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Abstract
In the popular mind, at least, there is a growing opinion that computational skills are more properly mathematics
than reasoning and aesthetics can be, and that people can either “do” mathematics or they cannot. While
nobody would doubt the value of computational skills and processes, too srong an emphasis on this may
diminish the levels of interaction that students can have with the subject. Mathematical thinking also includes a
sense of the geometrical and dynamical, the aesthetics of space and relationships, and the logical skills of
reasoning and proving, and research shows that different people with different aptitudes may succeed in one
area but not another. A renewed focus on all the aspects of mathematics, and on the ways in which people
express their understanding, will assist inidentifying

» awareness of differencesin aptitudes between people

« different possibilitiesin terms of the packaging of mathematical ideas

» ways of integrating mathematical thinking into other parts of the curriculum, so thet the idea of
matheméatics becomes less frightening to those who do not believe they have srong
mathematical ills.

Introduction

During the 1990s most of my research has been focussed on the backgrounds and educationa

experiences of New Zedand sudents who ae gifted or highly taented mahematicaly.
Mathematically gifted and talented students are different from other students; but the difference lies
in their levels of competence, credtivity, laterd thinking, speed and task-focused concentration
rather than in the methods they use to learn and experiment in thinking mathematicaly. Because they
are adle to be much more aticulate in describing what they are doing and how the educationa

environment affects ther interest and performance, the things they say give us red clues for
understanding what it is that other students, less taented in mathematics, find to be ssumbling blocks
in the process of learning to think mathematicaly. Thus, dthough some of the observations | report
in this paper have been facilitated by the talent of the students interviewed, the conclusions can be
shown to have gpplication across the wider spectrum of students.

Different Abilitiesand Aptitudes

Research findings on gptitudes give a garting point for identifying ideas which will encourage laterd
thinking about ways in which mathematics can be presented in classooms. There are ample
indications in research and in anecdota evidence that there are red differences in peopl€ s thinking
dyles. It has been fashionable in some teacher circles to clam that each student’s thinking syle is
unique. Although there will be an dement of uniqueness in each sudent, just asthere is with DNA,
there do appear to be groupings which are identifiable. While some writers attempt to return
discussons on intelectua ability to the plane of the old nurture versus nature debate, the greater
body of research accepts that the genetic influence is important and that the options in the debate
have moved from amply ‘nurture or ‘nature’ to the option of finding waysto recognise and identify
the interconnectedness of nature and nurture. It isincreasingly recognised thet inginct and learning
should not be seen as dternatives when describing how the human mind, and the person, develops
(Marler, 1991; Eddman, 1994; Geman, 1993). Glotov (1989) described this in terms of the
genotype-environment interaction being a “third power”, which cannot be reduced to the formula
“genotype + environment”. Genetic and biologica make-up will influence how people relate to their
environment, and thelr environment will in turn strongly influence which aspects of thar innate
abilities develop and function appropriately. The gaining of confidence in the willingness to accept
the findings of such research has been prompted by the strength of medica research on the genetic
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factors involved in illness, and this has led to the redisation that the same factors will govern
wellness.

Various researchers working in the area of mathematical ability have used different descriptions
and andogies to identify differencesin thinking style and the ways in which these both affect and are
affected by each individud’s environment and practice.  Krutetskii (1976) identified three basic
types of thinking and named them as Harmonic, Andyticd and Geometric. Osborn (1983)
identified fundamentd differences in the nature of individuas mathematical ability, and noted that
“the methodology of teaching adopted by ateacher, influenced by his or her own profile, is liable to
favour an understanding of and communication to, pupils with smilar profiles, [and] work to the
disadvantage of pupils with strengths in other components.” Hermelin and O’ Connor (1985) noted
that “while non-spatid verba reasoning is related to verba 1Q, the ability to ded with verbdly
presented spatial problems is not solely so determined.” Sternberg (1986 and 1995) likened the
characterigtics of mental organisation which he found, to the principal eements in a governing
process, namely those of legidating, executing, and evauating. Bishop (1989) found that some
geometricd competencies, such as visud ability, have “a highly individua and persond nature’.
Gross (1993), undertaking research in a Smilar area to my own in Audrdia adso found specific
differences in aptitude and preference in gifted students.

My own way of identifying the intuitive preferences (Danid, 1995a; Danid and Holton, 1995;
Holton and Danidl, 1996) arose from redising that what was ‘proof’ to one was not necessarily
sdf-evident or easlly accessible to another, even among gifted students. Differences were dso
reflected in terms of such things as other interests, skills, memory and motivation. There was
evidence of congstency in basic differences of approach and little evidence that these differences
could be explained by variations in schooling or environment. Although | would not claim that each
student studied fitted precisely into one type or another, there was evidence that students could be
placed on a diding scale between any two types, especidly if the types where visudised as having a
circular relationship rather than alinear one. The points | would mark on the circumference of such
a crcular diagram are Spatid, Rationdisng, and Pictorid abilities representing, respectively, a
dominant gpproach which principaly uses reasoning and geometric sKills, pictorid and reasoning
kills, or geometric and pictorid. The correlation between skills and preferences were too strong not
to believe that there were biologica differences that had to do with hereditary factors, genetic
make-up, and the evolution of skills in a way tha was congstent with our understanding of long-
term environmenta adaptations. Thus | developed lists of characterigtics which could be identified
and tested, not only among mathematicaly gifted students, but also among other cohorts.

Soatial abilities group. Students grouped as Spatia had a high levd of ability to notice detall,
but to give succinct and logica answers as well, and to visudise in their heads. They talked about
interactions and relationships between shapes and patterns and ideas, and had an enthusiasm for
accuracy and for verbatim information. Some had a bent towards model-making of one sort or
another, for example the making of polyhedra, and were more likely to make models smply to
please the aesthetic and mathematica senses rather than the practical. They were among the most
direct in expressng their opinions, and the most adept a drawing a fina concluson from the
information supplied and then working backwards to discuss steps that had led to those conclusions
and implications that followed from them. There was a high ora component in the best expresson
of their work and they were not always the quickest, or the most motivated, to record their work in
written form. They could explain a greater variety of proofs, and could switch more easily from one
gpproach to another to suit the particular problem, but they did not find individual competitiveness,
for its own sake, a foolproof motivation for work. They had impressive recdl of the detail of the
physcad components of classsooms they had been in ther firs years & school. They were
particularly good at languages and computer programming, and were prolific readers in a wide
range of topics. They sddom stood out in terms of performing skills such as in athletics, drama,
music.
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Rationalising abilities group. The students who could be placed within the Rationalising group
philosophised less than those in the Spatial ability group and had more difficulty visudisng, or
clamed not to do it & dal. In mathematics, they liked to have opportunities to try new types of
problems and to be able to obtain some origindity in their solution, but they dso liked to have
practica reasons for the work and preferred being able to use the application of information
acquired for a purpose other than smply the pleasure of thinking, or of seeing the task completed.
They made modds of things that would work and be useful, and had skills in performance in such
things as musc. They did not have particularly good recal of the physica features of an early
classroom, but were more able to tell something of what had happened in school. Such students
were described by their peers and some teachers as extremey able and fast in their cdculations,
less likely than others to worry about the elegance of proofs, and more likely to look for the answer
than to be preoccupied with the method. They were described by teachers as not having been the
most unusud of the mathematicians that that teecher had taught, in that they were often content with
an agorithmic gpproach to mathematics, but they were recognised as having been the mogt able in
their classin terms of mathematics achievement.

Pictorial group. The students who were grouped as having Spatia or Rationalising abilities
were frequently described as having been noticeably good a mathematics as early as their first two
or three years a school, and some were described by their families as having exhibited quite
complex or advanced mathematica skills as pre-schoolers. This was not so with students grouped
as Pictorid. This group could often name an event that had triggered their interest in mathematics.
They were the only ones among those who described themsealves as visudisers, who described an
overview of their school rather than a description of detall. Like those in the Rationdiser group,
they were not sdf-conscious about performing in the arts and were more interested in things thet
had an gpplication than smply in an aesthetic appreciaion of what they did and saw. A noticegble
characterigic was that they did not think in their heads without externd stimuli. When solving
problems they tended to build the next step on the visud image of the last step taken, and to think
from apictoria image rather than a mentaly constructed one. One said he used to learn by “making
a clear picture of the shape of the object” but at university could not keep up with that so now
learned by rote. They were able to rise to the occasion in competitive Stuations, and were able to
let individua success mativate them when necessary.

Teds of ways in which sudents solved specific mathematical problems reinforced their
placement in these groups (Daniel, 1995h). This testing also showed patterns which grouped the
gudents in other mathematicd areas such as a connection between ability in arithmetic and in
geometry, differencesin the way in which they visudised, and differences in the way they devel oped
thoughts and ideas. Again, sudents in the Spatid ability group invariably did more visudising and
cdculating in their heads before committing a solution to paper, while sudents in the Pictoria group
needed to commit their thoughts to paper so that they could concretely look a the way in which
ther solution was progressng.  Although dl the dtudents initidly interviewved were able
mathemdicians, only one group, the Rationdising group, readily used dgebra as a pat of their
intuitive solution peth.

The probahility that different types of mathematical gptitudes are an outcome of different “hard-
wiring” of the brain, has quite radica implications for the teaching of mathematics, especidly a more
senior leves where the syllabus itself may be more suitable for one type than for another. Mot of
those with high mathematics ability tend to be multi-taented in the sense that they can see,
mathematically, what other types of thinkers are doing to reach the solutions they reach. But
students with less mathematica ability are less likely to be able to understand or learn through the
methods of another group, s0 teachers understanding of difference in gptitude is even more
important for them.

Differences in gptitude have implications for redisng why work thet is easy for one sudent is
difficult for another, for deciding on curriculum content and examination methods, for dlocating
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particular teachers to particular students, and for making assumptions that the same test mark in
relaion to one sudent will indicate a amilar level of overadl mathematicd ability in reation to
another. Add to this the fact that during the twentieth century, education has passed in many
countries from being the privilege of the few to the expectation of the many, and one sees the
enormity of the implications for making false assumptions about student progress. The sense of
expectation of what can be gained through education is not limited to the individud receiving an
education. Societies have an expectation that al citizen will become educated in the way's required,
will ddight in that, and will recognise that their right to employment might depend upon ther
acquiring a better and better education.

Underganding differences in gptitude may aso help teachers understand themsalves. One of the
problems for the teaching of mathematics, in New Zedand at lead, is the fact that too few teachers
of mathematics are competent mathematicians themselves. My samples of gifted students reported
alot of antagonism from teachers; interviews reveded that most of the friction between gifted and
talented students and their teachers semmed from differences of opinion on mathematical facts. In
each case that was able to be identified, it became clear that the student had known more about
mathematics than the teacher. Many teachers, especialy in primary schools, are aware that they do
not understand mathematics themsalves, and are fearful of showing this to sudents. Carr, Barker,
Bdl, Biddulph, Jones, Kirkwood, Pearson and Symington (1994) point out that teachers who are
insecure in their own knowledge often use transmissive teaching methods to avoid discusson which
might reved their uncertainty and thus ater power rdationships in ther classrooms. One of the
ways to drengthen the confidence of such teachers, is to encourage them to identify their own
gptitude so that they fed more persond freedom to carry out investigations without being sure of the
answer, to have the students work with them n developing mathematicad ideas, and to own the
respective aspects of mathematical thought or process with which they themsdves fed both more
and less comfortable.

It follows, of course, as Osborn (1983) observed, that teachers will present the same differences
as dudents. Unless teachers are aware of the nature of the differences and of their own subjectivity
in both understanding and vauing one approach or another, one solution path or another, or one
area preference or another, the possibility of their asssting students to use mathematical tools and
skillsis lowered. Recognition of different aptitudes releases us from the pressure of thinking thet dl
sudents, if they and their teachers try hard enough, will be able to grasp the concepts and learn the
skills of dl of the branches of mathematics. The chalenge for the new century will be to sort out
what we think students redlly need to know in terms of each identified gptitude, and recognise that
differences in the gpproach to thinking will affect the way each group

* relatesto branches of asubject area, both aesthetically and functionaly

 understands, sorts and uses information

* reasons from information

* retainsinformation for future use.

Creating realistic environmentsfor the development of mathematical thinking.
In this second section of the paper, | discuss some of the implications that understanding different
gptitudes has for enriching and endorsing classroom approaches.

() Almog dl the gifted and tdented students | have interviewed vaued taking about
mathematics, and believed that they had not had enough opportunities for discusson. The ord
component in the learning process is high, especidly in the Spatia group. There were indications
that some students, especially in the Fictorid group, needed to write things down in order to
remember them. Others, especiadly in the Spatia group, reported that they wrote things down so
that they could forget them. They made records in order to release the memory from the need to
remember! Y et increasing amounts of our classroom practice, our judgements of diligence, and our
assessments of sudents progress are based on the assumption that what students write in their
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exercise books and what they can reproduce in pen and paper assessment tasks, is the best they
can do.

In New Zedland, the 1960s and 1970s are often recognised as being the period of best teaching:
the teachers were of a post- Second World War age with the confidence to challenge the old and
andys wha they had not liked as students, yet they had not moved so quickly into the
technologica age that they had logt the idea of “chak and tak” methods of communicating.
Overhead projectors, photocopying, computers certainly have their place but they will not have
improved students education if their replacement of the chalk will mean aso the replacement of the
teacher-facilitated and student- orientated talk. In this technologica age we have begun, because it
has become s0 possble, to see the accumulation of vagt quantities of information as being of the
essence of a good education. The posshilities that now exist for passing on vast amounts of
information threatens to engulf the idea that education is about building up ideas, about developing
the thinking process rather than filling the mind with information for its own sake.

(2) Not al of the old techniques of classrooms need to be abandoned. For some people, oral
rote learning will endorse the patterns of number and give more lagting access to number and to
basic computationd skills. The extent to which patterning is endorsed, for some, by ord repetition
fits with the intuitive gptitudes identified by the different types andyss. For example, some of the
gifted and tdented students, especidly those in the Spatid group, were fascinated with counting
doud a an early age (Holton and Danid, 1996). It is more likely that their maturation rate was
different from that of average children than that their ability to learn by ord repetition and their
delight in the sound of words they could connect one with another, were different.

It is till important to recognise memory as one of the chief components in the thinking, reasoning,
gopreciating, understanding, learning, applying process. Developing memory, learning to encode
information in the memory, and practisng using things remembered in various Studtions is one of the
reasoning-focussed skills that mathematics can help build. 1t was clear from the answers given by
gifted and talented students to the question “What do you remember about the first classroom you
can remember?’ that recognising the nature of the difference of what was remembered by each type
of person is a key to understanding whet that person is likely to remember. While dl of us know
that memory is one of the most important factors in enabling learning, latera thinking, and application
of what is learned and thought, there is very little subgtantid understanding of the way in which the
brain encodes, stores, and utilitises memory or even of which parts of the brain are involved in this
(Carter, 1998).

(3) Some of the technologica developments that have been made in the last twenty years have
been beneficid to advancing an interest in mathematica skills. For example, computers have given
many gifted and taented students an opportunity to use their talent crestively, and other sudents of
the same aptitude group the capacity to work and experiment in three dimensions, a characterigtic
which makes learning particularly attractive to people with Spatia abilities and aptitudes. The nature
of these developments, and especiadly the options of graphic representation made possible by
computers, may aso lead us to a greater acceptance of varied methods of presenting mathematical
proof. Traditionaly we have required mathematical proof to be represented symbolically, but many
sudents would gain a grester sense of achievement, which might in turn lead to greater efforts on the
part of such students, if we accepted diagrams and verba explanations as proof, especidly at
Primary School and lower Secondary School levels. As Shin (1994) said in putting a case for
diagrams as proof, “In making inferences in ordinary life, human beings make use of information
conveyed in many different forms, not just symbolic form” (p 188).

(4) A hdpful educationa environment should offer the freedom to name what one can and
cannot do. In many subjects there are areas which gpped to one person but not another. In
languages, some people have a strong interest in literature but struggle to be thoroughly competent in
grammar. In art, some people find they are quite able to paint but have few skills in sculpture. In
higtory, chronology is vitd and important to some but of little interest to others, except as atoal to
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use but not to be remembered in detall. 1t ismy belief that in mathematics we have tended to make
too many different gpproachesinto essentid parts of the one package.

The research with gifted and taented students showed that even tiough they dl exceled at
mathematics, they were unlikely to be equaly strongly mativated in dl branches of the subject and
showed marked differencesin leves of cregtivity in specific areas, even when they were unaware of
this themsalves. For example, in interviews with peers of the members of one sample, | found that
the peers judgements of the aesthetic vaue of the sample students computer programming skills
corrdlated with the same evidence which led me to the types groupings that | have adopted.
Computer programming is based on the ability to work with agorithms, but even so not dl these
gifted and tdented matheméticians were able to programme equaly well: those with Spatid ability
haed an intuitive fed for developing solutions that were eegant, whereas those from the Rationdising
group were much more concerned smply with whether or not the solution performed the function
required a thetime. It isworth noting here, that those who had the strongest basic numerical skills
tended to be interested in shape and space relationships (that is, the areas which have substance in
geometry) rather than in the sort of reasoning that has led to the development of agebra.

Sorting mathemeatics into different packages so that there are some choices for dl students at an
earlier age than is presently the case, would aso dlow for greater credtivity in providing enrichment
for gifted and taented students without their being obvioudy removed from the classrooms of their
peers in age. In smdler countries like New Zedand, the opportunities for gifted and taented
sudentsis limited. In our research we found that these students were very conscious of wanting to
access more enrichment opportunities but not wanting to be removed, or frequently shown to be
ggnificantly different, from their peers. The grester the number of reasons there can be for
organising various groupings, then the more there will be opportunities for highly talented students to
be extended without feding socidly disadvantaged.

(5) The present heightened awareness of non-European mathemétics has given another incentive
to re-think what it isthat we wish to teach in mathematics. Our sharp focus on those methods which
developed in Euromathematics has tended to diminish our perception of the importance of gaining
aesthetic vdue from things mathematicd and of acquiring smply those skills which one actudly
needs. One of the factors which led to boredom among gifted and talented students in classrooms,
was a rigid conformity to the mathematics of the curriculum, without opportunities to move into
adjacent areas even during less formad discusson. Multiculturd research and studies have reminded
us that mathematics is to do with the visud and the rationd, with design and pattern-building aswell
as with computational methods; that people worldwide have developed and used methods and
patterns which met their practica and their aesthetic needs (Gerdes, 1999; Eglash, 1999).

The mathematical aspects that we have been reminded of through the research focus on
multicultural and ethnomathematics, will in fact play a large pat in the mathemeticd thinking and
needs that most of our school students will have during the period of ther adult employment. For
example, carpenters will reed skills in number and measurement, but in mathematics classrooms do
we remember that carpenters will do their tasks much better if they have aso been encouraged and
trained to look at the relationships between one shape and another, and adjust these in endless ways
until the most appropriate, rather than smply the most obvious, emerges? When mathematics is
defined more broadly than a concentration on Euromathematics has encouraged, then mathematica
ideas and influences that have become less familiar to us but have been long embedded in custom,
language and valuing systems, take on a status smilar to those ideas with which we are presently
more familiar in the mathematics classroom context.

(6) A factor which can influence the way in which the ‘ packages of mathematics can be broken
up in acurriculum is an understanding of the difference between the role of the practitioner and that
of the commentator or appreciator. One does not have to be able to plan and build in order to
appreciate the beauty and artistic value of what others build. One does not have to be able to
design and stitch in order to judge the fit and gppearance of agarment. Similarly, one does not have
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to be able to use al the processes of mathematics to be able to appreciate mathematica concepts
and outcomes. But the opportunity to have had one's ahility to think mathematicaly heightened by
classroom experiencesis a part of the process of developing the ability not just to “do” mathematics
but to think in away that has been influenced by the reasoning and proving aspects of mathematical
thinking. A friend of mine expressad it this way: “We have been taught to think that things can be
tidy. If only we learn our lessons properly dl our knowledge can be put in tidy parceds. Thereisa
presumption that if you give people the same information they will be adle to perform a the same
level. But nothing is tidy. People can agree on definitions but that does not make the outcome
definitive”

We cannot dways judge in advance the point a which a particular sudent should abandon the
thought of continuing in mathematical study, or the point a which shhe will reach sudden recognition
of the ways in which mathematics is interesting. When | first began research on gifted and taented
gudents, the university teachers of one sample were willing to offer predictions about who would
“go draight through to a Ph.D.” and who would be less likely to do so. Seven years later, none of
those predictions are true even though, in one way or another, each of the sudentsin that sampleis
using their mathematica skills cregtively. In terms of the predictions, most of those students could
be cdled academic falures, and yet when one knows what they are actualy doing, one would be
more indined to wonder whether or not the issue is that the academic system has falled itsdf. The
lesson for education isto judge its own validity by the ways in which people can use their thinking in
adulthood and employment, rather than by pen and paper assessment of students. | believe we
must be more ruthless in judging ddivery and assessment setting practices, rather than in pre-
empting the timing of decisons that a sudent has mathematical ability, or lacksit.

(7) A benefit that is possble when smdler ‘packages of mathematical thinking are constructed,
is the encouragement this gives to develop more of the mathematica skills in an interdisciplinary
way, and thus to see the benefits of being able to transfer skills and understanding from one subject
area to another. During the last Sx years a mgor research project, NEMP (Nationad Education
Monitoring Project), on the standards of achievement of Year 4 and Year 8 students (9 to 12 year
olds), has been being conducted in New Zedand. Some of the results show clearly that
mathematics is basic to achievement in non-mathematical areas. A report (Flockton and Crooks,
1997a) describing the results of a Socid Studies assessment exercise seemed to indicate that this
age group understood little about the way in which the New Zedand politica party system operated
in terms of achieving a mgority government after an eection. In fact, the assessment exercise
depended upon the students’ ability to understand and explain fractions, and when one turned to the
mathematics report of the same research project (Flockton and Crooks, 1997b), one redlised that
the thing both reports had in common was their examples of sudents inability to understand
fractions. There is no reason why fractions should be taught smply in mathemétics. In my view, it
may have been much more effective if it had been planned that fractions would be taught in the
Socia Studies periods of the school timetable, so that they were an aspect of understanding life
around one, rather than an aspect of number.

A perusal of mathematics text and puzzle books shows a tendency for most problems to be
associated with physical objects, but one of the things that was noticegble about many of the gifted
and talented students interviewed, was that they took the ability to analyse and belogicd, to explain
and reason into other areas of ther interests and used mathematical language to describe other ideas
and dtuations. Ther affinity with the idea of thinking mathematicaly meant that they made more
effort to see what the patterns were in non-mathematical conversations. An understanding of the
way in which the progressive deployment of reasonsis used in proof increases our skillsin thinking,
writing and conversng on any topic and helps make any sudent less susceptible to smpligtic or
dngle-idea ideologies. Strong connections with teachers of other subjects and the planning of
interdisciplinary curriculum units would help sustain the sort of flexibility in thinking and information
gathering that is required to achieve this sort of god in teaching.
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Relating mathematics and education.

One of the problems facing dl of those involved in classroom activities in the twenty-first century is
the assumption expressed frequently a present, that education is about teaching and learning.

Something far more fundamenta than teaching and learning needs to be going on in dl classrooms,
including mathematics classrooms, if the activity is to be described as red education. Education is
something that is more like “noticing, experimenting, learning, thinking, goplying, underdanding,
teaching, appreciating, knowing, using, ...” (Danidl, 1998). Mathematics is an important part of any
curriculum not smply because of the specific mathematics skills and processes that can be acquired
but dso because of the wider and more fundamentd skills of thinking and doing, independently, that
are being developed. A year 7 teacher | know has alarge sign high in her classroom which says“In
this classroom the children do the thinking.” She put it there because she redised that al of the
sudentsin her class came to school at age five, able to do things for themsalves and to think what to
do next, but in the Six years it took to reach her class, they had learned to wait to be told what to do
next. de Bono (1992) says, “my favourite modd for a thinker is that of the carpenter. Carpenters
do things. Carpenters make things.” (pp 65). He goes on to describe the way in which the frequent
thinking about and using of only afew basic operations, tools, structures, attitudes, principles and
habits leads carpenters to be able to make both smple and very complicated objects. With de
Bono's bdief in mind — that doing and thinking are the important things in education —itis easier to
see ways to accept that different students will make different connections with the subject not only
according to their leve of intelligence, but dso according to their ability and aptitude; and easier to
obtain a view of the ways in which doing mathematics asssts students to develop wider, less
speciaized skills and gppreciations even when it does not lead them to a place which enables them
to achievein higher mathemétics.
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