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Abstract: In this paper are described some features of the intensive use of math software, primarily Derive, in the context of 
modeling in an introductory university course in differential equations. Different aspects are detailed: changes in the 
curriculum that includes not only course contents, but also the sequence of introduction to various topics and methodologies. 
For example, the use of software at the beginning of the course follows a black box strategy, in order to emphasis 
mathematical modeling and the discussion of theory's central problems. Also covered is the enrichment of discussion about 
classic problems; using CAS potentialities to demonstrate properties without the necessities of investing excessive time in 
technical details, avoiding long and boring calculatio ns; design and redesign of materials that attempt to guarantee success of 
information technology integration; combined use of several software packages, and finally, feedback from students and 
assessment. In addition, examples are presented to demonstrate the support materials utility for high school Calculus. 

1. Information technology as central element in the scientific work  

Rita Colwell, director of the NSF (National Science Foundation) of the United States, has written (Colwell, 
2000) about the unifier role that information technology is playing in research in different sciences due to it 
allows to tie among different fields of the knowledge, and she states that no field of research will be immune to 
the explosion of information and information technology, however, she makes another statement that we 
consider very important that it is when it points that until recent years science had two components, theory and 
experimentation, but today it has a third component «computer simulation, which links the other two» (p.16). 
Colwell point out that nowadays scientific matters have grown in complexity as much as in Interdependence and 
it points out the specific case of the complex mathematical models that are used in biology and in social sciences, 
she states that many scientific achievements will be reached as far as there exists advances in information 
technology, «we need this computing power to put it all together: to process the volumes of data, to visualize 
results, and to collaborate» (p.17). 

2. Mathematical modeling and Information technology 

In different sectors appears the perception of a fundamental change in mathematical modeling. Indeed, it’s 
possible to say that before the information technology birth, mathematical modeling of a physical process, could 
be described by the outline of the left in the following figure. Starting from the considerations of Bricio (1992) in 
his description of the mathematical method, the previous outline could be modify in the way that is shown in the 
right of the following figure. 
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Figure Errore. L'argomento parametro è sconosciuto.: The outline of the mathematical modeling 

Bricio states «that’s the way of work at present time in sciences and engineering, and is what constitutes the 
mathematical method» (p.68). If we accept this point of view it means that prepare mathematically future 
generations for science and for engineering it implies the formation of professionals skills in this new phase of 
mathematical modeling.  
In this panorama Spunde (1999) points out an interesting question, Will new models attempt discrete 
descriptions of reality keeping in mind both the physical processes and the computational environment in which 
the problem is to be solved, by-passing the continuous ideal approximation completely?, that means, will we put 
on discussion the continuous models that we are so used to? 

3. Differential equations and mathematical modeling 

Theory of differential equations arose, almost contemporarily with Calculus, at the end of the SXVII, 
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Aleksandrov (1956) aims that this theory inaugurates a third cultural period in mathematics, what allows to stand 
out the weight that this theory has in the historical and conceptual development of mathematics.  
From the beginning, it has been and it continues being an important field of theoretical research and practical 
applications, it constitutes an extensive and very important branch of modern mathematics and it’s a powerful 
tool for the investigation of many natural phenomena, what determines their strong relationship with 
mathematical modeling.  
As it is known, the first central problem of the theory refers to the origin of differential equations. Before 
information technology birth, the process of mathematical modeling of a physical situation (see outline presented 
in Errore. L'argomento parametro è sconosciuto.) could be described in a more particularized way by means 
of the following stages: 
1) Description of the physical situation which is under analysis;  
2) Construction of the problem in common language; 
3) Construction of the problem in mathematical language (construction of the mathematical model); 
4) Solution of the problem. (In case that model is an equation, solution of the equation);  
5) Analysis and interpretation of the solution.  
6) Validation of the model confronting it with the physical situation analyzed to decide if the model is adequate 

on the required accuracy or if it is necessary to adjust it, if the answer is positive, the problem is solved, if 
the answer is negative model should be adjusted. 

7) In the case adjusting the model and repeat the process with the new obtained model. Some times a model 
works well during a determined time but in the base of new requirements or new discoveries about the 
physical situation it necessary to construct a new model.  

8) Implementation of the model. 
Naturally, this is not the only proposal to describe the stages of the modeling process. For example; a slightly 
different proposal that describes 7 stages can be seen in Dreyer (1993) and, as he affirms as well, in the case of a 
specific problem all the stages are not explicitly evident since some of them can be trivial or they have been 
previously solved, and so on. In the peculiar case of the mathematical modeling with differential equations, 
stages 1, 2 and 7 are identical. The other stages can be described in the following way: 
3) Construction of a differential equation or of a system of differential equations; 
4) Solution of the differential equation or solution of the system of differential equations; 
5) Analysis and study of the function or of the obtained functions as well as interpretation of their properties 

with regard to the physical process that is being studied; 
6) Determine if the function or the obtained functions describe the process appropriately with the required 

accuracy. If the answer is positive, go to stage 8;  
8) Use the function or the obtained functions to make predictions, in which case care should be taken in 

determining the time interval for which the predictions are valid. 
In agreement to that pointed out by Colwell earlier, the theory of the differential equations could not be outside 
the reciprocal influence with information technology. 

4. Some problems of differential equations theory 

Petrovski (1956) generally outlines the problems with differential equations theory (which from now on will 
simply be referred to as the theory) in a time that information technology was still not largely available and 
therefore we can consider that it is a question of intrinsic problems of the theory. Since these problems are many 
and varied, it presents those that he considers more important and at the same time it omits considerations on 
many other branches of the theory that appear when studying more particular problems or that require a much 
deeper mathematical knowledge. Although he does not explicitly present a special section about the modeling, he 
recurrently make references to the bound problems when using these types of equations, illustrating all the 
problems that appear in each of the stages of the modeling process, at times making some general considerations 
at others giving concrete examples. In general, we believe that teaching any branch of mathematics should reflect 
a global vision of the theory that is being studied with the natural limitations of the students age and level being 
considered. In particular, the teaching of differential equations should punctually reflect each and every one of 
the central problems of the theory. However, in most cases it  seems not to be this way. 
A brief hypothetical exercise will be given to analyze the effects of the lack of some of these problems. 
Considering an extreme case: The total lack of one of them or an important part that will allow the illumination 
of didactic problems in the traditional courses. 
1. An appropriate amount of modeling. Indeed, how do we conceive a course of DE without linking it to the 

modeling of physical situations? In the extreme case, it would be a course in which exclusively teaches how 
to solve equations without mentioning neither the origin of the equations nor the utility of having obtained 
the solution. In a course of this type, the students would be helpless to be able to give a physical 
interpretation of the solution. They would also very likely retain a mistaken image of the matter: A series of 
methods to obtain solutions of equations that would not have any relationship with the real world.  

2. Some examples with the complete process of modeling. Although the construction process is very difficult, 
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it is possible always to present some interesting models as well as to teach the students to build some simple 
models, mainly those that are directly linked with the area of their study. In many occasions, traditional 
courses never present the complete process. In the best case scenario, training is provided to outline the 
relative equations to some simple models and the solution is obtained, yet a detailed analysis of the solution 
is not made nor interpreted or validated with regard to the phenomenon that is to be “studied”. As in the 
previous example, it is very difficult to appreciate the utility of the theory when all the problems terminate 
once the solution of the differential equation is obtained. 

3. An appropriate balance among the three focuses for the solution of an equation or of a system of equations. 
Generally, traditional introductory courses only follow an analytic approach, ignoring the importance of the 
other two almost completely. In the best case scenario, a numeric method is touched upon and qualitative 
aspects are practically never considered. This gives the students a completely distorted vision of the theory 
as key parts are left out.  

4. Analysis and interpretation of the solutions whenever possible. In traditional courses, the problems of 
differential equations generally finish when one obtains the exact solution. Once obtained, the students 
continue to the next exercise, the solution is obtained, and then another exercise and so on. In the best of 
cases the graph of a particular solution is asked and this is only in the case that the graph is not too complex. 
It is interesting that Petrovski points out that studying the solutions is the basic problem of the theory, and 
not an insignificant problem. It is not possible to “have seen applications” without having studied the 
behavior of the solutions.  

5. Validation of the pattern whenever it is possible. Even in the case of not having constructed a model with the 
students, it is always possible to present the context in which the model arises and therefore to compare the 
obtained solution with the referenced phenomenon, carry out small simulations, to make an analysis of the 
parameters, and so on. In traditional courses if those solutions are not even studied its impossible to carry 
out the validation process.  

6. Some examples of model adjustment. This important part of the modeling process can always be illustrated 
with some examples and discussed with others. In traditional courses this part is limited by the results of 
such an activity, the new function or the new obtained functions are much too complex to be analyzed, 
studied and interpreted that, in the majority of cases, the professor decides not to illustrate this part of the 
process.  

7. Some examples of predictions. Once a differential equation or a system of DE has been solved, this solution 
should be used to make some predictions. This is a central part of illustrating the problem of the relativity of 
the model when the time interval for which the predictions are valid. It is best if the predictions are made 
with models that come from situations with real data as this will provide evidence to confirm or deny the 
relevancy of the prediction. In traditional courses, this part of the process is found in some examples yet it 
would seem that it is not given adequate importance.  

5. Some problems of the differential equations theory in the Information technology era  

The didactic problems evidenced previously can be part of an ordinary introductory course in differential 
equations and now a new equilibrium is possible if we use information technology to illustrate the said problems 
in order to be able to introduce the students to a much more complete vision and integration of the theory. 
Indeed, for some years there is a growing number of books on differential equations which integrate the software 
use in their study proposals. The philosophy behind these proposals can be found for example in Malek-Madani 
(1998), Coombes et al. (1995), Gray, Mezzino & Pinsky (1997) and Blanchard, Devaney & Hall (1998). Of these 
four books, the first one is based on the use of Mathematica and Matlab, the second one and the third make 
reference to Mathematica, although in the second an edition based on Maple is also presented. The last of them 
presents general proposals that can be utilized with the appropriate software. As Coombes et al. point out (p. iii) 
«Traditional introductory courses in ODE have concentrated on teaching a repertoire of techniques for finding 
formula solutions of various classes of differential equations. Typically, the result was rote application by 
students of such fundamental aspects of the subject as stability, asymptotics, dependence on parameters, and 
numerical methods». It is possible to find this same type of critique in the other referenced books or in some 
articles where experiences of information technology use have been reported in courses on differential equations, 
such as Evans (1995) working with Derive or in Shay (1997) using the TI-92. 

6. Some proposals  

Our work experience has been carried out in a technical university in the center of Mexico during the last 5 years 
with students in introductory courses on differential equations. The vast majority of students are 19-year-olds 
although older students exist (usually working students). In general, the introductory course is the only one that 
many students will follow and, therefore, the vision that they have of the theory will be the consequence of this 
one course. They have worked with Derive and with additional software such as Phaser or Cyclone99, following 
different introduction strategies of the mathematical modeling. For example, it is possible to take modeling as a 
conductive axis introducing early most of the problems described in section 3 using the software in a black-box 
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strategy that allows students to concentrate on stages 1,2,3,5,6,7 and 8 using the utilities of Derive to solve the 
necessary differential equations without caring if the equation is of first or second order. In traditional courses 
this is not possible since, typically, the students are taught firstly solution methods for equations of first order 
which introduces a limit in modeling since they only present models which conduct equations of this type. With 
this new outline it is possible to discuss with students the Malthusian model and immediately the logistic model 
without having to wait for the solutions method. Continuing with this line of thinking, you may immediately 
discuss predator-prey model without caring that it does not conduct to a system of linear differential equations or 
in the case of the mass-spring systems discuss from the beginning forced systems and not only unforced systems. 
This strategy allows emphasis some central questions. Indeed, when delegating to a machine the solution of the 
differential equation the solution can be obtained and make a detailed analysis of it in such a way that when 
student studies the solution methods he/she has a clear idea of which are their utilities and limitations. Next, two 
examples are briefly described of how the software has been used to illuminate several of the stages in the 
modeling process.  

7. Example 1: Mass-Spring systems  

In traditional courses, mass-spring systems are presented as an application of second order equations. Due to this 
situation, these kind of problems should be analyzed after having studied the solution methods of first and 

second order equations. Typically, applications approach conduct to equations of the form: m
d x
dt

2

2 +b
dx
dt

+kx=0, 

and, more infrequently to equations of this type: m
d x
dt

2

2 +b
dx
dt

+kx=f(t), because in the last case it is necessary to 

have studied previously solutions methods for non-homogeneous second order equations with constant 
coefficients. However, with the use of CA type software, several of the stages of mathematical modeling with 
these kind of problems can be illustrated. In our case the use of Derive with a black-box strategy allows us to 
present the solution of the equation and to work with it. For examp le:  
1. Making a detailed description of the physical situation and of the importance of the analysis in order to later 

present it to the students in normal language, to evidence clearly all the used assumptions, to translate the 
problem in mathematical language and to build the model (stages 1,2 and 3);  

2. Stage 4 is postponed for later, once focus is on solution methods. However, solution is not given in dogmatic 
form but rather it is proven with the students that the proposed function is the solution of the equation so that 
student are convinced of this fact;  

3. Once the solution has been obtained, it is worked with to deepen the analysis of the physical situation, to 
validate and adjust the model (Stages 5,6 and 7). For example, embarking in the traditional way, with a 
undamped harmonic oscillator, the model is adjusted in order to consider damping, distinct possibilities are 
analyzed of these kind of oscillators and finally the model is readjusted to consider external forces. 

This form of working is liberating for the staff. In traditional courses emphasis is put almost exclusively in stage 
4 and until before the large access to CAS was available alternative emphasis were almost impossible. As 
Coombes et al. (1995) indicate, much of the differential equations ideas are difficult to teach if a computer is not 
used. Giving priority on the conceptual part of the modeling presents us with two obstacles: In order to have a 
solution it is necessary to solve the equations with a previously studied method and secondly in order to analyze 
the solution sophisticated geometric analysis instruments are required. 
These are some examples of the problems that are to be solved with the students in some laboratories (it should 
be cleared up that students have not seen any solution method neither have they seen a formal classification of 
these kind of equations. Everything is done, for the moment, in an informal and intuitive way). 
1. Solve the differential equation mx"+bx'+kx=0 using some Derive utility file 
Upon entering, student should already recognize the equation as a second order equation and he/she should know 
that Derive’s utility DSOLVE2 can be used for which the following result is obtained: 

x(t)=  
This is not the usual form that would be found in the books where the classification is made in terms of 
overdamped, critically damped and underdamped cases with forms are given by: 

x(t)=Ae αα tsin(ββ t +ϕϕ) x(t)=(C1+C2t)e αα t x(t)=C1eαα t+C2eββ t 

Respectively. The form provided by Derive is similar only to the former. In this case it is requested that students 
do a second exercise:  
2. Proof that under certain conditions the function x(t)=e αα t(C1cos ββ t+C2senββ t) is also the solution for the 
previous equation. 
The development with Derive that a student should carry out is shown in the following figure: 
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1. In the expression #1 the rule of correspondence of the given function is introduced; 
2. In #2 the left side of the differential equation is introduced; 
3. In #3 the function is substituted in the differential equation and is simplified (#4); 
4. Make the coefficient of eαα t zero keeping a linear combination of sin(ββ t) and cos(ββ t) (#5); 
5. Make the coefficient of sin(ββ t) and cos(ββ t) zero (expressions #6 and #7, respectively); 
6. Make the coefficient of C1 and C2 zero (expressions #8 and #9, respectively); 
7. Finally, solve the system (expressions #10 to #13) to reach the conclusion that the given function is the 

solution of the differential equation only for b2<4mk. 
The same is done in other situations. Afterwards ask the students to solve problems of the type:  

3. Given the form of the solution x(t)=Ae αα tsin(ββ t +ϕϕ), write it in terms of parameters and initial conditions. 
The students should arrive to the following:  

x(t)= 
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In paper and pencil environment this is unmanageable in a normal situation but with this forma we have the 
advantage that permits us to simulate as much with the parameters as with the initial conditions. In effect, using 
this form asks the student to simulate with each of the parameters and with both initial conditions and that he/she 
describes the effect of each of them in the form of the solution. In the case of forced vibrations of the type: 

m
d x
dt

2

2 +b
dx
dt

+kx=F0cos γγ t, the general solution is in the form 

x(t)=Ae αα tsin(ββ t+ϕϕ)+F0M(γγ )sin(γγ t+θθ ) 

with αα =−−
m
b

2
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m
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The values of A and ϕϕ  can be determined starting from the initial conditions but contrary to other cases 
previously analyzed with the students, in the general case the expressions remain extremely complex. For 
example, the most simple of them is ϕϕ  which follows (here in Derive we write f instead of γγ )  

 
Now it is extremely complex to obtain the rule of x(t) only in terms of the parameters of the system, the initial 
conditions and the forced term. It fails to illustrate generally what happens in these cases as well as to evidence 
some of their properties 

8. Example 2: Population Models  

Now, in some cases, the mathematical modeling is an integral part from the curricular nucleus of many 
university level courses. Yet, also, at high school level as it is pointed out in Oldknow (1997). Part of the “taste” 
of mathematical modeling with differential equations can be introduced in courses of Calculus at high school 
level if we use software in stage 4 with a black-box strategy that allows students to concentrate on the study and 
analysis of a function of one variable. For example, in an experiment that the Author carried out with Italian 
high-school science students during several sessions in February of 2000 (18-19 year-old students) the 
Malthusian and logistic models were analyzed with real data relative to the world population in such a way that 
they were who decided about the validity of the models. In this case we followed the same strategies and we used  
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However, that does not prevent us to 
consider diverse particular cases that allow 
us to illustrate phenomena so important as 
resonance or beating. 
In effect, with Derive we can illustrate the 
resonance curves making it seen that the 
system enters in resonance in the way that 

bàà 0 and γγààω=
m
k

 as shown in the side 

figure.  
 

 
Figure Errore. L'argomento parametro è sconosciuto.: 

Resonance curves 

the same materials that we uses with Mexican university students without finding significant differences 
between. the work of the Italian high school students and the Mexican university students. In the first group, the 
management of Derive was elemental while in the second group it was never used before.  
Working with this type of models has the advantage that their speaks about realties to the students and it allows 
the illumination of some other types of interesting phenomena when working with mathematics software.  
For example, in the case of the Italian students, working with the Malthusian model P(t)=3340e0.02t students are 
asked to calculate the earth population in the years 2100, 2200 and 2600, obtaining the following results: 
P2100=49,698 millions, P2200=367,223 millions and P2600=1,094 billions! When asked the question “Do these 
values have significance for you?” 100% of the students answered no and that they did not know if these values 
are probable or not because they are not accustomed in their mathematics courses to compare their results against 
real data and this prevents them from evaluating the validity of the model (here it must be noted that according to 
UN, the population of earth in the year 2000 was 6,000 million).  
So they are not accustomed to confront the data obtained with the reality that of 20 students, only 4 wrote 
correctly the function P(t)=3340e0.02t and all others made errors that caused them to conclude 

P1925= 5/4

3340
e

people! They did not consider that the result was not a whole number, so the calculations continued 

concluding that P1950= 10/3

3340
e

 people, an so on.  

Even more astounding is the fact that 6 students wrote p=3340e0.02t and obtained that P1925= −− 133600e1/50 

people!!! Furthermore, 2 more wrote p=3340e0.02t and obtained P1925= −− 2672e people! In all the cases, the 
students continued working as if nothing was in error in spite of having obtained negative or non-whole numbers 
for the population.  
It is very probable that this is the result of lack of work in the schools with real data. In this sense, software can 
make a lot of sense for the students as it allows them to take these kind of problems to their classes and, 
therefore, may cause the students to reflect upon the proposed analysis. This situation is a regular occurrence in 
many traditional differential equation courses when, for example, electric circuit applications are worked and the 
values assigned to the resistance R, to the inductance L, and to the capacitance C is whole, as in the case when 
they are outside the range of possible values of these physical magnitudes that according to Blanchard, Devaney 
& Hall (1998) a typical, off-the-shelf circuit might have parameter values R=2000 ohms, C=2×× 10−− 7 farads and 
L=1.5 henrys.  
This type of situation illuminates another interesting situation when one works with software: Blind faith in the 
results for what is needed to design didactical pathways to counteract it like is suggested in Zhao (1998).  
In the case of logistic model it is interesting to point out that it allows discussion of problems which otherwise 
would be hidden.  
In Braun (1983, p. 31) is presented a formula which Pearl & Reed introduced in order to analyze the U.S. 
population «Using the census of 1790, 1850 and 1910 it was found that a=0.03134 and b=1.5887×× 1010» pointing 
out later that “These results are surprising” to predict the American population. In Braun’s book, prediction 
values are presented and surprisingly agree with the real data up to 1950 leaving the reader with the impression 
that the model is very accurate but when it is applied to later decades with the same parameter values, the error 
ranges from 1.1% to 11.2% to 17.4% to 22.8% until finally arriving at 27% in 1990. In Nagle & Saff (1982) the 
census of 1790, 1840 and 1890 are used and they improve the predictions, yet already in 1980 the error begins at 
7.1% and grows to 12% in 1990. Likewise in Braun’s book a table is presented that gives the same impression. 
With respect to this, an interesting question arises: It is true that the values of a and b are determined by 3 
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censuses with the condition t1 −− t0=t2 −− t1, yet when choosing diverse periods different values are obtained and even 
negative parameter values which do not make any sense.  
Once again, illuminating this type of problems with the students allows the illustration of the validity relativity of 
the mathematical model.  

9. Students Opinions  

In these types of experiments, at the end of the course the students are asked their opinions on four simple, open 
questions: What is your opinion about the content? Methodology? Evaluation? And can you give some additional 
comments? Naturally, these questions are not part of any research. However, they help explore the students 
opinions in an informal way and allow the students to answer openly. It is very interesting to know the answers 
of the students as they comment upon the class as much as the professors and researchers and may show a 
personal reflection of the students about their own actions. These comments, in the future, can become a valuable 
asset to redesign integration procedures of integration information technology in mathematical education. Below 
a brief selections of opinions are presented that comment upon the previously discussed aspects (The original 
writing is respected, the cursive writing is ours).  
1. «I saw a lot of applications in the real life, because always teachers had taught us mathematics  without any 

real application. For the first time in my life I really could applied contents in real things. I truly studied 
much more because applying software on more complex problems was used which was more close to real 
situation» [Rocio, 00];  

2. «It was very interesting to know the mathematical meanings, how it works and how they are applied. I used 
to believe that mathematics did not have any use yet the applications were truly interesting as they applied to 
real life» [Julio Cesar, 00];  

3. «With the software use I believe it helped us increase our capacity to understand the concepts and 
applications» [Damaris, 00].  

Here are some response to the question “Do you believe that with the software use you learned mathematics 
more or less?” Some of the students responded: 
4. «I believe that I learned more as we were devoted more to the applications and mathematical reasoning in 

each topic, and the assistance that the software gave us saved us time, time that we could use in more 
essential things than solving algorithms by hand» [Claudia, 00];  

5. «I learned more, mainly in understanding because in the last courses, I passed, I had a good grade and 
everything, but I never had a good knowledge of why we applied this formula, this method, and so on. 
However, the software gives you a more clear vision of what you are doing (for example when do you make 
graphs)» [Moises, 00].  

10. Final remarks 

As has been pointed out in several occasions, the software use helps to develop the students abilities in modeling 
without having to introduce enormous calculations and permits us to enrich the solution (Oldknow, 1997) or to 
investigate more complex models than normal (Mitic & Thomas, 1994). Or, as Böhm describes (1994) the 
textbooks only present simple standard models due to the great numbers of calculations to be made. «The 
existence, versatility and power of technology make possible and necessary to re-examine what the students 
should learn of mathematics as the form in which they should make it» (NCTM, 2000, p. 25). Now it is possible 
to present in class a richer and more interesting examples tied to the applications in order to illustrate concepts 
and techniques, which not only enriches the class yet also the homework and exams. Now it is possible to 
achieve a new balance among the different focuses used to study a differential equations: numerical, algebraic 
and qualitative. On the other hand, information technology allows us a better conceptual historical-genetic 
approach to the theory of differential equations, to introduce the students to the process of mathematical 
modeling in a more complete way and to generate in students contemporary skills and methodologies which will 
be useful to them in the future. 

11. References 

ALEKSANDROV A.D. (1956), Visión general de la matemática, en: Aleksandrov A.D., Kolmogorov A.N. & 
Laurentiev M.A. (eds.), Mathematics: Its content, methods and meaning. Cambridge, MIT Press. [Trad. esp.: 
La matemática: su contenido, métodos y significado. Madrid, Alianza Universidad, 1985, vol. I, 17-89]. 

BLANCHARD P., DEVANEY R.L. & HALL G.R. (1998), Differential Equations. Pacific Grove, Brooks/Cole 
Publishing Co. 

BÖHM J. (1994), Linear programming with DERIVE. The International DERIVE Journal, n. 3, 46-72. 
BRAUN M. (1983), Differential equations and their applications. New York, Springer-Verlag. [Trad. esp.: 

Ecuaciones diferenciales y sus aplicaciones. México, Grupo Editorial Iberoamérica, 1992]. 
BRICIO D. (1992), Ideas sobre el futuro de la Matemática Aplicada. Reunión Nacional de Matemáticas, 

Coahuila, México, 65-89. 



  29

COLWELL R. (2000), Information technology Ariadne’s thread through the research and education labyrinth, 
EDUCAUSE review, May/June 2000, 15-18. 

COOMBES K.R., HUNT B.R., LIPSMAN R.L., OSBORN J.E. & STUCK G.J. (1995), Differential Equations 
with Mathematica. New York, John Wiley & Sons, Inc. 

DREYER T.P. (1993), Modelling with Ordinary Differential Equations. Boca Ratón, Florida, CRC Press.  
EVANS B. (1995), Differential equations in a computer classroom. The International DERIVE Journal, n. 3, 37-

54. 
GRAY A., MEZZINO M. & PINSKY M.A. (1997), Introduction to Ordinary Differential Equations with 

Mathematica. New York, Springer-Verlag. 
MALEK-MADANI R. (1998), Advanced engineering mathematics. Reading MA, Addison-Wesley.  
MITIC P. & THOMAS P. (1994), Modelling the Effects of a Firebreak with DERIVE. The International 

DERIVE Journal, n. 2, 71-87. 
NAGLE R.K. & SAFF E.B. (1986), Fundamental of differential equations. Reading MA, Addison-Wesley. 

[Trad. esp.: Fundamentos de ecuaciones diferenciales. Wilmington, Addison-Wesley Iberoamericana, 1992]. 
NATIONAL COUNCIL OF TEACHERS OF MATHEMATICS (2000), Principles and Standards for School 

Mathematics. Reston, VA, NCTM.  
OLDKNOW A. (1997), Modelling a Garden Sprinkler. The International Journal of Computer Algebra in 

Mathematics Education, n. 3, 253-271. 
PETROVSKI I.G. (1956), Ecuaciones diferenciales ordinarias, en: Aleksandrov A.D., Kolmogorov A.N. & 

Laurentiev M.A. (eds.), Mathematics: Its content, methods and meaning. Cambridge, MIT Press. [Trad. esp.: 
La matemática: su contenido, métodos y significado. Madrid, Alianza Universidad, 1985, vol. I, 373-425]. 

SHAY K. (1997), The TI-92: An Excellent Companion for Differential Equations Reform. The International 
Journal of Computer Algebra in Mathematics Education, n. 1, 99-109. 

SPUNDE W.G. (1999), Our Future: a very discrete affair, en Rogerson A. (ed.), Proceedings of the International 
Conference on Mathematics Education into the 21st Century: Societal Challenges, Issues and Approaches, 
vol. II, El Cairo, 140-147. 

ZHAO Y. (1998), Blind Trust in Authentic Mathematical Tools in Mathematics Education. The International 
Journal of Computer Algebra in Mathematics Education, n. 3, 161-173. 

 


