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Abstract: Traditionally, many students have found the study of algebra difficult.  This paper examines arithmetic 
prerequisites for algebra study, particularly those associated with the concept of equals and the operational laws.  A 
sample of secondary students who were about to begin a unit of algebra was tested for their ability to do the 
prerequisite arithmetic.  Analysis of their responses revealed that most of them were poorly equipped for algebra 
study.  In particular, students performed poorly on problems where the equals sign did not simply designate where 
the answer is to be placed and where operations cannot be easily closed.   

Algebra is an abstract system in which interactions reflect the structure of arithmetic (Cooper, Williams 
& Baturo, 1999).  Its processes are abstract schemas (Ohlsson, 1993) or structural conceptions (Sfard, 1991) 
of the arithmetic operations, equals, and operational laws, combined with the algebraic notion of  variable 
(Cooper, Boulton_Lewis, Atweh, Willss & Mutch, 1997).  Arithmetic does not operate at the same level of 
abstraction as algebra for, although they both involve written symbols and an understanding of operations 
(e.g., order of operations, inverse operations – Herscovics & Linchevski, 1994), arithmetic is limited to 
numbers and numerical computations (Sfard & Linchevski, 1994).  Arithmetic and algebra differ 
fundamentally in that in arithmetic computational procedures are separated from the object obtained 
(Linchevski & Herscovics, 1996).  That is, students in arithmetic are not expected to conceive of groups of 
numbers and symbols as objects, where as in algebra this is necessary.  

A fundamental requirement of algebra is an understanding that the equal sign indicates equivalence and 
that information can be processed in either direction (Kieran 1981; Linchevski, 1995).  It has been noted 
previously that many students’ understanding of equals is action indication (e.g., “makes or gives” – Stacey & 
MacGregor, 1997, p. 113) or syntactic (showing the place where the answer should be written – Filloy & 
Rojano, 1989).  Misconceptions relating to the equal concept make it very difficult for students to transform 
and solve equations (Kieran, 1992; Linchevski & Herscovics, 1996).   

Understanding the arithmetic operational laws (commutative, associative and distributive) and the 
order convention for the operations are also important in algebra (Bell, 1995; Boulton-Lewis et al., 1998; 
Herscovics & Linchevski, 1994).  For example, Kieran (1992) reported that some students read algebraic 
expressions from left to right and ignored bracketing, a behaviour that indicates inability to apply the 
order convention.   

The difficulties students who study algebra face without adequate arithmetic prerequisite 
knowledge can be easily seen in the following Year 9 task:  “Solve for x:  2(x-1)+2 = - (4-3x)”.  
Completing this algebra task requires understanding of the equal concept, order convention, operational 
laws and directed numbers.  In this study, Year 9 students who were about to begin a unit on algebra 
were the subject of a probe into these prerequisites.  

Method 

Subjects:  The subjects of the study were forty-one Year 9 and nine Year 10 students who were 
about to begin a 35-hour unit on algebra.  All these students had passed Year 8 prerequisite subjects that 
incorporated the arithmetic operations included in this study.  The Year 10 students had previously 
completed the algebra unit in Year 9 but, since their marks were unsatisfactory, they were repeating the 
unit.  Observations of 20 lesson within 3 classes showed that the students were generally cooperative and 
well behaved, although some students were reluctant to complete homework tasks.  The students were 
enrolled in a middle sized coeducational school located in a middle class suburb in Queensland, 
Australia. 

Instrument:  The instrument in the study was a pencil-and-paper test of eight questions designed 
by the authors to test students’ abilities to do some of the arithmetic necessary for beginning symbolic 
algebra study.  That is, the test items (see Table 1) were arithmetic tasks that reflected the prerequisites 
for the types described above and consisted of items testing student understanding of the equal concept; 
order conventions and operational laws and directed numbers.  The students’ ability to work with 
directed number was assessed with a simple algebra task that was also used to check understanding of 
variable as unknown (for a broader study).  The test was designed so that descriptive statistics and 
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qualitative analysis of its items would provide insight into the students’ understanding of the mathematics 
topics.  Students were encouraged to show the procedures they used in completing the tasks.  However, it 
should be noted that pencil and paper tests are limited in their ability to probe students’ thought.   

Procedure :  The test was administered at the beginning of the unit prior to the commencement of 
algebra study and arithmetic revision.  There was no time limit, students were encouraged to show all 
working, calculator use was optional, no written or support material was allowed and students worked 
individually.   

Analysis:  The test papers were collected and marked.  Students who did not attempt to answer a 
question were given no marks.  Students’ responses for each of the items were analysed in terms of 
correctness and, where common mistake patterns were observed, they were described and analysed in 
terms of the probable thinking that underlaid the error.  The overall results were then presented in terms 
of the number of students who correctly answered each question.   

Results 

The correctness of students’ results are described and summarised in Table 1.  The table provides 
the item, the major concept it is meant to probe, and the number of students who answered the item 
correctly.   

Table 1. 
Summary of the Results (n=50).   

Item Concept Number 
correct 

1) If I add 56 to the right hand side, how do I keep the equation  
139 × 43 = 5977 equal?  

Equal concept  5 

2) Calculate:  6 + 4 ÷ 2 =  Order conventions 15 
3) Calculate:  7 × (2 + 1) =  Order conventions 48 
4) Calculate:  20 ÷ (5 –1) =   Order conventions 42 
5) Can you work out the answer to  

if you are not allowed to add  
36 + 24?  Explain. 

Operational laws 
(Distributive law) 

12 

6) Could you work out the answer to the problem  
5 × (6 + 7)  if you were not allowed to add 6 and 7?  Explain.  

Operational laws 
(Distributive law) 

  4 

7) The triangle  σ  and the square  ν  represent unknown numbers.  
Can you calculate the answer to  σ + (ν + 7) if you know σ + ν 
= 11? 

Operational laws 
(Associative law) 

13 

8) Solve for x:  - 4x = 20. Directed number 
(Variable as unknown) 

3 

The equal concept (Item 1):  Only five of the 50 students could correctly suggest that 56 be added 
to the left-hand side if it had been added to the right-hand side.  Thirty-five students either did not 
attempt to answer or reported, “I do not know what to do”.   The remaining ten students suggested 
various numerical procedures such as “divide 56 by 43 and add the result to 13”, two students suggested 
“subtract 56 from the other side”.  The responses support the conclusion that many of the students had a 
action or syntactic (Filloy, & Rojano, 1989; Stacey, & MacGregor, 1997) rather than a sense making 
approach to the equal concept.   

Order conventions (Items 2 to 4):  Only fifteen students correctly answered 8 for Item 2, “6 + 4 ÷ 
2”.  Thirty-three reported that 5 was the answer; clearly these students had done the operations in order 
left to right.  Other incorrect responses included 20 and the decimal number 4.1.  The student who 
answered 20 may have added 6 to 4 then multiplied 10 by 2, indicating confusion with both order 
convention and division and multiplication.  The response of 4.1 is difficult to explain.  Only two 
students did not succeed in Item 3, “7 × (2 + 1) = ”.  The answers of these two students were “9” and 
“12”.  Most students (42 out of 50) correctly computed the answer to Item 4, “20 ÷ (5 –1)”.  One student 
responded with an incorrect answer of 4.  This may have indicated that this student had made a 
computational error.  One student responded with 80 suggesting that she multiplied instead of divided.  

(36+ 24) 
      6 
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Other answers included 3½, which is difficult to fathom, and ¼ that may have indicated that the student 
divided 5 by 20 and ignored the subtract one.  Clearly the data supports the finding that almost all the 
students appreciated that the brackets part of the order convention (in Queensland this is based on the 
learning hinge or memory prompt BOMDAS - Brackets, Of, Multiplication, Division, Addition, and 
Subtraction) must be done first.   

Operational laws (Items 5-7):  Only twelve students correctly answered Item 5, “Can you work 
out the answer to  (36 + 24) / 6  if you are not allowed to add 36 and 24?  Explain”.  Most of the students 
who gained no marks simply responded with, “no” or “can’t be done,” but ten students made comments 
similar to, “no because you have to do the brackets first”.  Similarly most of the students who gave 
reasons for not being able to complete Item 6, “5 × (6 + 7)” reported that the brackets needed to be done 
first.  One has to wonder if the use of the order convention as a learning hinge or memory prompt has not 
clouded students’ memory of the distributive law.  One conclusion from these observations is that order 
convention needs to be taught along side the distributive law.  
The second law checked was the associative law, and it yielded similar results.  Only thirteen of the 
students correctly answered Item 7, “The triangle  σ and the square ν represent unknown numbers.  Can 
you calculate the answer to  σ + (ν + 7) if you know σ + ν = 11?”.  As in previous responses, many 
students did not elaborate on why the problem could not be solved.  However, six students responded 
with numbers which added up to 11 such as “1 + (3 + 7) = 11”.  Several others said no “because  σ + ν  
could be any number” and went on to suggest  “6 + 5 or 8 + 3 or 10 + 1”.  Clearly, many students did not 
appreciate that the brackets did not have meaning in the case where all the operations were addition.  It is 
possible that the use of brackets and symbols confused students, however the use of such symbols is 
common in the primary curricula in Queensland.  These results provide further evidence that using 
BOMDAS without understanding has hindered the student performance on these tasks.  

Directed numbers (Item 8):  Directed numbers were not directly included in the test; however, in 
Item 8, the students were asked to solve for x in the following equation  
- 4x = 20.  This type of problem has been termed operational algebra in that it can be solved through 
arithmetic operations.  Twenty-one students reported that they could not do the problem, eight responded 
with numbers like 16, 24 or 6.  These responses indicated that arithmetic as well as the directed number 
and equal concepts was problematic for them.  Eighteen reported 5 indicating that they were able to solve 
the problem except for the directed number component part of the operation.  Only three students of the 
50 had the correct answer of –5.  The observation that eighteen reported 5 and eight others had other 
positive numbers is clear evidence that many of the students could not work with directed numbers.   

Discussion 

In summary, students showed poor understanding of the concept of equal, order conventions where 
brackets are not central, operation laws and directed numbers operations.  In contrast, students showed 
good understandings of the order convention where brackets were present.  Interestingly, many of the 
deficiencies are such that they would cause difficulties in arithmetic as well as algebra.  However, others 
(concept of equals, application of distributive and associative laws and directed number concept) are such 
that many arithmetic procedures may not be affected; but, as argued by Kieran (1992), they may cause 
difficulties in the transition to algebra.  However, it should be noted that weaknesses such as those with 
respect to the concept of equals would only affect algebraic manipulations of equations.  It is possible for 
students with poor understanding of equals to solve algebraic equations by backtracking (working 
backwards) or trial and error (Boulton-Lewis et al., 1997).   

The findings with respect to student performance are generally similar to the findings of previous 
studies such as Booth (1988), Cooper, et. al (1997), Herscovics and Linchevski (1994), and Kieran 
(1992).  However, some results are different to some previous studies, for example, Boulton-Lewis, 
Cooper, Atweh, Pillay & Willss, (1998) found that most students in Year 9 had a sufficient understanding 
of the commutative law, order of operations and understandings of arithmetic processes to apply them to 
algebra.  

Separating procedures from objects and the importance of closure :  Linchevski and 
Herscovics (1996) argued that arithmetic was unique in separating procedures from objects obtained 
from those procedures, a situation, which was not possible in algebra.  This study indicates students’ 
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failure in the arithmetic tasks was similarly a result of being unable to separate the two.  Further, their 
failures appeared to be a consequence of closure (Biggs, & Collis, 1982).  In their responses to the test 
items, the students had great difficulty with the problems in which closure was not possible or not easily 
obtained, and where operations and operational laws had to be considered generally (and, in some cases, 
as objects).  This appears to reinforce the argument that students who have little experience of arithmetic 
situations where closure is limited, or the pathway to it is obscure, had little knowledge of how to handle 
expressions and equations as generalities.  Such abilities are necessary for success in algebra study. 

In terms of closure, Item 1 would have been a very difficult example for students.  The operation 
139 × 43 is too difficult to mentally close, further, it had already been closed, to 5977.  The place where 
answers are normally written, just after the equals sign, was occupied.  This would have been very 
confusing to students with an action or syntactic understanding of equals.  This is possibly the reason 
why thirty-five of the 50 students who did not attempt Item 1 reported, “I don’t know what to do”.   

Similarly, Items 5 and 6 would also have been difficult.  These items were presented without an 
equals sign – (to students with a limited understanding) a necessary signal to begin solving the items.  
This may have been why some students responded with, “can’t be done”.  Where students did try to solve 
the items, they were guided by BOMDAS, reporting that the brackets must be done first.  However, in  
Items 5 and 6, directions prevented the brackets from being closed, which led most students not to be 
able to solve the items.  In Item 7 (associative law), the brackets contained an unknown ν.  There was an 
equals sign in the second equation (σ + ν = 11) but, on its own, this equation did not contain sufficient 
information for the students unless they made the link with the first equation  (σ + (ν + 7).  This 
interpretation of student thinking is supported by the some students’ comments of, “no because σ + ν 
could be any number”.  In summary it appears that the students were looking for closure but the three 
items required the expressions to be manipulated before such closure was possible.  

In contrast, Items 3 and 4 were done much better.  Here, the equals sign appeared to act both as an 
indicator to do something and an indicator of where the answer should be placed, and the numbers were 
small.  The students were familiar with the role of brackets in guiding what operations should be closed 
first.  Item 2 was a mixture of the difficulties with Items 1, 5, 6 and 7 and the ease of Items 3 and 4.  The 
equals sign was in its normal place and the numbers were small, but the expression had to be considered 
generally to determine the order of closure.  However, most students simply worked left to right, closing 
as they read the numbers and operations.   

Order convention, negative sign as an operation, and closure :  The students’ responses with 
respect to Items 1 to 7 illuminates the work of Boulton-Lewis et al., (1998) and Herscovics and 
Linchevski, (1994) who recognised that understanding of order of operations was necessary for algebra 
study.  When there is a variable, the arithmetic style of closure is not possible.  The expressions and 
equations have to be considered as they are and manipulated in terms of general laws.  Brackets draw 
students’ attention to what should be operated on (or closed) first but without generalised understanding 
of the remainder of the BOMDAS convention and the operational laws, a solution is not readily obtained.  

Two factors appeared to limit closure in Item 8 “(- 4x = 20)” which was also poorly done.  
Eighteen students made the error (reported previously) of detaching the number from the sign 
(Herscovics & Linchevski, 1994).  As well, twenty-one students reported that they could not do the 
problem or that the problem could not be done.  For these students, the number after the equals sign may 
have given the appearance that closure had already been accomplished (and the presence of the variable x 
may have confused the students and hampered closure).  

Conclusion 

The ability to handle a sequence of operations without closure and to study an operation as an 
object, the same as the result of the computation, are essential for algebra in Year 9.  The students in this 
study were nowhere ready for this.  In particular, the learnt response of students to close on operations 
means that the presence of variables and the layout of many algebra exercises will cause great 
difficulties.  To become ready for algebra, this study suggests that students will have to:   

• come to terms with the placement of an equals sign not designating where an answer has to be 
placed, 

• come to terms with the absence of an equals sign not meaning nothing needs to be done, and  
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• come to understand that an expression involving sequence of operations can be manipulated 
without closure.   

Further the tendency of the students to rush to close terms within brackets even when this was 
meaningless indicates that the application of BOMDAS without understanding poses problems for 
algebra study.  Finally, it is apparent that many of these students ignored the significance of the negative 
sign as an operational instruction in the case of the directed number item.  That is, they ignored its 
significance because they were unable to use it as an operational sign in this instance.  Clearly, with the 
misconceptions that many of these students have, it is likely that some of them will struggle when the 
additional cognitive load of algebraic symbolism is placed upon them.   
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