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Abstract: The aim of the paper is to give a view on basic tools for managing uncertainty. In more details method 
of common sense logic is  mentioned and  case study - a qualitative model of a social system is presented 
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1.UNCERTAINTY AND  HANDLING UNCERTAINTY  
UNCERTAINTY AS A REAL  PHENOMENON 

A human life is realized as a finite sequence (individually long and preferably as long as 
possible) of miscelaneous decisions as a result of brain activity. Practically all forms of human 
behavior involve decision making under the supervision of a mysterious guide - uncertainty.  In this 
sense uncertainty is considered an objectively existing real phenomenon. Presumably, uncertainty is a 
complicated and elusive topic. Its presence tends to destabilize things and any decision made under 
uncertainty, which effects future events, possess some risk to it. Altough risk, ambivalence, insecurity 
and vagueness are present in nearly all aspects of everyday life, the most surprising things in the 
human condition is the ability to behave in a changing world in which nothing is certain.  How to 
"define" the concept of uncertainty ? Despite the complexity of this phenomenon (some authors 
paraphrase that uncertainty has an uncertain meaning), the following verbal specification is generally 
accepted : 
Uncertainty is a phenomenon, whose characteristic features are given by elements of vagueness, 
insecurity, imcompleteness,  inexactness and randomness. 

It is obvious, that the issue has impact on personal and organizational decision making, 
executive behavior, managerial attitudes and information systems. Many profitable businesses exist in 
part to the presence of uncertainty. Consequently, the subject of managing uncertainty is of general 
interest. In this point there is also one natural query - would it be  possible to take the way of 
eliminating (or at least of reducing) uncertainty than to go in for methods of handling uncertainty ? It 
is apparent, that getting for instance more exact information, uncertainty may be diminished, but there 
are theoretical aspects of accuracy itself  leading eventually to contradictory  outcome. It concerns the 
relation between relevancy and accuracy of information, which was formulated by Zadeh(1973) as The 
principle of incompability: Roughly speaking, if we want to describe any reality, we must decide 
between relevancy of information, that will be less accurate and accuracy of information, that (as from 
a certain boundary) will be less relevant. 
Example : The teacher´s command  at driving lecture " brake slightly" is  relevant, but not accurate. The 
command "brake by the force 10N " is accurate, but not relevant. 
 Increasing the accuracy, we reach a point, when accuracy and relevancy become mutually 
excluding characteristics. 
Example :   To give a real picture of the run of the university, we need several sentences, describing its 
hierarchy, study programmes, the number of teachers and students and some more . In order to provide more and 
more accurate information, we must gradually add more and more materials (detailed lists, history,…) to the 
extend that is useless as a relevant information. We must politely return to some relevant information expressed 
by means of natural language. 
 The mentioned examples point to a crucial role of a natural language as the best tool to 
express and carry relevant and  uncertain information. 
 For making decisions maximum accessible information, say knowledge in the sequel, about a 
real situation must be utilized. Such integrated  knowledge consists of data of two types. First, the data 
possessing an exact representation (laws of nature, exactly defined quantities, properties described by 
equations,  given numerical characteristics,…) - they form an exact ( or a certain) part, which is 
reffered to as certain  knowledge. Second, the data not possessing(from many reasons) an exact 
representation - they form an inexact (or an uncertain) part , which is reffered to as uncertain 
knowledge.  
KINDS OF UNCERTAINTY AND THEIR MODELING 

There are many kinds of uncertainty arising in real -world problems. A clasical kind of 
uncertainty is that of randomness,as exemplified by the uncertainty of the outcome of some 
experiment. Randomness is typically modeled  using probability theory, theory of stochastic processes 
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or statistics. Vagueness is the type of uncertainty that arises when the boundaries of objects (or 
information) are not sharply defined or are given by some measure of possibility.  
Example : (a) In the declaration " if the driver has a long practice and the car is slow then the risk of an accident  
                        is low"- the objects (variables) LONG, SLOW and LOW contain information that does not have  
                        clear-cut boundaries. 
                 (b) In the declaration  " if a man is young (0.8) and his income goes up (0.9) then his index of    
                       atractivity  goes up (0.7) - the measures of 0.8, 0.9, 0.7 are numerical representations of  
                       uncertainty  (vagueness). 
  A number of mathematical theories crystalized to model vagueness-  fuzzy sets theory 
(fuzzy modeling, fuzzy logic),  possibility theory, Dempster- Shafer theory of evidence, common 
sense logic, rough sets theory. Each theory has its associated calculus.  

In complicated real-world cases, several kinds of uncertainty may coexist. For instance, a 
population of humans can be chosen at random and one might be interested in its average IQ, political 
spirit, the quality of mutual relations and so on. In a given situation, one theory may be more 
advantageous to use than another and one may even use several in combination. Dealing with 
uncertainty is a complicated problem and the practitioner has to be creative and use understanding in 
order to choose the right approach. 

Viability of the methods and theories indicated above demonstrate realized 
applications(among others) :     

- control parts of household products (cameras, washing machines, vacuum cleaners) 
- automatic regulators (ABS systems and gear units for cars, thermal processes-kilns) 
- pattern recognition (symbols, writings, pictures, shapes)  
- logical parts of expert systems ( banking and capital operations) 
- evaluation of credibility of enterprises 
- modeling of social and environmental systems 

UNCERTAINTY MANAGEMENT 
Managing uncertainty is closely connected with the problems of artificial inteligence, that 

deals with the modeling of human reasoning. For this purpose knowledge systems called expert 
systems are designed. An expert system is characterized by a data base of facts and a logical engine 
for exploiting the facts in a purposeful manner (Forsyth(1984)). Practical expert systems for problem 
solving should také into consideration two distinqushed components of the uncertainty, namely the 
uncertainty of knowledge itself and the uncertainty of the reasoning process. The mechanism is 
required for dealing effectively with both components. Such a mechanism must have theoretical base 
in logical tools. It must also reflect the key fact, that people typicall handle uncertainty by relying on 
how the information is stored in their memories, rather that on the laws of uncertainty (Katzan(1992)). 
From this viewpoint expert systems involving procedures utilizing laws of uncertainty may be more 
safe in outcomes than human reasoning. The cognitive process for succesful handling uncertainty 
should consists of three steps : selection, processing and response. Selection is the choosing the 
applicable part of information, ie. information that is relevant to a particular situation. Processing is 
the performing of methods for handling uncertainty. Response is the task following the computed 
results realized as an action (see figure below). 
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instance prices go up, moral is improving, or temperature is up. The second component is the belief in 
what the indicators mean. The implication stemming from indicators, belief and meaning is referred to 
as evidence. The third component is a collection of so called inference rules  for determining new 
facts, states, or values and answering queries.          

Now we will present some concrete examples  employing different theories of handling 
uncertainty and their "calculi" without specifically going into their mathematics. In the next section we 
will concentrate on common-sense logic approach. 
EXAMPLE 1(Fuzzy sets). 
The word "great" has not a precise meaning, there can not exist a generally accepted criterion to decide uniquely 
of what is "great" or not. Therefore the collection of great (real)numbers  can not be treated as a set. To handle 
with such collections of objects , the notion of so called membership function assigning to each object of the 
given collection a number from the interval  < 0,1 > is introduced. The collection of objects together with the 
associated membership function is referred to as a fuzzy set. The membership function has natural interpretation - 
the closer is the number assigned to a particular object to number 1, the more belongs the object to the fuzzy set 
and similarly, the closer is the number to 0, the less belongs the object to the fuzzy set. The representative values 
of membership function of our fuzzy set  A of great numbers may be given in many ways (they reflect how a 
person subjectively comprehends the meaning of "great number"), for instance : 
A={…, (-100|0),…, (-10|0),…, (0|0), (1|0),…, (100|0,001),…, (110|0,01),…, (120|0,1),…, 
(130|0,2),…,(150|0,5),…, (180|0,8),…, (190|0,9),…, (200|1),…, (210|1),… }. 
Apparently, in our case the meaning of "great number" may be connected with the tallness of  adult men, so our 
fuzzy set A could be renamed the fuzzy set of tall men. Now, consider further natural constructions. For 
instance, if we strengthen the meaning of "great" to "very great", the membership function of such a new fuzzy 
set B of very  tall men must be in its values less(or possibly equal) than the membership function for A. Such 
relation between vague objects ("great" and "very great") is modeled by the concept of a  (fuzzy)subset, in our 
case B is a subset of A. There is another , elegant construction, how to model the process of strenghtening the 
meaning, using the concept of a power A2 of fuzzy set A; simply, the memberhip function of A2 is squared. Then 
it holds 
A2 = {…, (-100|0),…, (0|0),…,…, (100|0,00001),…, (150|0,25),…, (190|0,81),…, (200|1),… }. 
So, A2  may model the fuzzy set of very tall men. Of course, the process may be repeated, getting fuzzy sets of 
extremely very tall men,… and so on.  
The concept of a fuzzy set enables effective handling vague objects and it proved to provide extremely useful 
tool in a number of applications  ( see Novak(2000), Katzan(1992) among others).  
EXAMPLE 2(Fuzzy logic).  
For the regulation process the following rules (based on experience of an expert) are given:  
Rule 1:                                if deviation is great and the change of deviation is small 
                                                 then the change of action operation is very big 
Rule 2:                                if deviation is small and the change of deviation is more great 
                                                 then the change of action operation is small 
Exploiting these rules, the following inference process employing fuzzy logic rules may proceed : 
Observation :                  deviation is roughly great and the change of deviation is small 
Conclusion : (allowing Rule 2)          the change of action operation is big. 
Unlike (mathematical) logic, that works with statements (either true or false sentences), fuzzy logic works with 
sentences that are not statements. For instance "deviation is great" is not a statement because of vagueness of 
"great". With a view to the concept of a fuzzy set (Example 1) it may be spoken about a fuzzy statement (this 
concept is not domestic so far). 
EXAMPLE 3(Possibility theory). 
The folowing rules are given : 
Rule 1 :        if A: the patient has permanently high temperature (0,7) 
                    or B: the patient´s blood diagnosis is very bad (0,5) 
                    then  E: there is a strong evidence (0,9) that the patient should 
                            go to the hospital for the treatment 
Rule 2 :       if  C: the patient has a high blood pressure(0,6) 
                    and  D: the patient is very busy(0,3) 
                    then  E: there is evidence (0,5) that the patient should  
                            go to the hospital for the treatment 
Each rule is associated with a certainty factor, which reflects the degree of belief in the validity of that rule. 
Hence, an "inexact" reasoning systém is based on a construct, reffered to as a production rule of the form : 

if condition then action (to a degree a )  
There is frequently also uncertainty associated with the antecedent logical expression-condition, because of 
measurement errors and inherent incorrectness in a test or measurement. In this example (Rule 1), the evidence 
for a high temperature is uncertain (0,7) because of the vagueness of the word "high", and similarly with the 
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evidence for very bad blood diagnosis (0,5). The certainty associated with the rule is (0,9). For the inference 
process, the calculus on rules and the corresponding degrees of belief is employed as follows. In the antecedent 
part of a rule evidence is combined in accordance with the sense of logical operators : 
 (1)                                                    p and q = min(p,q), p or q = max(p,q), not p = 1-p . 
Rules are evaluated according to (1), (2) : 
(2) The belief for the conclusion produced by a rule is given by the multiplication of the belief for the 
        antecedent and the belief of this rule  
(3) The belief for the fact produced as the conclusion of one or more rules is given as the maximum of the  
        beliefs of all the rules that yield that conclusion.  
By the following computation we get a belief of 0,45 for E (BELX  denotes belief of X)  : 
                                         max(BELA, BELB) = max (0,7;0,5) = 0,7      by (1) 
                                         BELRule 1= 0,5x0,9 = 0,45                                by (2) 
                                         min(BELC,  BELD) = min(0,6;0,3) = 0,3        by (1) 
                                         BELRule2 = 0,3x0,5 = 0,15                                by (2) 
                                         max(BELRule 1, BELRule2 )  = O,45                   by (3) 
2. COMMON-SENSE LOGIC AND UNCERTAINTY 

Common-sense logic technique has been developed to analyse complex systems in a realistic 
environment (Tabucanon (1989), Davis(1990), Dohnal(1991) among others). The bulk of data forming 
the knowledge of such systems is of uncertain character. The calculus for common-sense logic is 
qualitative modeling . Qualitative modeling provides an effective tool to handle with both, certain and 
uncertain knowledge. For practical reasons it is supposed, that certain knowledge will be expressed in 
terms of an equation (in the context of qualitative modeling it is usually called  equational knowledge), 
uncertain knowledge is mostly expressed by a natural language (alternatively nonequational 
knowledge). 
PRINCIPLES OF QUALITATIVE MODELING 
 In qualitative modeling, only four "qualitative" values are considered : 

positive(+), negative(-), zero(0) and irrelevant(*) 
and for them an algebra with two operations - the sum,denoted by +, and the multiplication, denoted 
by . (mostly omitted),  reflecting usual algebra of numbers is defined. The value(or the result) (*) is 
interpreted in such a way, that it may be (+) or (-) or (0) from the reason that qualitative values can not 
be distinguished with respect to their size. The operations are given in Tables 1 and 2 : 
 
 
 
 
 
 
                                   Table 1                                                             Table 2 
Certain knowledge may contain quantities(variables) quantitative or qualitative nature. Quantities of 
quantitative nature are transformed to qualitative ones by the process called degradation . For 
instance, 
                  0,02x - 3y + 10z = 0  is degraded to X - Y + Z = 0. 
Uncertain knowledge does not require any degradation, because it is qualitative itself. For instance, 
knowledge "if technical conditions of a car deteriorate then the probability of an accident goes up"  
is uncertain knowledge (of qualitatitative nature). 

Our aim is to introduce now minimal tools to show how seemingly elusive real-life situations 
full of uncertain knowledge may be modeled and  even some decisions for them may be made. For this 
purpose we need to describe the behavior of some variable (quantity) for a variable usually 
characterizes the behavior(character of changes) of some phenomena during given time period.Let 
x=x(t) be a function of time t describing the trajectory of variable X. A qualitative behavior of 
variable X is defined as a triplet 

( X, DX, DDX ), 
where DX is the first and DDX is the second qualitative derivative of x(t), ie. DX is the qualitative 
degradation of dx/dt and DDX is the qualitative degradation of d2x/dt2. 
Interpretation :  (brackets are omitted for qualitative values)  
 
 

+ (+) (-) (0) (*) 
(+) (+) (*) (+) (*) 
(-) (*) (-) (-) (*) 
(0) (+) (-) (0) (*) 
(*) (*) (*) (*) (*) 

. (+) (-) (0) (*) 
(+) (+) (-) (0) (*) 
(-) (-) (+) (0) (*) 
(0) (0) (0) (0) (0) 
(*) (*) (*) (0) (*) 
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                                                                                           Verbal description  
            (X, DX, DDX )                                                   as time increases, then X 
 
                +    +     +                                              increases, rate of increase grows(convexity) 
                +    +     0                                              increases, rate of increase is zero(linearity) 
                +    +     -                                              increases, rate of increase slows(concavity) 
                +    -      +                                             decreases, rate of decrease grows(convexity) 
                       .                                                                                      . 

At the beginning of any qualitative analysis the second derivatives are ignored until the first 
derivatives are known. Sometimes, the second derivatives are difficult to determine. To describe more 
complicated kind of behavior of variables, particularly relations in their behavior, the concept of a 
qualitative relation is useful. A qualitative relation( between variables Yi , Yj ) is of the form 
                                                            Yj = Fij (Yi) . 
In a similar way to describe their qualitative behavior, the first (and possibly higher) derivative of Yj 
with respect to Yi is used, denoted by Dji . When considering only the first derivative, then we obtain 
the following interpretation : 
                                  Dji = + means  if Yi  increases, then Yj increase 
                                  Dji = -  means if Yi  increases, then Yj decreases 
                                  Dji =  0 means if Yi increases, then Yj is constant. 
Qualitative relations are usualy represented by macroinstructions together with some additional 
clauses, when necessary. After creating a qualitative model in terms of qualitative behavior of 
variables and their qualitative relations, the set of so called scenarios (solutions to the model) is found.  
Suppose that the model M is described in terms of variables X1,…, Xn. Consider (we limit only to first 
derivatives)   n-tuple S, 

S = ((X1, DX1),…, (Xa, DXa)). 
S is said to be a scenario (for M) when substituing S into the expressions describing M (or posing 
query S to  M ) no contradiction is reached; the set of all scenarios for M is denoted by S(M). After all 
scenarios are calculated, the problems of optimal solution, ie. finding  a scenario satisfying given 
optimization criteria, may be solved. 
CASE STUDY - QUALITATIVE MODEL OF A SIMPLE SOCIAL SYSTEM 
 We will create qualitative model M of a social system , where the following variables are 
taken into account : 
                      X1  …  standard of living                        X4  …  satisfaction of people 
                      X2   … quality of human relations           X5  …  social differences 
                      X3   … solidarity                                      X6  …  unemployment 
First step to set up qualitative model is to define qualitative relations between variables. We must 
respect existing laws (sociology, macroeconomy,…) and to utilize experience and also intuition 
(expert knowledge). Some relations between variables may be irrelevant (in this case the 
corresponding qualitative relation does not exist), some may seem to be questionable (in this case we 
are aware of personal resposibility). The most suitable way to describe qualitative relations is to fill 
the following table(matrix). The symbol ↑ in the row of Xi  and the column of Xj  is to be understood 
as " if Xi increases then Xj increases " and similarly the symbol ↓ "if Xi increases then Xj decreases". 
With a wiew to the nature of social laws and in order to simplify the text it is agreed that the statement 
"if Xi increases then Xj increases" implies " if Xi decreases then Xj decreases" and "if Xi increases then 
Xj decreases" implies  " if Xi decreases then Xj increases". Irrelevant qualitative relation between  
variables corresponds with the empty place in the table.  

 X1 X2 X3 X4 X5 X6 

X1 ♥ ↑ ↑ ↑   
X2  ♥ ↑ ↑   
X3  ↑ ♥ ↑   
X4  ↑ ↑ ♥   
X5  ↓ ↓  ♥  
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X6  ↓  ↓ ↑ ♥ 
Now, we can describe qualitative model  M by means of  macroinstructions having the form : 

M+  Xi  Xj  :  Dji = +  (if Xi increases then Xj increases ) 
 M-  Xi  Xj  :   Dji = -  (if Xi increases then Xj decreases ). 

Using data of the above table, the following macroinstructions describe M  : 
1. M+  X1 X2  2. M+  X1 X3  3. M+  X1 X4  4. M+  X2 X3  5. M+  X2 X4  6. M+  X3 X2  7. M+  X3 X4   
8.   M+  X4 X2     9. M+  X4 X3  10. M- X5 X2  11. M-  X5  X3    12. M- X6 X2  13. M-  X6 X4 14. M+ X6 X5 
The next step is to find all scenarios  S(M) for our model. We will pose queries S - sixtuples of 
couples 

S = ((X1, DX1), (X2 , DX2), (X3, DX3), (X4, DX4), (X5, DX5), (X6, DX6 )) 
to M finding all that do not conradict M . Since Xi = + for all i = 1, 2, 3, 4, 5, 6 , we wil pose only  
sixtuples (DX1, DX2, DX3, DX4, DX5, DX6 ).Then we  get the following set  S(M) = { S1, S2, …, S13 } 
of  scenarios for M : 

 DX1 DX2 DX3 DX4 DX5 DX6 

S1 + + + + - - 
S2 + + + + - 0 
S3 + + + + 0 0 
S4 - - - - + + 
S5 - - - - + 0 
S6 - - - - 0 0 
S7 0 + + + - - 
S8 0 + + + - 0 
S9 0 + + + 0 0 
S10 0 - - - + + 
S11 0 - - - + 0 
S12 0 - - - 0 0 
S13 0 0 0 0 0 0 

For example sixtuple (+, +, +, +, +, +) is not a scenario ( X5 increases, X2 increases, but if X5 increases 
then X2  must decrease, which is a contradiction with G). 
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