UNDERSTANDING STATISTICSTHROUGH PROBABILITY
Mayer Shawer

This paper will explore the place of probability in Satistics, the need for probability in gatigtics
and how probability can be linked with gatitics in the dassroom.

Thereisatrend, today, in the teaching of datidtics thet attempts to diminate or ignore the subject
of probability. Some of the newer booksfor the first course in statitics have removed most
indruction in probability. Thisistrue especidly with the rdaionships between testing the
hypothess and probability theory. Asaresult modern authors of mathematical texts reduce the
datigtica inference to recipes.

The stience of gatistics conggts of three parts, (1) collecting deta, (2) arranging the dataiin the
form of gatisticd tables or grgphs and, (3) utilizing and interpreting the data. It isthe first and
the last of these parts, collecting data. and utilizing and interpreting the data, where probability is
essantid.

An example of thefirg part of the science of satistics, callecting data, is shown if onetriesto
edimate population parameters. We must control the quantity of information of the sample unit
we select and the methods used to collect the data. This requires that randomness be built into
the sampling design, so that properties of the estimators can be assessed probabilisticaly. With
proper randomness of the sampling, one should be able to Sate thet the estimate is unbiased.
Suppose q is an esimator to a populaion parameter g, we should specify a“bound of errorb”, in
advance, so that the error of estimationis 1 - g1 £ b. Wemust dso state, in advance, a
probability, (1-a), that specifies the fraction of timesin repeated sampling thet require the error
of esimation to be lessthan or equd to b, [P(19-g1£b) = 1-a]. We can now make the Satement
that our estimate is unbiased and we are now (1-a)100 confident thet our edimateiswithin b of
the true population parameter.

Theliterature is full of examples where an invedtigator’ s estimate is worthless because he used
non-probahility sampling, which isawdl-known problem in collecting deta.

A concrete example of fallure to adequately represent the population is shown from a
study to estimate the amount of money lost each year from shoplifing? An investigator began
by making inquiry of 26 super markets of a certain grocery store chain. He found that the chain
logt $30,000.00 per year from shoplifting. He then forecast the losses due to shoplifting for the
entire nation by multiplying 30,000 by the number of food chainsin thefifty dates He
condluded that shoplifting was amillion dollar ayear racket. The grocery chain that was
invedtigated was not representative ether in Sze of the store nor in susceptibility of shoplifting
indl grocery chainsin the country. Hence the investigator’ s estimate was worthless.

In order to avoid this Stuation, severa steps mugt be taken. Before we sdlect the sample, we
should determine what kind of sampling design should be chosen so the sample will be adequate
to represent the population. Also the sample must be large enough to
be able to make a condusion about the populaion usng information we have in the sample
Thethird part of datidtics that depends on probahility, utilizing and interpreting the dataincludes
testing the hypothesis. To test satistica hypothesis there are afew stepsthat should be taken.
Sate the hypothesisin the null form [Hg] eg. [distribution of the number of heedsin a coin toss
is no different from the expectation based on random probabilities:

Collect the data required;

! The Rocky Mountain News (Denver, Colorado), Dec 1. 1968

229



Estimate the probability [p valug] of obtaining the detaiif the null hypothessistrue (the
objective of addidicstest isto find the p vaue);

If the p vdueissmdl enough, eg. lessthan a where a equas the “ probability of fasdy
rgecting the null hypothess’ we rgect Hy otherwise we fal to rgect H.

To understand the relaionship between gatistics and probability, the writer asks his dassesin
the firgt course of datisticsto perform the following experiment. Each student is asked to toss
one coin 50 times; repesat the experiment with two coins, three coins and then four coins. The
sudent then determines the totd number of heads from each count and represents the tatdl
number of headsin afrequency and rdaive frequency table. The outcomewill look like the

following where H = tota number of heeds

Hl F RF H F |RF

0 950 | .475 0| 460 .23

1| 1050 525 11040 |.52

2| 500 |.25
H = RF H F RF
0 240 | 012 0 100 | .05
1 750 | 375 1 560 | .28
2 720 | 360 2 760 | .38
3 290 145 3 50 | .27
4 49 .02

Figure 1

If we define the sample space (S) as dl the possble outcomes resulting from the
experiment and the event (A) as the subset of the sample space then the probability of A or
P(A)=n(A) _, wheren(A) isthe number of dementsin A and n(S) isthe no. of dementsof S,

n(S)

Using the above definitions one can find the sample spaces and the number of heeds for
the probability distribution for one coin, two coins, three coins and four coins. We discover
immediately, that the number of heads in each category forms a Pascd’ striangle as shown in
figure 2. The probatility table is congructed by dividing the number of dements of the table by
the number of dementsin the sample oace (totad number of rows). In the probability table we
assume that each ample event is equdly likely which meansthat the coins arefair.

N (number of coing) Tota No. of rows
HT 1
1 1 2
HH TH TT
HT
2 1 2 1 4
HHH  HHT TTH TTT
THT THT
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HTH HTT
3 1 3 3 1 8
HHHH HHHT HHTT TTTH TTTT
HHTH HTHT TTHT
HTHH HTTH THTH
THHH TTHH HTTH

THTH
THHT
1 4 6 4 1 16
1 5 10 10 5 1 K74
Figure 2

Thefollowing isthe Satisticd tables and the probability tables as condructed from the
vauesinfigure 1:

STATISTICAL TABLES PROBABILITY TABLES

One coin One coin
. H F RF H [|n(A) PH)
0] 950 475 0 1 .500
1 1050 525 1 1 .500
Two coins Two coins
H F RF H Nn(A) P(H)
0 460 .230 0] 1 .250
1 | 1040 520 1 2 .500
2 500 .250 2 1 .250
Three coins Three coins
H F RF H| n@) | PH)
0 240 .120 0] 1 .125
1 750 .375 1 3 .375
2 720 .360 2 3 .375
3 290 .145 3 1 125
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Four coins Four coins

H F RF H n(A) P(H)

0] 100 .05 0) 1 .0625

1 560 .28 1 9 .2500

2 760 .38 2 6 .3750

3 540 27 3 4 .2500

4 40 .02 4 1 .0625
Figure 3

Fgure 3 shows the closeness of the rddive frequency in the dtigtica table with the p(h) of the
probability table. If the coinsarefar then the datidticd table will be dose to the probability
table. Also the comparison holds when the observation fdlsinto one and only one category.
The outcome for each observation in the sample (random sampling with replacement) is
independent.
Tedting the null hypothess that the four coin tosses arefair is equivaent to testing that the
datigica didribution and the probability digtribution of the following tables are no different
based on random probabilities.

Pursuant to the collected data: Probability tableif H, istrue

H QF’ H P(H) EF°

0 100 0 .0625 125

1 560 1 .250 500

2 760 2 375 750

3 540 3 .250 500

4 40 4 .0625 125
Figure 4

Furthermore, we can cdculae the p vaue from a multinomid digtribution as follows:
Pvaue = P(of obtaining the observed ditribution/Hop) =

2000! (.0625)199(.25)°69(.376)"%°(.25)>*°(.0625)*°
100156017601540140!

To find the exact probability from amultinomid probahility digribution for each possble
sample requires a staggering amount of caculaion egpedialy when the sample Sze and the
number of categoriesislarge. To avoid the staggering cadculaions the Satistician looksfor an
goproximation for the caculaions _

If we compare the observed frequency d with the expected frequency E; which we can obtain by
multiplying n times the probability of each category (nP;) as shown in the probability table

above. Expected frequency for the number of one head (1h), in the table = 2000(.25) = 500.
The sum of the squared difference of the observed and the expected frequencies S(Oi-E)? begins
to reflect the extent of the dissagreement. This quantity will be 0 only when the fit betwean the
observed and expected frequenciesis perfect.

2 Observed Frequency distribution for 2000
3 Expected Frequency distribution for 2000
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An even better index which reflects the disagresment will be S(O-E;)> which is known asthe

“Pearson’s C? gatigtics’ E
after it' sinventor Karl Pearson so that C? = S(Oi-E)?
E

Given nislarge the probahilities calculated by using the C? statistics test with degree of
freedom = |-1), j being the number of categories, are goproximately or the same as the exact
probabilities cdculaed before for the p vaue from the multinomid didribution.

In our case:

C? = S(O;-E)? = (100-125)? + (560-500)2 + (760-750) + 540-500) +
E 125 500 750 500
(40-125) =5+ 7.2+ .13+ 3.2+57.8=73.33 pvaue<.001
125

If you congder a =.01, Sncep vadue< a, wergect Hyp and conclude the coins are not
far. When we use any datidics test the assumption underlying the test must be satisfied. In our
ca=e the following assumptions were stisfied.

Each sample obsarvation fdls into one and only one category;

The outcomefor n respective observations in the sample (rather than with replacement) are
independent;

Thesgzeof thesampleislarge

Thefirg two assumptions sem from the multinomia sampling digtribution and the third
assumption comes from using C? to approximate the multinomial probabilities distribution.

In condusion, the sudent should understand the following:

The methods we used to test the statigtical hypothesisis basad on a comparison of the actud
frequency didribution with an ided or probability digtribution such as binomia, passon, normd,
etc.;

Any datigtics test, such as Z, t, C?, etc., is developed to estimate the exact probability (p value) of

obtaining dataif the null hypothesisistrue. If we rgect the hypothesis that the four coins are fair and the
actud digtribution does not fit the probakility distribution, then the calculated p value could be very

wrong. If we rgect the null hypothesisbecause the p vaue islow, it could be from the failure to meet the
assumption rather than from the improbability of the results when the assumption istrue.

Knowing the relationship between probability and testing Statistica hypothesis will give the student a

clear understanding about hypothesis testing.

The relaionship between probability and statistics should be taught in a concrete way, such that the

student in the first course of statistics can fully understand the entire concept of statistics through
probability.
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