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Introduction For this session, I have been thinking of which discipline I should focus my speech.  Is it 
Algebra? Calculus? Or Geometry?  Eventually, I decided to talk about the status of geometry today.  
Specifically, and for many reasons,  geometry is alive, well and sound, it has not died.  For, it is essential 
to many other human activities and is so deeply embodied in how people think.  I am inspired by my 
colleague, Walter Whiteley of York University, Toronto, Canada, who gave an independent, but related, 
description of the decline and rise of geometry through the 20th century [1].   The availability of 
computers with dynamic graphic capacities and the realization of a variety of ways of learning,  our 
current state of affairs in the field of geometry offers an unprecedented opportunity for geometers and 
others whose interest is visualization and informal reasoning.  
 
I.  The Fall of Geometry:  Why and How  As  the mathematics community knows that a field of 
mathematics  'dies' when it is no longer considered as an 'important'  area of mathematical research.  
Geometry 'died'' in this sense by the mid 20th century in North America  and the rest of the world.  Over 
the last few decades, the path of this fall proceeded from the graduate schools to the elementary 
classrooms passing through the high and middle schools [1 p. 7].   In sum, the decline proceeded from left 
to right passing through the center!  Knowing this path may help us plan strategies for speeding up and 
accelerating the rise of geometry.  "We do not have a half-century to spare for a comparable, gradual 'rise' 
of geometry".  
 In a mini history over the 19th and 20th centuries,  Philip Davis gave an account on the fall and 
rise of geometry focusing on a specific field of discrete geometry known as 'triangle geometry' [2].  In this 
regard, Eric T. Bell states that "The geometers of the 20th century have long since piously removed all 
these treasures to museum of geometry  where the dust of history quickly dimmed their luster" [3, p. 323].   
Walter Whiteley states that: 
"Discrete geometry virtually died as an 'important' field of mathematical research through the twenties 
and the thirties and the forties, at least in North America and parts of Europe.  It survived in pockets 
(Hungary, Germany, Switzerland, Austria, Russia ...) and through a few key people in other places 
(H.S.M. Coxester, D. Pedoe,  B. Grunbaum).  In the Canadian context, this death was confirmed as 
Professor Coxeter retired at the University of Toronto several decades ago.  The department followed a 
policy of not hiring in discrete geometry and shifted to the 'hotter' areas such as algebraic geometry" [1, p. 
8].   
 This state of affairs in discrete geometry shows how the situation has been deteriorated.  It marked 
the turning point toward a chain of events that explains how the decline was transmitted down from 
'research activities' to the rest aspects of mathematics education.  It reminisces the 'domino effect' sequence 
of events.  In particular, as research in geometry declined, the importance of teaching geometry in graduate 
programs declined, and so the number of faculty proposing courses in geometry declined.  As a result, 
teaching geometry in pre-service teacher education programs declined.  After a few decades, there were 
new graduates moving out to teach undergraduate mathematics who possessed no experience in discrete 
geometry as an important and vital field of mathematics and who may not studied any geoemetry course.  
Over a span of a few more decades, the decline of teaching geometry at undergraduate level resulted in 
having a generation of school teachers who hardly have any geometry within their undergraduate program.  
Thus, we have teachers in the classrooms who, more likely, will implement their curriculum leaving 
geometry to the end of the year, a situation often ended into no time left for geometry.  Such understanding 
that geometry is something extra or optional continues to spread wider and wider among curriculum 
designers, writers, teachers, and the parents.   
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 The message that geometry is not relevant is embedded in the dominant culture in undergraduate 
mathematics departments and in high school curricula at least in North America today [4, p. 184].  The 
'new math' movement started early of the second half of the 20th century, with its emphasis on algebra and 
set theory, has further deepened this decline in teaching geometry.  This classification of mathematics with 
language and formulas is an attribute of professionals interested in the foundations of mathematics, and of 
professionals interested in algebra and analysis - this is strictly evident in the Bourbaki school of thoughts 
for example.   The famous urge of Dieudonne for a "strict adherence to the axiomatic methods, with no 
appeal to the 'geometric intuition', at least in the formal proofs: a necessity which we have emphasized by 
deliberately abstaining from introducing any diagram in the book" [5 pp.  173-174], [1].  It is no wonder to 
witness this cultural misconception that geometry is irrelevant in the recent literature of educational 
psychology and cognitive science.  Educational psychologists and cognitive scientists associate 
'mathematical intelligence' with numbers and their applications using formulas (e.g.  algebra) while 'visual 
intelligence' with 'art and architect'  [6, 7].  
 
II.  The Rise of Geometry Nowadays, geometry is not only alive, rather it is rising as an area of research 
not only in mathematics but in other areas outside mathematics.  Geometry is now very active as a field of 
research.  It is rising in several research arenas: (1)  Research on Cognitive Mental Processes: Young 
Children's Spatial Structuring, Concepts of Shape and Area, Visualization and informal Reasoning  (2)  
Research on Applications of Geometry (3)  Research on Dynamic Geometry Programs 
(1) Research on Cognitive Mental Processes: Young Children's Spatial Structuring,                       
Concepts of Shape and Area, Visualization and informal Reasoning   
 Out of many research reports in geometry , I chose three more recent research reports: 
(a)  Michael Battista et al. Michael Battista et al [8] studied the mental processes by which students 
structure space.  The study implicates that studying the processes by which students structure space offers 
us a new and powerful perspective on investigating children's construction of geometric and spatial ideas.  
The study calls for a reexamining of the traditional treatments of multiplication and area concept.  In their 
word: 
In the traditional view of learning, it is assumed that row-by-column structuring resides in 2D rectangular 
arrays of squares and can be automatically apprehended by all.  However, as we have seen in the present 
study, and consistent with a constructivist view of the operation of the mind, such structuring is not "in" 
the arrays - it must be personally constructed by each individual.  Consequently, traditional instructional 
treatments of multiplication and area need to be rethought.  If students do not see a row-by-column 
structure in these arrays, how can using multiplication to enumerate the objects in the array, much less 
using area formulas, make sense to them? 
Taking a broader view, we suggest that structuring 2D and 3D space is the foundation for geometric and 
visual thinking.  All of geometry is, in essence, a way of structuring space and studying the consequences 
of that structuring.  We structure space when we organize it by arrays or coordinate systems.  We 
structure space when we conceptualize it in terms of specific shapes (such as lines, angles, polygons, 
polyhedra) or in terms of geometric transformations.  Studying the processes by which students structure 
space offers us a new and powerful perspective on investigating children's construction of geometric and 
spatial ideas. [8, p. 531]. 
 (b)  Douglas H. Clements et al. 
 Douglas H. Clements et al. [9] investigated criteria preschool children use to distinguish members 
of a class of shapes from other figures.  They conducted individual clinical interviews of 97 children ages 
3 to 6 emphasizing identification and descriptions of shapes and reasons for their identifications.  Clements 
and his associates found that young children initially form schemas on the basis of feature analysis of 
visual forms.  They further indicated that while these schemas  are developing, children continue to relay 
on visual matching to distinguish shapes.  They are, however, also capable of recognizing components and 
simple properties of familiar shapes.  This new finding is an interesting result to geometers and other 
individuals interested in visualization and informal reasoning.   This finding suggests that the van Hiele 
[10]  Level 1 ("visual level") would seem not to be the bottom level (the 'floor' level) within the van Hiele 
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5 levels of thoughts development in geometry, rather a prerecognitive level exists before van Hiele's level 
1 (visualization level) [9, p. 206].   
 Clements and his associate [9] urge geometers, mathematics educators and specialists in cognitive 
mental processes to give a close attention to the children early conceptions  of geometric shapes.  They 
state: 
Descriptions of children's early conceptions of geometric shapes are important not only for theory but also 
for teacher education (e.g., for cognitively guided instruction models) and for developers of 
constructivist-oriented curricula.  Too often teachers and curriculum writers assume that students in early 
childhood classrooms have little or no knowledge of even simple shape identification (Thomas, 1982 [11,  
Author]).  Obviously, this belief is incorrect ; preschool children exhibit working knowledge of simple 
geometric forms (even in the paper-based situations in the present study).  Instruction should build on this 
knowledge and move beyond it.  Students fail to reach the descriptive level of geometry in part because 
they are not offered geometric problems in their early years  (van Hiele, 1987 [12, Author]).  The 
"prolonged period of geometric inactivity" (Wirszup, 1976, p. 85 [13,  Author]) of the early grades leads 
to "geometrically deprived" children (Fuys, Geddes, & Tischler, 1988 [14, Author]), p. 208.   
Below is a brief reflection on van Hiele's levels of geometric thoughts development: 
 Pierre Marie van Hiele[10] identified five levels of reasoning which students go through in 
dealing with geometric concepts and figures.  The van Hiele research indicates that these levels (identified 
as Levels of Thought Development in Geometry) are not biologically achieved during the person's 
maturation; they can only be achieved by instruction and should be learned in their proper order:  Levels 
1, 2, 3, 4, and 5.  The progress through these levels seems different from that of Piaget levels [15].  As we 
know from psychology, the Piaget Levels of Cognitive Development occur naturally and progressively 
during biological maturation.  A description of van Hiele five levels can be found in several NCTM 
publications such the Mathematics Teacher (see Shaughnessy & Burger [16] and the NCTM 1987 Year 
Book (see, M. Crowley [17]).  A  description of these levels may be helpful.  Level 1:  students identify 
and operate on shapes in their global appearances (holistic); Level 2:  students recognize shapes by their 
properties (part-whole); Level 3:   students recognize relationships among properties and shapes (part-
part; and, whole-whole);  Level 4:  students understand the deductive reasoning process;  Level 5:  
students can work in different axiomatic systems. 
(c)  Medhat H. Rahim et al. Medhat Rahim and his associate Alton Olson [18] conducted an 
investigation (at grade 8 level) for the purpose of identifying and explain students' geometric thinking 
processes in judging and verifying, visually and through hands-on manipulation, whether or not area 
equivalent polygonal regions of different shapes are 'congruent by pieces'.  The process of cutting and 
covering of cardboard models of geometric shapes were used by the students.   
 The 'congruence by pieces' or 'piece-wise congruence' concept was adopted by the investigators 
and used as an extension of the rigid shape congruence concept.  The reason for using congruence by 
pieces lies in the relationship between congruence and area equivalence of two geometric figures.  The 
relationship between congruence and equivalence is somehow restricted; it is a 'one-way road' 
relationship.  For, a congruence of two identical polygonal regions implies equivalence in the area they 
occupy, but the reverse is not necessarily true.  That is, two area equivalent polygonal regions are not 
necessarily congruent unless they are of identical shapes.  On the hand, two polygonal regions of different 
shapes such that one of them can be cut into a few pieces to completely cover the other region, are 
necessarily area equivalent.  Conversely, two area equivalent polygonal regions of different shapes are 
necessarily congruent by pieces or piece-wise congruent.  In other words, there exits a way of dissecting  
one of them into few pieces so that, through motions, they can be fit together to completely cover the 
other region .  The operations involved are  (a) dissecting a polygonal region into pieces and (b) moving 
the pieces around.  It is then a combination of more than one operation referred to as dissection-motion 
operations  or DMO and that constitutes the extension.  The relationships among these three ideas  are 
shown in Figure 1 below. 

  Congruence     ------------->    Equivalence 
 Piece-to-piece Congruence   <----->    Equivalence          
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Figure 1 
Each student was given 8 tasks, one at a time, in a one-on-one interview .  The 8 tasks labeled as 
"equivalence/piece-to-piece congruence"; consist of 8 pairs of different polygonal regions with equal 
area.  The two regions in each pair were made of cardboard of different colors.  A pair of scissors, a 
pencil and a ruler were available for the students.  One of the regions in each pair was a rectangular 
region equal in area to the other region.  The second region was one of the following: right triangle, acute 
triangle, parallelogram, right trapezoid, non-isosceles trapezoid, quadrilateral with no specific property, 
rhombus, and a regular pentagon.   
 The students responses on these tasks suggest that the tasks were processed through a particular 
sequence of strategies that constitutes a general emerging pattern.  The emerging pattern has the following 
sequence of events: 
superimposing one region on the other for a partial cover ---> attempting to find a linear congruence 
among the edges and/or angular congruence among the angles ---> dissecting one region along an edge of 
the other ---> holding on the initial partial cover and moving the other piece around to cover the 
remaining part of the other region  --->  and the above process starts again till the completion of the task 
[18, p. 386]. 
Through dissecting area equivalent shapes for regional congruence, the data suggest that polygonal regions 
were directly compared through matching sides, angles, and sub regions.  Whenever students performed a 
task successfully they responded that the two regions were: "equal", "congruent",  "the same."  And when 
they were asked "why they are equal? Congruent? The same?" Their answer was "Because they fit."  
These responses suggest that a regional sameness or congruence of polygonal regions seemed to have been 
visualized as a process of fitting a region on the other through cutting.  Further, the students responses 
revealed that they were led by principles that reflect knowledge of component parts of polygonal regions.  
The dominant regional congruence justification of grade 8 students for two equiareal polygonal regions 
with different shapes was superposition with linear and/or angular congruence of one region on the other.  
This would resemble an extended analogy to Beilin's [19] conclusion on the congruence-justification 
strategy of 7- and 8-years-olds where superposition of one region on the other was the dominating pattern 
of the children's responses.  [18, p. 387].    
 Elsewhere, Medhat Rahim, Daiyo Sawada, and Joanne Strasser [20] highlighted that 
understanding geometric shapes and the many relationships connecting shapes with one another is a major 
component of spatial awareness:  to know how a particular shape can arise or be created from others 
provides a way for learners to understand the visual aspects of their everyday experience.  The NCTM 
Standards [21] put it this way:  In grades k-4, the mathematics curriculum should include two- and three-
dimensional geometry so that students can (a) describe, model, draw, and classify shapes; (b) investigate 
and predict the results of combining, subdividing, and changing shapes.  With these goals in mind we 
created a set of simple geometric materials designed to facilitate student exploration of shapes undergoing 
transformation from one configuration into another.  During the transformation process, a major attribute 
of the shape would remain invariant.  If time allows, I would like to share some classroom research 
episodes in which children explore what we eventually called "shape transforms".  As a story line within 
the lesson we focus on "the boy with the ruler".  In doing so we highlight how an overemphasis on 
quantitative aspects can sometimes divert from the development of qualitative geometric understandings. 
[20, p. 23]. 
(2)  Research on Applications of Geometry 
 Many current applications in industries and computer science are deeply rooted in geometry; they 
have solid geometric components.  Very often, the problem under consideration involves getting geometric 
information into a computer and the output, a solution, will be in a visual form, as a figure to entertain, 
design to build, or action to execute.   Each of these possibilities requires substantial knowledge and the 
computers users would benefit understanding the outcomes and the geometry behind them.  There are 
many application areas where geometry is extremely involved as a backbone: 
(a)  Computer Aided Design and Geometric Modeling  
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For example, the most resent Boeing plane was entirely designed inside a computer with no physical 
models involved [1]. 
(b)  Robotics  
 The problems  of operating and control the robot have generated a major area of research known as 
'computational geometry' with many books and new results, [22].    
(c)  Medical Imaging  
This field of computer applications (e.g. ultra-sound and MIR devices) is dense with geometric problems, 
research, and new results in fields such as geometric tomography [23].    
(d)  Computer Animation 
(e)  Computer Visual Presentations   
(f)  Linear Programming. 
 All these fields of research activities do need geometry;  geometry is out there to serve and is essential for 
many current applications in science and in technology.   
(3)  Research on Dynamic Geometry Programs  
There are several products of software known as tools for dynamic geometry such as Geometer's 
Sketchpad, Cabri Geometry, and Cinderella.  The development of dynamic geometry programs such as 
these is decisively changing what teachers and hence students would do when solving geometric 
problems.  This has opened a wide field for learning, teaching, and research in dynamic geometry [ 24, 
25, 26]. 
Epilogue  
"... the universe stands continually to our gaze, but it cannot be understood unless one first learns to 
comprehend the language and interpret the characters in which it is written.  It is written in the 
language of mathematics, and its characters are triangles, circles, and other geometric figures, 
without which it is humanly impossible to understand a single word of it;  without these, one is 
wondering about in a dark labyrinth."  -- Galileo.  
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