

Radiazione terahertz

Applicazioni

- Sistemi di sicurezza (esplosivi, stupefacenti);
- Canali di trasmissione a larga banda;
- Imaging oncologico (pelle, bocca, seno);
- Rivelatori non invasivi di mutazioni genetiche;
- Controllo di qualità per evidenziare fessurazioni, difetti o elementi estranei;
- •Controllo in tempo reale di reazioni chimiche;
- Verifica in tempo reale della mobilità e della concentrazione dei portatori di carica durante le crescite dei semiconduttori;
- Microscopia delle membrane cellulari.

Sorgenti

- Laser al THz:
 - Laser a gas molecolari;
 - Laser ad elettroni liberi;
 - Laser a cascata quantica;
- Up-converter a microonde;
- Down-converter ottici;

Spiegazione alla lavagna : Onde elettromagnetiche

- L'oscillatore armonico: il pendolo, equazione differenziale, soluzioni, relazione di Eulero interpretazione geometrica;
- 2) I fasori e la loro comodità computazionale: somme prodotti;
- 3) Onde nel tempo, onde nello spazio, onde nello spazio-tempo;
- 4) Somme di fasori: interferenza (v. QED di Feynman), esperimento delle due fenditure

Spiegazione alla lavagna : interazione radiazione materia

- 1) Oscillatori: visione classica e visione quantistica
- 2) Interazione con gli elettroni e origine dell'indice di rifrazione e dell'assorbimento (grafico *n*,*k*)
- L'interazione con il reticolo cristallino: i fononi ottici, ulteriori contributi all'indice di rifrazione e all'assorbimento

Interazione radiazione materia

Interazione di un singolo fotone

Effetti nonlineari

Interazioni a più fotoni

$$P(t) = \mathcal{E}_0[\chi^{(1)}E(t) + \chi^{(2)}E^2(t) + \chi^{(3)}E^3(t)...] \equiv P^{(1)}(t) + P^{(2)}(t) + P^{(3)}(t) + ...$$

IR e LA

SHG, SFG, DFG, OR, NLA...

THG, FWM, NLA...

Se lancio due campi ottici con frequenze distinte $\omega_1 \in \omega_2$

$$E(t) = \frac{1}{2} (A_1 \exp(i\omega_1 t) + A_2 \exp(i\omega_2 t) + \text{c.c.})$$

(Commento alla lavagna sulla rappresentazione dei fasori)

per esempio, sviluppando il quadrato del termine di second'ordine troverò termini del tipo

Commento

Differenza fra Ottica **Nonlineare** e Sistemi Caotici **Nonlineari**:

due aggettivi uguali... ma diversi!

Generazione di frequenza somma

Generazione di frequenza differenza

Processo mediato da $\chi^{(2)}$

----- E₁ ----- Ε₀

Come nel caso lineare, contributi ai processi nonlineari possono venire sia da interazioni con elettroni che da interazioni con fononi

Processi in un mezzo quadratico

Forma standard con onde piane

J. A. Armstrong et al., Phys. Rev. 127, 1918 -39 (1962)

3 equazioni differenziali nonlineari accoppiate, risolvibili esttamente in termini delle funzioni ellittiche di Jacobi solo nei casi in cui gli assorbimenti siano tracurabili oppure tutti e tre uguali. Per la forma generale si può usare un solutore numerico: MATLAB ne implementa diversi fra cui un efficientissimo metodo **Runge-Kutta** del 4° e 5° ordine.

Spiegazione alla lavagna : l'accordo di fase

- 1) Dispersione dell'indice di rifrazione
- 2) Generazione nonlineare punto per punto: fase della polarizzazione del materiale e fase dell'onda propagante
- 3) Somma di fasori fuori fase e in fase: rappresentazione geometrica e valutazione dell'integrale (funzione sinc)

Amplificatore parametrico

SE riesco ad ottenere l'accordo di fase: $\Delta k = k_v n_v - k_u n_u - k_w n_w = 0$

Ipotizzando perdite nulle, trovo un comportamento ciclico

Accordo di fase "naturale"

Appl. Phys. Lett., Vol. 85, No. 18, 1 November 2004

FIG. 2. (a) Optical group index and (b) refractive index in the THz region in GaAs, (c) coherent length at λ_{opt} =1.56 μ m vs THz frequency.

FIG. 1. Coherent length at 2 THz as a function of optical wavelength calculated using the parameters of various zinc-blende semiconductors (Ref. 13).

Accordo di fase in guida d'onda

Come trasformare un problema in un vantaggio...

Cristallo non lineare Teflon o Polistirolo espanso

Monomodo al THz, multimodo all'ottico

Analizzato in vari articoli in cui però non hanno usato solutori modali numerici ma modelli inadeguati. L'unico articolo con un'analisi decente ha" truccato" i valori di assorbimento dei materiali. Ultimamente in un Opt. Expr. è stata propsta una guida in solo AlGaAs, ma con geometria molto complicata e overlap piccolo.

Spiegazione alla lavagna : le guide d'onda dielettriche

- Angolo di Snell: riflessione totale interna: le fibre ottiche... 1)
- 2) Visione modale: gli autostati del campo elettrico in una guida: campo evanescente, veloctà di fase, concetti di indice efficace e indice di gruppo.
- Relazione fra indice efficace e indici dei materiali costituenti la guida al variare della 3) lunghezza d'onda

Modello guidato a bassa potenza

Profilo del campo E_x per i modi ottici (u e v) e per il modo al THz (w)

DFG in guida d'onda

Equazioni del processo

Condizione di phase matching Conservazione dell'energia $\omega_u = \omega_v + \omega_w$ Conservazione quantità di moto lungo z $k_u n_{u,eff} = k_v n_{v,eff} + k_w n_{w,eff}$ $n_{w,eff} = n_{u,eff} + \frac{\omega_v}{\omega_w} (n_{u,eff} - n_{v,eff}) \cong n_g \Big|_{\omega = \omega_u}$

Approximation di pompa (u) ed idler (v) "undepleted" $\alpha_{u,v} \approx 0 \qquad P_w = \frac{8}{\alpha_w^2} \frac{d_{eff}^2 f_{DFG} \omega_w^2 P_u P_v}{\varepsilon_0 c^3 n_{w,eff} n_{u,eff} n_{v,eff}} \left| 1 - e^{-\frac{\alpha_w}{2}L} \right|^2$ $L_{opt} = \frac{2}{\alpha_w} \ln \left(\frac{1}{1 - \sqrt{0.99}} \right) \approx \frac{10.6}{\alpha_w}$

Risultati ottenuti in letteratura

•Ding: cristalli bulk e accordo di fase birifrangente: lanciando 1MW ha ottenuto 20% di efficienza quantica;

•L'Università di California ha costruito una sorgente in GaAs bulk polato, pompato con due laser CO₂ al ns e con potenze di 6 MW ciascuno hanno ottenuto 2 KW;

•Altri sitemi che usano PPLN ad emissione superficiale o CdTe o comunque configurazioni senza accordo di fase ottengono potenze risibili (quasi sempre epresse con a.u.);

•ALtre configurazioni guidate studiate in linea teorica hanno il limite di usare metodi di effective index, non applicabili a queste guide;

•Un articolo simulativo su Opt. Expr. ha abbassato il valore di assorbimento del LN di un ordine di grandezza;

•Due lavori sperimentali su guide in GaP in aria non hanno dato indicazioni sull'accordo di fase e sull'efficienza ottenuta;

•Un articolo recente su Opt. Expr. ha proposto la simulazione di una guida in AlGaAs ma con integrale di overlap molto basso;

•Esiste anche un brevetto con relativo JOSAB su una guida in silicio con cladding nonlineare che sfiora il ridicolo

Fattore di Merito e Scelta dei Cristalli

Spettri di assorbimento del cristallo nel THz e nell'ottico Indici efficaci dei modi Integrale di sovrapposizione Frequenza differenza generata al phase matching Coefficiente ottico non lineare del secondo ordine

Cristallo	Coefficiente non lineare d _{im} (pmV ⁻¹)
LiNbO ₃	$d_{33} = -34$ [32] $d_{33} = -27$ [23] [29]
CdTe	$\begin{array}{c} d_{36} = 109 \; [31] \\ d_{36} = 73 \; [31] \\ d_{36} = 71 \; [31] \\ d_{36} = 170 \; [31] / 167.6 \; [32] \\ d_{36} = 59 \; [31] \; [32] \end{array}$
InP	$\begin{array}{c} d_{36} = 143[32] \\ d_{36} = 263 \ [29] \\ d_{36} = 286.9 \ [31] \end{array}$
GaAs	$\begin{array}{c} d_{36} = 170 \ [31] \\ d_{36} = 209.5 \ [32] \\ d_{36} = 119 \ [31] \\ d_{36} = 134.1 \ [32] / 83 \ [29] \end{array}$
GaP	$\begin{array}{c} d_{36} = 65 \; [23] \; / \; 59.5 [32] \\ d_{36} = 53 \; [23] \; / \; 70.6 \; [32] \\ d_{36} = 218.4 \; [31] \end{array}$
CdGeAs ₂	$d_{36} = 280 \ [23] \ / \ 351 \ [32] \ / \ 282 \ [29]$
InSb	$d_{36} = 462 [23] / 560 [32]$
GaSb	d ₃₆ = 311[23] / 628 [32]
InAs	$\begin{array}{c} d_{36} = 364 \ [32] \\ d_{36} = 207 \ [23] / \ 249 \ [32] \end{array}$

Simulazioni

Analisi e Confronto dei Cristalli non-lineari

Progetto di una Sorgente THz in InP

Progetto di una Sorgente THz in InP

Efficienza energetica di conversione

Per ottimizzare posso: 1) aumentare la lunghezza d'onda di pompa (per es. CO₂ usato da Ding) o riutilizzare il segnale ottico amplificato come nuova pompa facendo una cascata di processi...

Banda di Emissione

FWHM = 41.2 GHz (4.12%)

 $B*L \approx cost$

Per avere una sorgente "monocromatica" è necessario usare sorgenti ottiche impulsate con impulsi dell'ordine dei 20 ns. Con impulsi più larghi solo una parte dei processi di DFG risulterebbe in accordo di fase, almeno di riuscire a creare una guida con una dispersione opportuna.

Conclusioni e Prospettive

•Problema dell'esatta conoscenza dei parametri dei materiali: assorbimento al THz e coefficiente nonlineare...

•Sarebbe utile trovare una soluzione in forma chiusa delle equazioni nonlineari con l'assorbimento...

•Confronto con i tecnologi per individuare i migliori materiali e le opportune tecnologie di fabbricazione

•Valutazione di altri materiali nonlineari (polimeri?), compreso il GaSe (che però è birifrangente...);

•Studio di configurazioni in cascata e ottimizzazione del budget energetico;