 4 14 2 12 0 10 20 8 18 6 16 4 14 2 12  
11 11 0 11 0 11 0 11 0 11 0 11 0 11 0 11 0 11 0 11 0 11  
12 12 2 14 4 16 6 18 8 20 10 0 12 2 14 4 16 6 18 8 20 10  
13 13 4 17 8 21 12 3 16 7 20 11 2 15 6 19 10 1 14 5 18 9  
14 14 6 20 12 4 18 10 2 16 8 0 14 6 20 12 4 18 10 2 16 8  
15 15 8 1 16 9 2 17 10 3 18 11 4 19 12 5 20 13 6 21 14 7  
16 16 10 4 20 14 8 2 18 12 6 0 16 10 4 20 14 8 2 18 12 6  
17 17 12 7 2 19 14 9 4 21 16 11 6 1 18 13 8 3 20 15 10 5  
18 18 14 10 6 2 20 16 12 8 4 0 18 14 10 6 2 20 16 12 8 4  
19 19 16 13 10 7 4 1 20 17 14 11 8 5 2 21 18 15 12 9 6 3  
20 20 18 16 14 12 10 8 6 4 2 0 20 18 16 14 12 10 8 6 4 2  
21 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1  

Modulus

 

34 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
2 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
3 3 6 9 12 15 18 21 24 27 30 33 2 5 8 11 14 17 20 23 26 29 32 1 4 7 10 13 16 19 22 25 28 31
4 4 8 12 16 20 24 28 32 2 6 10 14 18 22 26 30 0 4 8 12 16 20 24 28 32 2 6 10 14 18 22 26 30
5 5 10 15 20 25 30 1 6 11 16 21 26 31 2 7 12 17 22 27 32 3 8 13 18 23 28 33 4 9 14 19 24 29
6 6 12 18 24 30 2 8 14 20 26 32 4 10 16 22 28 0 6 12 18 24 30 2 8 14 20 26 32 4 10 16 22 28
7 7 14 21 28 1 8 15 22 29 2 9 16 23 30 3 10 17 24 31 4 11 18 25 32 5 12 19 26 33 6 13 20 27
8 8 16 24 32 6 14 22 30 4 12 20 28 2 10 18 26 0 8 16 24 32 6 14 22 30 4 12 20 28 2 10 18 26
9 9 18 27 2 11 20 29 4 13 22 31 6 15 24 33 8 17 26 1 10 19 28 3 12 21 30 5 14 23 32 7 16 25

10 10 20 30 6 16 26 2 12 22 32 8 18 28 4 14 24 0 10 20 30 6 16 26 2 12 22 32 8 18 28 4 14 24
11 11 22 33 10 21 32 9 20 31 8 19 30 7 18 29 6 17 28 5 16 27 4 15 26 3 14 25 2 13 24 1 12 23
12 12 24 2 14 26 4 16 28 6 18 30 8 20 32 10 22 0 12 24 2 14 26 4 16 28 6 18 30 8 20 32 10 22
13 13 26 5 18 31 10 23 2 15 28 7 20 33 12 25 4 17 30 9 22 1 14 27 6 19 32 11 24 3 16 29 8 21
14 14 28 8 22 2 16 30 10 24 4 18 32 12 26 6 20 0 14 28 8 22 2 16 30 10 24 4 18 32 12 26 6 20
15 15 30 11 26 7 22 3 18 33 14 29 10 25 6 21 2 17 32 13 28 9 24 5 20 1 16 31 12 27 8 23 4 19
16 16 32 14 30 12 28 10 26 8 24 6 22 4 20 2 18 0 16 32 14 30 12 28 10 26 8 24 6 22 4 20 2 18
17 17 0 17 0 17 0 17 0 17 0 17 0 17 0 17 0 17 0 17 0 17 0 17 0 17 0 17 0 17 0 17 0 17
18 18 2 20 4 22 6 24 8 26 10 28 12 30 14 32 16 0 18 2 20 4 22 6 24 8 26 10 28 12 30 14 32 16
19 19 4 23 8 27 12 31 16 1 20 5 24 9 28 13 32 17 2 21 6 25 10 29 14 33 18 3 22 7 26 11 30 15
20 20 6 26 12 32 18 4 24 10 30 16 2 22 8 28 14 0 20 6 26 12 32 18 4 24 10 30 16 2 22 8 28 14
21 21 8 29 16 3 24 11 32 19 6 27 14 1 22 9 30 17 4 25 12 33 20 7 28 15 2 23 10 31 18 5 26 13
22 22 10 32 20 8 30 18 6 28 16 4 26 14 2 24 12 0 22 10 32 20 8 30 18 6 28 16 4 26 14 2 24 12
23 23 12 1 24 13 2 25 14 3 26 15 4 27 16 5 28 17 6 29 18 7 30 19 8 31 20 9 32 21 10 33 22 11
24 24 14 4 28 18 8 32 22 12 2 26 16 6 30 20 10 0 24 14 4 28 18 8 32 22 12 2 26 16 6 30 20 10
25 25 16 7 32 23 14 5 30 21 12 3 28 19 10 1 26 17 8 33 24 15 6 31 22 13 4 29 20 11 2 27 18 9
26 26 18 10 2 28 20 12 4 30 22 14 6 32 24 16 8 0 26 18 10 2 28 20 12 4 30 22 14 6 32 24 16 8
27 27 20 13 6 33 26 19 12 5 32 25 18 11 4 31 24 17 10 3 30 23 16 9 2 29 22 15 8 1 28 21 14 7
28 28 22 16 10 4 32 26 20 14 8 2 30 24 18 12 6 0 28 22 16 10 4 32 26 20 14 8 2 30 24 18 12 6
29 29 24 19 14 9 4 33 28 23 18 13 8 3 32 27 22 17 12 7 2 31 26 21 16 11 6 1 30 25 20 15 10 5
30 30 26 22 18 14 10 6 2 32 28 24 20 16 12 8 4 0 30 26 22 18 14 10 6 2 32 28 24 20 16 12 8 4
31 31 28 25 22 19 16 13 10 7 4 1 32 29 26 23 20 17 14 11 8 5 2 33 30 27 24 21 18 15 12 9 6 3
32 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2
33 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Modulus

 
Figure 2 

 
 

When and why does 0 appear in the table? Alternatively, “for which moduli do zeroes not 
appear in the table?” When does each row/column contain a 1? When does each row/column 
contain a full set of residues? Why is 1 sometimes absent from a row? Why does the “sparse 
parallel line” pattern of Figure 3 appear as it does? 

36 31
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
2 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
3 3 6 9 12 15 18 21 24 27 30 33 0 3 6 9 12 15 18 21 24 27 30 33 0 3 6 9 12 15 18 21 24 27 30 33
4 4 8 12 16 20 24 28 32 0 4 8 12 16 20 24 28 32 0 4 8 12 16 20 24 28 32 0 4 8 12 16 20 24 28 32
5 5 10 15 20 25 30 35 4 9 14 19 24 29 34 3 8 13 18 23 28 33 2 7 12 17 22 27 32 1 6 11 16 21 26 31
6 6 12 18 24 30 0 6 12 18 24 30 0 6 12 18 24 30 0 6 12 18 24 30 0 6 12 18 24 30 0 6 12 18 24 30
7 7 14 21 28 35 6 13 20 27 34 5 12 19 26 33 4 11 18 25 32 3 10 17 24 31 2 9 16 23 30 1 8 15 22 29
8 8 16 24 32 4 12 20 28 0 8 16 24 32 4 12 20 28 0 8 16 24 32 4 12 20 28 0 8 16 24 32 4 12 20 28
9 9 18 27 0 9 18 27 0 9 18 27 0 9 18 27 0 9 18 27 0 9 18 27 0 9 18 27 0 9 18 27 0 9 18 27

10 10 20 30 4 14 24 34 8 18 28 2 12 22 32 6 16 26 0 10 20 30 4 14 24 34 8 18 28 2 12 22 32 6 16 26
11 11 22 33 8 19 30 5 16 27 2 13 24 35 10 21 32 7 18 29 4 15 26 1 12 23 34 9 20 31 6 17 28 3 14 25
12 12 24 0 12 24 0 12 24 0 12 24 0 12 24 0 12 24 0 12 24 0 12 24 0 12 24 0 12 24 0 12 24 0 12 24
13 13 26 3 16 29 6 19 32 9 22 35 12 25 2 15 28 5 18 31 8 21 34 11 24 1 14 27 4 17 30 7 20 33 10 23
14 14 28 6 20 34 12 26 4 18 32 10 24 2 16 30 8 22 0 14 28 6 20 34 12 26 4 18 32 10 24 2 16 30 8 22
15 15 30 9 24 3 18 33 12 27 6 21 0 15 30 9 24 3 18 33 12 27 6 21 0 15 30 9 24 3 18 33 12 27 6 21
16 16 32 12 28 8 24 4 20 0 16 32 12 28 8 24 4 20 0 16 32 12 28 8 24 4 20 0 16 32 12 28 8 24 4 20
17 17 34 15 32 13 30 11 28 9 26 7 24 5 22 3 20 1 18 35 16 33 14 31 12 29 10 27 8 25 6 23 4 21 2 19
18 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18
19 19 2 21 4 23 6 25 8 27 10 29 12 31 14 33 16 35 18 1 20 3 22 5 24 7 26 9 28 11 30 13 32 15 34 17
20 20 4 24 8 28 12 32 16 0 20 4 24 8 28 12 32 16 0 20 4 24 8 28 12 32 16 0 20 4 24 8 28 12 32 16
21 21 6 27 12 33 18 3 24 9 30 15 0 21 6 27 12 33 18 3 24 9 30 15 0 21 6 27 12 33 18 3 24 9 30 15
22 22 8 30 16 2 24 10 32 18 4 26 12 34 20 6 28 14 0 22 8 30 16 2 24 10 32 18 4 26 12 34 20 6 28 14
23 23 10 33 20 7 30 17 4 27 14 1 24 11 34 21 8 31 18 5 28 15 2 25 12 35 22 9 32 19 6 29 16 3 26 13
24 24 12 0 24 12 0 24 12 0 24 12 0 24 12 0 24 12 0 24 12 0 24 12 0 24 12 0 24 12 0 24 12 0 24 12
25 25 14 3 28 17 6 31 20 9 34 23 12 1 26 15 4 29 18 7 32 21 10 35 24 13 2 27 16 5 30 19 8 33 22 11
26 26 16 6 32 22 12 2 28 18 8 34 24 14 4 30 20 10 0 26 16 6 32 22 12 2 28 18 8 34 24 14 4 30 20 10
27 27 18 9 0 27 18 9 0 27 18 9 0 27 18 9 0 27 18 9 0 27 18 9 0 27 18 9 0 27 18 9 0 27 18 9
28 28 20 12 4 32 24 16 8 0 28 20 12 4 32 24 16 8 0 28 20 12 4 32 24 16 8 0 28 20 12 4 32 24 16 8
29 29 22 15 8 1 30 23 16 9 2 31 24 17 10 3 32 25 18 11 4 33 26 19 12 5 34 27 20 13 6 35 28 21 14 7
30 30 24 18 12 6 0 30 24 18 12 6 0 30 24 18 12 6 0 30 24 18 12 6 0 30 24 18 12 6 0 30 24 18 12 6
31 31 26 21 16 11 6 1 32 27 22 17 12 7 2 33 28 23 18 13 8 3 34 29 24 19 14 9 4 35 30 25 20 15 10 5
32 32 28 24 20 16 12 8 4 0 32 28 24 20 16 12 8 4 0 32 28 24 20 16 12 8 4 0 32 28 24 20 16 12 8 4
33 33 30 27 24 21 18 15 12 9 6 3 0 33 30 27 24 21 18 15 12 9 6 3 0 33 30 27 24 21 18 15 12 9 6 3
34 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2
35 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Modulus

 
Figure 3 

2.5. Terry Tao problem 
Fields Medal winner Terry Tao recently published a second edition of his little book on 
mathematical problem-solving [7]. It is a very interesting and useful little volume, giving much 
insight into problem-solving. In a very lucid and entertaining manner, the author shows how he 
develops successful chains of reasoning. Plausible but ultimately fruitless paths are tried but 
discarded as false steps along the way. Like Polya, he gives some general principles for 
mathematical problem-solving. For number-theoretical or Diophantine problems, one of the 
more useful tools in the toolkit is modular arithmetic.  
Exercise 2.3 on p24 of [7] is to show that 4 4x  + 131  = y  cannot have integer solutions. Ignoring 
Terry’s tacit advice to use modular arithmetic, at first I tried to prove this by a clever(?) 
rearrangement and factorization: ( )( ) ( )( )2 2 2 24 4 3 7 7x x y y− + = − − . The LHS is congruent to 
0 or 4 (mod 5), whereas the RHS is always 0 or 3 (mod 5) . I was pretty pleased with myself, but 
soon realized that an even simpler proof is possible! This was inspired by simply tabulating the 
original problem in Excel, with a range of small moduli. Details can later be filled-in rigorously, 
by modular algebra. Here we have yet another use of Excel to produce a clearly-recognized 
pattern, forming the basis of a rigorous proof. 
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3. Conclusion 
I have very briefly outlined how the modern graphical spreadsheet may be used to create 
interesting and visually appealing lessons in the basics of modular arithmetic. There is much 
more that could be done, but in any case, the literature is clear: students learn mathematics in 
different ways. The traditional way of algebra has been successful for only a minority of students 
[8]. Spreadsheets offer the chance for students to leverage their powerful visual perceptive 
abilities in support of moving to the more formal mathematical language of algebra, and basic 
notions of proof [8]. Unfortunately, such opportunities are often routinely bypassed by math 
educators [4]. 
The topic of modular arithmetic is interesting mathematically, and has many applications. The 
modern spreadsheet environment offers a goldmine of possibilities for the mathematics teacher 
when modular arithmetic is investigated. For students whose algebraic background is modest, the 
spreadsheet still allows many concepts to be conveyed. Once these are seen graphically, the 
algebraic approach can then be used to establish theorems and solve problems. For a very brief 
summary of some of my other uses of Excel in math instruction, see [4]. For recent summaries of 
applications by others, see [11, 12]. 
Last year a mathematical colleague told me of a paper he recently had published in a prestigious 
international journal. The basic patterns that made up the “visual proof” were discovered by 
constructing an Excel model. This was omitted from the paper as the author had serious doubts 
concerning the paper’s acceptance if it were revealed that the theorems proved therein were 
discovered or motivated by using a spreadsheet. I believe it is time that mathematics educators 
stopped regarding the ubiquitous Microsoft Excel as merely an accounting tool and seriously 
examined its possibilities for the illustration of the many beautiful patterns of mathematics to 
their students. 
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