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Abstract: We present some results of a didactical experiment with future mathematics teachers concerning their ability 
in solving proof-questions in the field of aritmetics. For this purpose a coordination between various representation of 
natural numbers and especially polynomial one is requested. The students showed various types of behaviour when 
faced with these questions, and they had experienced many difficulties. The most problematic result concerns the 
meaning of proof they came up with, more closely linked to the validation of a wide plurality of numerical cases than 
the development of reasoning through the algebraic language. 
 
Introduction 
Proofs in the field of arithmetic is hardly used in our schools, partly for reasons connected to the history of 
the teaching of arithmetic and algebra in our country (Vita 1986).  Mathematics teaching in Italy has always 
adopted an approach to arithmetic based on the unquestioning learning of algorithms and processes of 
calculus which lead to a distorted approach to algebra. This approach, for the most part, is based on the 
syntactical aspects of the algebraic language, instead of those for codifying relationships between and the 
production of thought (Chevallard 1989, Kieran 1992, Arzarello et al 1994, Malara 1994). 

Arithmetic, especially the ambit of natural numbers, constitutes ideal ground for exploratory 
activities, the formulation of conjectures, and the development of proofs.  In particular, these activities offer 
an important basis for the move from argumentation, (based on the use of verbal language) to proof (based 
on the use of algebraic language). Furthermore, simple proof problems in arithmetic (and not only) if well 
introduced in class, may be used to form the basis and motivation for self-study of algebraic transformations.  
This is also implicitly proposed in   middle school curriculum which strongly recommends activities on the 
individualisation of patterns as an introduction to algebra seen as a language with which to codify them. But 
in fact, apart from a  few exceptional cases, this is not put into practice. 

It must be noted that, unlike with geometry, it is possible to do this without having to deal with the 
question of constructing the formal system and the axioms of arithmetic.  Multiplication and addition 
operations as well as their relative properties, apart from the usual order, are founded during early 
experiences of mathematics in class – usually in the first years of primary school – often with the support of 
the naïve set theory. The proof of arithmetic properties, when carried out, are obviously "local" results. 
However, this is not exclude that the same results may not be reconsidered at higher scholastic levels when 
studying theoretical systems. 

If we take into consideration problems regarding the proof of arithmetic properties, we see that not 
all researchers agree on the use of the algebraic language in cases in which proof given orally is more 
intuitive and straight-forward than the formal one.  For example, let us consider the task "prove that the result 
of the multiplication of three consecutive numbers is necessarily divisible by six" (which can be simply 
resolved considering that if there are three consecutive numbers, at least one of the three must be even and 
that at least one of the three divided by three has a remainder of zero), or the task "show that the square of an 
odd number is odd", (which can be solved considering that an odd number is characterised by the fact that - 
in the canonical 10-base representation - it ends with an odd digit and that, since the square of the odd digits 
is an odd number, then the square of the number given is odd because its digit of the units is odd). We do not 
wish to deny the aspects of intuition or simplicity in these deductions, but it is impossible not to reflect on 
their expository complexity. It is therefore necessary to lead students to appreciate algebraic language 
because it allows us to codify and resolve situations which are difficult to handle with natural language.  In 
fact, it is interesting to carry out a comparison with the students between intuitive verbal strategies and 
algebraic strategies.  For example, in cases like this, the teacher might propose the task of the translation into 
algebraic language of the reasoning process and, when comparing resolution strategies with the whole class, 
point out that first of all, verbal proof depends on the representation of numbers, while algebraic proof does 
not. The teacher may extend this generalisation on the second point saying that it can be understood by 
people who do not understand Italian, underlining the nature of "mathematic Esperanto" inherent in the 
algebraic language.  
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The experimental studies carried out with students from 12 to 16 years of age on proof in arithmetic 
at various levels of difficulty (Bell 1976, Frielander et al. 1989, Garuti et al. 1996, Malara & Gherpelli 1997, 
Savadosky 1999, Healy & Hoyles 2000), allow us to state that the students, when appropriately taught, can 
come up with good proof productions right from middle school, and, as time goes on, go on to appreciate the 
correct significance and role of examples (inductive-explanatory role of conjectures and preparatory to proof) 
and counter examples (resolutory compared to the non-validity of a conjecture) and to understand the role of 
proof, necessary to sustain the validity of a proposition in general terms. 

From the linguistic point of view, the development of a proof in this field requires on the students' 
part: 
• the knowledge of the meaning of specific terms in natural language which characterises predicates in 

association with the verb to be (double, consecutive, even, greater than, lesser than, divisible by, multiple 
of, etc. and their combinations; 

as well as the ability to: 
• reformulated propositions adequately to the aim (for example, express "greater" in terms of "equal"), 
• translate from natural language into the algebraic one, 
• interpret algebraic expressions transformed from others within the terms of the situation in question; 
• check the outcome of what is assumed (if n represents an odd number, recognise n + 1 as an even 

number).  
In this process, and the role of the teacher's fundamental.  S/He will have to act as a model showing 

students, through various carefully chosen situations, how to:  
a) translate the hypotheses into algebraic language,  
b) transform writing in various ways in order to open up the field to his/her own different 

interpretations;  
c) Interpret the formulae obtained for syntactic elaboration and select those which are useful to these 

ends. 
However, if our aim is to give space to the concept of proof in arithmetic in secondary education, we 

must invest heavily in the training of future teachers.  As we shall see, even those with a mathematical 
background have a certain amount of difficulty in solving proof problems. 
 
An experiment with future teachers  
Let us now look at some of the results from the treatment of several proof problems in the ambit of natural 
numbers (see table 4) carried out with 15 students in the last year of the mathematics degree and 13 future 
teachers1 taking part in a teacher training course. 

Our initial aims were manifold.  Partly, we wanted to verify their proving abilities and pick out any 
blocks or difficulties of the future teachers, but above all, we wanted to put them into a situation in which 
they had to concentrate their attention on the issue of proof and discuss the role of this kind of activity in 
mathematics education at secondary school level. Our hypothesis was that the teachers, given the tradition of 
teaching and the age-old habits of blindly trusting in whatever the textbook says, were not aware of the 
importance nor of the feasibility of this kinds of problem from the students’point of view. Furthermore, given 
their unfamiliarity with proof and the difficulties they find in solving the problems, they would be far from 
even thinking about making space for it in the classroom. 
  
The problems posed, taken from “Giochi d’aritmetica e problemi interessanti” by G. Peano 
1. Write down a three digit number, invert the order of the digits and write down the difference between the 

two numbers, the greater minus the lesser. Give me the last (first) digit of the dif ference and I will tell you 
the difference.  

                                                                 
1  The course was devoted to the training of future teachers of Mathematics and Science in middle school (6th to 8th 

grade). It was attended by 11 non-mathematics graduates. 
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2. Write down a number with several digits, multiply it by 10 and take it away from the first one, cross out 
one of the (not zero) digits from the difference and give me the sum of those left.  I will guess the one that 
you crossed out.  Explain to me how this is possible. 

3. Write down a three-digit number with the digits in descending order, invert the order of the digits and 
write down the difference between the two numbers. Add the same number to this difference with the 
digits inverted.  Whatever the number is, you always get 1089.  Why?  

4. A two-digit number has this characteristic: its square minus the square of the previous number is the same 
as the first number with the digits inverted.  What number is it? 

5. Write down a two-digit number.  Write down what you get from this when you invert the digits. Prove 
that the sum is divisible by 11.  Investigate what happens when you use a three or four -digit number. 

The problems  
The problems considered were taken from the text by G. Peano entitled “Giochi d’aritmetica e problemi 
interessanti” (Arithmetic games and interesting questions) written back in 1924 for training primary school 
teachers.  These are based on the use of the canonical polynomial representation of the number, and require 
the ability to: 

• formerly express the verbal conditions given in the text of a problem, 
• distinguish the canonical polynomial representation of a number (under the positional 10 base 

representation) from other (though polynomial) representations, 
• represent a natural number in polynomial form, about which certain indications or conditions on the 

digits have been given, 
• carry out reasoned transformations about which the results must be proved and interpreted; in 

particular, functionally apply the principal properties of an arithmetical operation to the solution of 
the problem, 

• make generalisations. 
From a general point of view, the main difficulties in solving the task, quite apart from the awareness of 

what proof means and consists of, regard the ability to: 
• interpret a verbal text (the language is discursive and of a 19th-century style), 
• formalise properties and relations between the data considering implicit conditions and elaborate 

them so as to give the necessary proof, 
• correctly interpret representations deriving from the execution of given algorithms on numbers 

expressed through their canonical polynomial representation, 
• come up with functional transformations to that which is necessary in order to prove and interpret the 

results, 
• grasp the general patterns of the situation in question (for example, moving from the case of a 

number in the hundreds to one in 10n). 
 More precisely, the first task requires the individualisation of the canonical polynomial 

representation of the difference between two related numbers and then the highlighting of a property - these 
are the resolutory key to this task. The second concerns difficulties owing to the reciprocal influence between 
polynomial and algebraic representation; furthermore, if polynomial representation is used, the direct proof 
of the problem is more intricate. Moreover, if it is not independently proved that a multiple of 9 has the sum 
of its digits which is a multiple of 9, it is in fact impracticable.  The third task is comparable to the first, and 
requires co-ordination between the algorithmic aspects of addition and subtraction operations and the 
algebraic aspects resulting from the formulation of the problem.  The fourth presents a variant on the third; 
the principle of polynomial identity must be applied and information must be suitably co-ordinated according 
to the different cases.  The fifth task is more simple compared to the previous ones; an element of difficulty 
which distinguishes it lies in the request to investigate the extension of the pattern proved for two-digit 
numbers in the case of higher numbers. 

Behaviour encountered 
The students had been asked to solve the problems, analyse their own thinking processes while doing 

so, and say what their difficulties were.  As regards their initial approach to the problems, all except one 
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mathematics undergraduate, started off making numerical trials to verify the results of the theses.  Their 
behaviour can be classified in the following categories: 

Category 1.  Naive trialing subjects.  This includes those who stopped once they had carried out 
some numerical checks without facing the question of looking for/trying out a proof or without declaring that 
the did not know how to proceed in the proof process. 
Category 2.  Aware experimental subjects. This includes those who declared that they did not know how to 
investigate the reasons of what they tested in their numerical trials. 
Category 3.  Theoretical subjects.  This includes those who went further than the numerical trials and 
attempted to find the reasons behind the patterns they tested, even if at times they did not manage to do it 
correctly.  
Category 4.  Meta-cognitive theoretical subjects.  This includes those who did not only attempt to explain the 
proof in general terms, but who also analysed in their own streams of thought in certain detail, or who at least 
expressed their difficulties encountered. 

Among those who attempted to explain the proof of these tasks (categories 3 or 4), two different 
approaches can be distinguished: there are those who favour verbal development of the proof, while others 
prefer an algebraic development, limiting the verbal operation to the interpretation of the concluding 
algebraic results.  Obviously, those who chose verbal proof were generally wrong, though in a few cases (as 
in task 2) the aid of known theorems turned out to be fruitful.  

As far as the aspects of meta-cognitive checking are concerned, only a few mathematics 
undergraduates (partly because they had been taught in previous activities) analysed their own reasoning 
processes, focusing carefully on the various frame changes (Arzarello et al. 1994), and explaining their 
difficulties.  The others merely "solved" the tasks, simply noting when the one of them seemed particularly 
difficult. 

The problems considered most difficult were the second and the fourth, the main reason lies in the 
conflict due to the contemporary handling of two different kinds of representation: the algebraic, used to 
translate and the relations expressed between numbers, and the polynomial (or general positional) to 
represent the numbers themselves.  The formal tradition of the sum, product, or difference of generic 
numbers represented in polynomial form gave place blocks, difficulties, or errors owing to the inability to 
control the algorithms of the operations in general terms and to conveniently interpret or convert syntactic 
elaboration of such representations so as to recognise the  
relative polynomial at the end of the operation. 

An attitude common among the subjects, when passing from the particular to the general, was that of 
representing a generic natural number with a sequence of letters.  Though inappropriate and in conflict with 
standard algebraic representation (where the juxtaposition of two or more letters represent the product), this 
"naive" code, a generalisation of the positional one, was handled well enough during the proof process; 
however, at a certain point (not the same one for all students) they realised the inherent ambiguity and felt 
the need to move over to polynomial representation.  This leap was made by some of them during task 2 
(which was not strictly necessary and was perhaps more of a hinder),while others changed systems to solve 
task 4.  The use of this representation was not therefore immediate or spontaneous, but it marked the end of a 
"dirty" and conflicting system of representation.  

A frequent error was that of interpreting the sum or the difference between two numbers, represented 
polynomially as the results of the mere addition (subtraction) of the terms related to the same power of ten, 
without checking the conditions of the coefficients  in the numerical ambit or in the case of considering the 
amount to be carried over. 

Problem two turned out to be the most difficult for all those who did not use the theorem which 
characterises the multiples of 9 as numbers whose digits are a multiple of nine.  As mentioned above, the 
strategy of linking given information verbally to other knowledge proved highly effective. 

Another characteristic attitude is to be found in the solution to the fourth question.  As regards the 
two-digit number to be found represented as 10a+b, the result 19a-8b=1 can be reached on the basis of the 
conditions given. Only one student remembered the conditions regarding a and b following the relations 
imposed by the problem, and then developed considerations of a general nature: the majority proceeded by 
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numerical checks.  Two or three, at times wrongly, made use of a known theorem about the greatest common 
divider, without using it however.  Another common attitude was considering the polynomials as implicitly 
equal, expressing the same number.  Only one student explicitly recalled the principle of identity of 
polynomials.  
 Behavioural differences also showed up with regard to the second point of question 5, which 
required an investigation of the possible extension of the pattern proved in the case of two-digit numbers to 
numbers of more digits. The interesting thing is that this pattern carries on unevenly; that is, in numbers with 
an even number of digits, while in numbers with an odd number of digits there is no pattern.  As expected, 
behaviour in regard to this point differed somewhat.  Most of the students simply identified a numerical 
counter example in the case of three digit numbers for their investigations and stopped there, declaring the 
rule invalid in the case of higher numbers.  And there were some students who, though having identified a 
numerical counter example, set themselves to task of studying the general terms which the numbers must 
meet in order to verify the rule, while others approaced to the problem in general terms correctly deducing 
what happens in the cases of even or odd exponent of the biggest power of ten. 

The non-mathematics students had notable difficulties and their notes show various comments, for 
example: 
I found myself completely unable to formulate any coherent reasoning.  I have great difficulties in proving 
rules; for the training I have, mathematical exercises are an archaic experience, difficult to grasp at all 
quickly or easily. 
It must however be pointed out that one mathematics undergraduate was not even unable to conduct 
experimental checks adequately or verify and identify the patterns in question. 

It was very interesting for the students when they were presented with different “solution” prototypes 
and asked to compare and discuss them, especially for the students who had declared no knowledge in the 
subject.  In fact, among some of them (among the most curious and lively of the students, who were not 
mathematics graduates) showed themselves right from the beginning to be anxious to understand how they 
might proceed. 

This experience was very important for most of the participants, for their own awareness-building as 
well as for their shortcomings and difficulties in regard to the particular tasks studied, and for the more 
general problem of teaching-learning strategies for proving.  
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