Exploratory Math Modules for Classroom Practice Through Manipulation

Medhat H. Rahim
Faculty of Education, Lakehead University, Thunder Bay, Ontario, Canada P7B 5E1
emal medhat.rahim@lakeheadu.ca Web Ste http:/Mmww.lakeheadu.cal~mrahimvwww/

Abstract

The mathematics education community finds itself in the midst of a peculiar time where a constant evolution of
mathematics curriculum is present. Within the recent reform efforts, and after about ten years of publishing and
atempting partial implementation of the NCTM Curriculum and Evaluation standards different calls of opposition
have emerged ranging from a call for "reform from within" to caling for areturn to "Back to Basics." In either case,
the main concern here is to find ways/approaches to develop curricula that are not too extensive and are within the
expertise of the K-12 teachers. |In this paper a series of modules, based on exploration and hands-on manipulation,
will be outlined. An exenplary module will be presented focusing on exploring basic spatial properties of 2D shapes
through shape-decomposites and shape-composites formations. In particular, interrelationships among shapes

(whole-to-whole), shapes and their parts (whole-to-part), and among the parts of shapes (part-to-part) will be the
focus of the module.

Introduction

Frequently students exhibit a variety of levels of geometric understanding. They display this
divergence of underganding in many different ways. Some dam todready know how to prove agiven
propogition; others may not even have a clear idea what a polygon is. Likewise, there are those who
are doubtful about under what conditions a paraldogram is a rectangle, whether or not a pardldogram
is atragpezoid, and 0 on. In the midd of this dassroom confuson, and in spite of the many written
documents addressing the issue, one may well ask why it dill peragts. Are some students Smply more
"mathematical" by nature, and others smply lacking mathematical understanding? Whatever an answver
might be, the main question remains. Isthere an effective way/gpproach thet is both straightforward and
uncomplicated to ded with this phenomenon?

Fiere Marie van Hide (1989) identified five leves of reasoning which students go through in
dedling with geometric concepts and figures. The van Hide research indicates that these leves
(identified as Leves of Thought Devdopment in Geometry) are not biologicaly achieved during a
person's maturation; they can only be achieved by indruction and should be learned in their proper
order: LevesO, 1, 2, 3, and 4. The progress through these levels seems different from that of Piaget
levels. As we know from psychology, the Piaget Levels of Cognitive Development occur naturaly and
progressvely during biologica maturation. A description of van Hidefive levels can be found in severd
NCTM publications such the Mathematics Teacher (see Shaughnessy & Burger, 1985, p. 419-28)
and the NCTM 1987 Year Book (see, M. Crowley, 1987, p. 1-16). A description of these levels may
be helpful. Levd O: dudentsidentify and operate on shapesin ther globd gppearances (halidtic); Levd
1. students recognize shapes by their properties (part-whole); Leve 2:  sudents recognize rdlaionships
among properties and shapes (part-part; and, whole-whole); Leve 3. sudents undergand the
deductive ressoning process, Levd 4: sudents can work in different axiomatic systems.

The NCTM's Sandards stated that the spatial sense isan intuitive fed for the individud
surroundings and the objects in them. To develop spatid sense, children mugt have many experiences
that focus on geometric relaions; the direction, orientation, and perspectives of objects in space; the
relative shepes and gzes of figures and objects;, and how change in shape rdlates to changein sze. In
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particular, the Standards Sate that when children investigate the result of combining two shapesto form
anew one, predict the effect of changing the number of the sdes of a shepe, draw a shape after it has
been rotated a quarter or a haf turn, or explore what hgppens when the dimengions of a shepe are
changed, they acquire degper understanding of shapes and their properties. These type of activities
promote spatial sense (1989, p. 49).

The purpose of this paper is to creste a piece of curriculum (a module) for the classroom
practice that would meet the NCTM's recommendations described above and to offer experiences
through exploring basic spatid properties of 2D shepes utilizing shepe-decomposites and shape-
composites formations.  In particular, interrdationships among shapes (whole-to-whole), shapes and
ther pats (whole-to-part), and among the parts of shapes (part-to-part) will be the focus of the
module.

Modules

The mathematics education community finds itsdf in the midst of a peculiar time where a
congant evolution of mathematics curriculum is present. Within the recent reform efforts and after about
ten years of publishing and attempting to partidly implement the NCTM Sandards different cdls of
opposition have emerged ranging from a cdl for "reform from within® (Bosse, 1998) to cdling for a
return to "Back to Bascs' (Mahematicaly Correct web dte, 1998). In ether case, the main concern
here is to find ways/approaches to develop curricula that are not overly extensve, and are within the
expertise of the K-12 teachers.

A module is a gpedific teaching-learning environment conssting of a sequence of patid hands:
on manipulaions usng shgpe decomposing and shape-compaosing operaions. The shape-decomposing
operation is based on the Theory of Dissection, for detals see Eves (1972). The shgpe- composng
opertion is basad on the badc trandformations or motions which are primarily trandation (dide),
rotetion (turn), reflection (flip), or any combination of them. The tranformations are described in
severa middle school contemporary text books such as Alexander, et d. (Mathquest 7, 1988); Ebos,
et d. (Math In Context 9, 1993); and Knill et d. (Mahpower 9, 1994). The combination of the two
operations, shape-decomposition and shgpe-compaosition, is the prime concept here. Mathemdtically
and in a Eudidean sense, this combination dlows us to extend the concept of congruence from rigid
shapes congruence (same intact shgpes) to congruence by pieces (different shapes) thus opening a
wider range of interesting possihilities. The writer has been continuoudy working on some of these
possbilities for about a decade and has found an gppreciaion at both the dassroom practices and
professond gatherings. For detalls see Rahim (1986); Rahim and Sawada (1986 & 1990); Rahim,
Sawada, and Strasser (1996) and Rahim and Olson (1998).

Severd Modules have been developed on this combined operation focusng on 2D shapes
covering triangles and quadrilaterals. Below is a detalled discusson of a module based on a square

shape region.
The SquareModule

. Congder the shagpe of asquare drawn on a plain sheet of paper.
. Cut off the square region.
. Choose the midpoint of one of itsSdes.

274



. Join the midpoint with one of the opposite vertices by aline ssgment.
. Decompose (dissect) the square aong the line ssgment and denctethetwo  resulting pieces
asland 2. The resulting shape-decompostion isillugrated in Fgure 1.

Dissecting ABCD leads to an inquiry of identifying the shape of eech of the resulting pieces, 1 and 2, as
well as ther properties (part-to-whole rlationships). Thisinquiry would creste an opportunity to raise
questions on the type of the triangle and the type of the trapezoid shown in Figure 1 (properties of

shapes).
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Figure 1

Progressinto the Module Through a Variety of Activities

Activity 1: Composing aRight Triangle Region
Pace the two pieces, 1 and 2, on the desk and compose the origind square region. Apply
as you wish, adide, turn, or flip, or a combination of them on piece 1, 2, or both so that,
without overlgpping the pieces, you would compose atriangular shgpe. Do nat lift any of
the pieces completdy off the desk.
A composed triangular shapeis shown in Fgure 2a.
Fgure 2a presents a Stuation focusng on basic aspects and properties of the motions and the shapes
involved - the origind square, the resulting shepes, 1 and 2, and the resulting composed shape.  For
example
. Judiify that the resulting shgpeisaright triangle.
Thiswould bring into classroom practice a Stuaion focuses on the required reasons for the points F, 1,
H and the points G, J, H to be callinear and that the compaosed triangle is a right angle (see Figure 24).
Such requirement, in turn, would lead to recal basc properties of the three motions. Below (Figure 2)
isahighlight of such properties

. Highlight the basic properties of the motions used.

0] The messures of the parts of a shape are invariant under each of the motions
- the shapeis preserved;
(ii) in generd,
1 under the motion of adide, the corresponding Sdes of a shgpe and its
imege are padld,;
2 under a 90 rotation, the corresponding Sides of a sgpe and itsimage
are perpendicular;
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3 under a180° rotation, the corresponding Sdes of a shape and itsimeage
aepadld,

4 under a270° rotation, the corresponding Sdes of a shape and itsimege
are perpendicular;
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{a)

{b)

{c)
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Fgure 2
5 under areflection, the line of reflection is the perpendicular bisector of thelinejaining

any point of a shgpe and its corresponding image;
(i) therdationships among the motions such as
1 two consecutive reflections about two pardld lines make adide and
2 two consecutive reflections about two perpendicular lines make a 180°
rotetion; and so on.

Thefdlowing isan exemplary judtification thet the resulting shape shown in FHgure 2ais aright triangle:
InFgure 23,
a180° turn of piece 1 to theright (clockwise) about the point E
--->  ABCD istransformed into the shape FGH;
FIH isadraght line  [hdf tumn];
GH isagraght line [DE=EC,<C=<D=90° & ahdf tum]
--->  theshgpe FGH isatriangle
--->  FGHisaright triangle [<G=90°].
Anather point for discusson would be to explore whether or not the areas of the square ABCD and the
triangle FGH are equd; and whether the perimeters of the two shapes are necessarily equd.

Activity 2. Composing a Parallelogram Region
Reassamble pieces 1 and 2 back into the origind square shape. In a Smilar way of
Activity 1, compose a pardldogram shgpe. Try to judify that the resulting shgpe is a
paraldogram.

A compodtion of a paraldogram shape is shown in Figure 2b.

A judtification that the resulting shape in Figure 2b is a quadrilaterd is required fird; then a
discusson of the conditions for a quadrilaterd to be a pardlelogram would be made amilar to that of
Activity 1. In each case throughout the above compostions there could be more than one way to arrive
to the desired compodtion. For example, in Figure 2b, garting with the square shagpe one may goply a
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dide downward on piece 1 or dterndively a dide upward on piece 2 and the desred composition
folows A combination of more than one mation is another possibility: for example, sarting with the
origind shape, make atriangular shape asin Activity 1 and then turn piece 1 to the right a half turn about
J.

The quedtion of the relaion between the area of the two shapes would be raised here,
Correctly recognizing the relationship between the two aress is based on the understanding that nothing
has been logt or added to the amount of the totd Sze of the origind shape by the shape- decompostion
and shgpe- compasition operations.

Activity 3: Composing a Trapezoid Region
Starting with the origind shape, use pieces 1 and 2 to compose a trgpezoid shape. Justify
that the result of your compaogition is atrgpezoid.

Figure 2c shows a possible composition.

A discusson andogous to that of Activity 1 can be made here focusng on the basic properties
that a quadrilaterd isatrgpezoid. Differences among the nemy composed shape and the pardlelogram
in Activity 2 would be highlighted. It is of most important to highlight to the students whether or not a
pardldogram is a trapezoid and vice varsa These ldtice type interrdaionships among the family of
quedrilaterds are often unclear to Sudents.

Inagmilar fashion, the rest of the activities may be introduced.

Activity 4. Composng a Quadrilateral without Paralld Sides
Sarting from the square shape, use pieces 1 and 2 to assemble a quadrilaterd withno
padld sdes

Figure 2d shows a compogtion.

Activity 5: Composing a Pentagon
Sating from the origind shepe assamble a five-9ded shape, a pentagon.  Show your

reasons why your shape is a pentagon.
Figure 2e represents a possible composition

Activity 6 Composing a Hexagon
Reassamble the origind shape; compose a shape of a hexagon.
Figure 2f shows a possible compaosition.

Activity 7. Composing a Heptagon
Reassamble the original shgpe; compose a shape of a heptagon.
FHgure 2g illugrates acomposition.

Activity 8 A Return Journey

In the above activities, the origind square shgpe was st up to be the garting point. In this
activity, one may choose, for a change, to continue from the newly composed figure onward. In a
sense, we would have a journey in the soace of polygons. But then we may get tired and think of
returning back home after dl; thus the journey would then have to be areturn one.

Throughout the fallowing seps, make a journd of your actions, and afull record of what you
would have usd.
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1 Usng the pieces 1 and 2, resssamble the square shgpe and then compose a right
triangular shape;

2 darting from the triangular shape, compose a pardleogram;

3 from the pardleogram, compose a trapezoid;

4 from the trgpezoid, compose a quadrilateral with no parald sdes

5 from the quedrilateral, compose afive-9ded figure - a pentagon;

6 from the pentagon , compose a six-Sded shape- ahexagon;

7 from the hexagon, compose a seven-sided shape - a heptagon, and findly;
8 assemble back the origind shape.

Figure 3 shows aresemblance of such ajourney.

Exercise 1l

Review the resuits of the above compogtions. Try to find out the maximum possble number of sdes
for a shgpe that you can assamble using pieces 1 and 2with no overlapping. Further, try to find an
dgebrac rule for the maximum number of sdes that a composad shepe can possbly have.

Exercise2

Throughout the following shgpe decomposition and shape-compostion, you may use horizontd,
verticd, or oblique dissection with no overlgpping and the areais preserved:

1. Stat with aright triangle piece of plain paper; try to decompose it into whatever pieces you wish
(try two piecesfirs) o that you would be able to compose arectangle.  In so doing, you may end up
with a square rather then a rectangle depending on the characterigtics of the right triangle you have; if
90, identify the spedific right triangle that will yidd asquare.

2. Stat with a pardleogram piece of plain paper; try to decomposeit into pieces so that they can be
composed into arectangle,

3. Dothesameasin (2) with aright angle trapezoid piece of paper.

4. Chdlenge do the same asin (2) with a non-right angle trapezoid piece of paper; (you may need to
decomposeit into 3 pieces).

5. Chdlenge try tofind away to transform any rectangle into an area equivaent square.

Conclusion

Mog children, even before they begin school, can recognize and name some Smple geometric
figures. In North America, and more likely dsawhere, in early grades the curriculum doesllittle to take
children beyond this levd because the inter-rdaedness of ample polygons is rady the focus of
classyoom practices. The problematic nature of modern school geometry has been identified earlier at
vaious school levels (see Piaget, 1962, Wirszup, 1976, and Mayberry 1983). The second
achievement results from the Third International Math and Science Study (TIMSS) rdeased on June 10,
1997 and earlier in 1996 were dso not encouraging.  This unfortunate Stugtion is due in part to the
scarcity of a recognized mathematica process avaladle to younggters for expressng inter-relatedness
among shapes. Therefore, this paper has intended to:

present a class of mathematica processes that are uncomplicated, within the domain of K

- 12 teechers expertise, and based on decomposing smple shapes into pats and
composing the partsinto new shape formations while kegping certain fundamentd attributes
of the figures intact, thus offering a process for developing spatid sense and understanding
of basic properties of 2D shapes through exploring their interrel ationships.
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& Jdourney among Folygons
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