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Abstract. Modern computer software can effectively improve mathematical education. In particular, it concerns
ordinary differential equations. Here advanced notions and methods are in use, time-consuming calculations are
necessary to get agraphical interpretation and numerical solutions. Both last aspects are specially important
when we can not obtain an exact, analytical formulafor the function satisfying given initial problem. In this case
adirection field can help in the justification whether anumerical solution is correct enough. A direction field is
also useful when we investigate the uniqueness of solutions. In paper at hand we present how the systems
DERIVE (from Soft Warehouse Inc.) and WinPlot (by Richard Parris) may be applied to problems mentioned
abovein the way which increases independent student activity.

Key words: computersin mathematical education, ordinary differential equations

1. Introduction

No doubt, snce Newton and Lebniz there is no higher mathematics and physics without
differential equations. They are badc in the formdized description of the universe [10]-[11].
Thus there is very important to dominate and deeply understand their nature, to fed the idea
behind the concept of differentiad equetion. A crucid point here is the notion of adirection
fidd. The importance of this concept is judtified not only by the fact that dmost every book
on differentid equations (eg. [5]-[7], [9], [14], [15], [16]) discusses it. The role of the
direction fidd is indigpensable if an ODE is not solvable andyticdly and numericad methods
(eg. the dasscd Runge-Kutta dgorithm) have to be goplied. Then, specidly in cases of ill-
posed problems, the coincidence between the numerica solution and dopes forming the
direction fidd is aproof to accept or rgect results numericaly caculated. Obvioudy, the hand
sketching of such afidd consumes alot of time, the asssance of computers is here very
effective.

We ded with any function f defined in an area D contained in the redl plane R equipped with
the rectangular co-ordinate syslem Oxy. We distinguish aset 03, of points in D. In most cases
they are nodes of regular rectangular net, so the index p is apar of two numbers, m and n,
sying how many different abscissas X and different ordinates yx build the set Dp. Then we
write Dy = Dmn = { (%, Y«): j=0..m, k=0..n}.

Firg, in Section 2, we give badc definitions. In Section 3 we report a sample lesson on
direction fidd for an ODE with one sngular mint. In the next section we investigate an ODE
with no sngulaities is invedtigated, here the aspect of the DF-examination of anumerica
solution is consdered. In Section 5 we ded with an ODE of the second degree. Otherwise
than in previous sections, where the computer algebra sysem DERIVE (from Soft Warehouse
Inc.; see egq. [4]) is applied, here we use the program WinPlot (by Richard Parris, see eg.
[13]). At last, we formulate conclusions underlining the advantages of CAl (computer assisted
ingruction) in the area of ODE.

2. Basic definitions
A direction field (DF) of adifferentid equation

(2.1) y =fxy)
(generated by the set Dy n, Named often a acanvas) isthe st
(22 { f04, Yi) 1 (%, ¥i) I Dmpn }.

A direction fidd may be (and usudly it is) interpreted geometricaly. To esch point
(%, Yk) T Dm,n wemay assign theanglea x such that
(2.3 tan(a; k) = f(x, k)
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and then we can draw alinear segment (caled a direction) doped with this angle. Every such
asgment indicates adirection adong which asolution y of the eguation y' =f(x,y) locdly
goes. In other words, every solution y to the eguation y' =f(x,y) fits to these directions.
Immediately from the form of conddered equation we see tha this fitting is of atangent
nature: alinear segment visudizing the direction lays on the tangent line to the curve y=y(x).
When enough number of linear segments is drawn (i.e. the net Dy IS dense enough), one can
often see trends in the solution curves. This dlows agrgphicd andyss of solutions
Moreover, one can plot a numerica solution to see doesiit fit the dopes forming a DF.

Let's say that in some redization a DF is cdled a dope field (no arrows are drawn) or avector
fiedd (arrows are on).
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Fig.1. Direction fidd of theequationy’ ={y + In(x)}/x- cos(x)
and graphs of fifteen particular solutions of this equation (Section 3)

3. Sample DERIVE lesson on direction field
Typica sudent’s exercise runs asfollows: a student assumes the generd solution
y = y(x.)
of an ODE, next (She gets the derivative y'(x,c) and subgtitute acondant ¢ diminated from
the general solution. This work completed, the student may produce graphs of the direction
fidd and particular solutions.
For instance, assuming
(3.2 y=cX- sn(x)
we derive
(3.2 c ={y +sn(x)}/x
and

(3.3 y =c- cos(xX) ={y+ sn(x)}/x- cos(x).
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That'swhy we ded with the equation

(34 y ={y+9n(x)}/x- cog(x).

Now we produce its direction field. At last we plot some particular solutions. It means we plot
graphs of functions obtained by fixing the value of the congtant c.

Operations which within DERIVE produce figures as Fig.1l and Fig.2 are described, eg. [8]
and [3].

All operations described above are eadly issued if there are handy highlight (sub)expression
dready displayed and we copy them (via hot keys F3 or F4) into the editing line.

It is didactically desired to plot afunction which does not solve the consdered ODE. Usualy,
just after producing the direction fied, ateacher says ,Let's plot apaticular solution, for
ingance with ¢=0". It means the students edit the expresson - SIN(X). ,,Look”, the teacher
says, ,how this function perfectly fits to directions’. And (9he may continue: ,Now let's
draw the graph with an other value of c, for example with c= 1. Hence we edit the expression
—1*x and we plot it". This intentiondly made misteke reveds tha the grgph of edited
expresson does not coincide with the directions. It makes the students remember and deeper
understand what the direction field and solution to an ODE are.

Notice that the direction field gppears that the resulted ODE (3.4) has the sngular point at
x=0. It does not happen, eg., when we ded with such equations as y' =y- an(x) + cos(x)
ad y =y+33 - X+ cosx) - sn(x) derived from the generd solution y = cexp(X) + Sn(X)
andy = oexp(x) + X + sin(x), respectively (comp. [2]).

4. Direction field examines a numerical solution
Let's consder the equation
y =(2x- AP .
Its direction field produced in the DERIVE by the gpproximation of the call
DIRECTION_FIELD((2x- 4)/y*2,x,0,5,0.5,y,- 3,16,0.5)
is reproduced in Fig.2. There are aso plotted three lines. They are produced by the
goproximetion of the calls
RK([(2x- 4)/y"2],[x,y].[0,1],h,5/h).
Both procedures, DIRECTION_FIELD and RK, are memorised in the unit ODE_APPR.MTH
digributed jointly to the CAS DERIVE. The procedure RK redises the classca fourth order
Runge-Kutta method and yidlds the sequence of vaues which (should) approximate the exact
solution of the initid problem. There are plotted graphs obtained when we run with the sep
sze h=0.01, 0.001 and 0.0005. Some results concerning these values of h, as wdl as that
corresponding to h=0.1and 0.0001, are listed in Table 1 (see [3] to compare the discussed
case to solutions provided via Heun method implemented in the program Euler). It reveds
that there is no correspondence between the step sze h and the qudity of numerica solution.
Agang a common feding, not dways the decrease in the sep sze h improves the output. In
considered case the results produced with h=0.001 and 0.0005 are completely erroneous (that
with h=0.001 keeps negative vaues, that with h=0.0005 jumps dragticaly around the point
x= 1), while that produced with bigger vaues of h (0.1 and 0.01) are fully acceptable. The
time consumed by them is essentidly shorter (some seconds againgt to 2 and 4 minutes used
when the work is with h= 0.001 and 0.005). Moreover, the RK-solution returned with
h=0.0001 (25 minutes) is not essentialy better than that produced in 1 and 10 seconds. We
do not discuss here the reasons to that strange (and rather extraordinary) behaviour. We put
our atention to the fact that the correctness of anumericd solution can be judified by the
examination how far the graph coincides with the direction field.
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Fig. 2. Direction fidd to the equation y’ = (2x- 4)/y?
and three solutions produced by the RK procedure (Section 4)

Table 1. Report on the work of the RK procedure

sep size | number vaue gpproximation

h of steps | at x=5 time (in seconds)”)
1] 0.1 50 2.45782 1
2| 0.01 500 2.49435 10
3| 0.001 5000 | -5.04599 113
4] 0.0005 10000 15.5230 246
5| 0.0001 50000 2.5192 1518

") onthe IBM PC 133 MHz

From the didactic point of view it is advised to plot in the graph of the function
u x® (3¢ -12x+1)**

which solves the considered initid problem: u' = (2x—4)/t?, u(0) =1. The coincidence of this
function to the directions (forming the direction fidd shown in Fg.2) is pefect. Naurdly,
this perfection is up to the accuracy of floa-point arithmetic and the pixel resolution. There
are jus two eements which have to be taken into account when we jugtify the coincidence
between a numerical solution and the direction field.
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Fig.3. Sopefidd for ODE {y’}? + y* = 1 and graphs of some solutions

(Section 5)
5. Investigating an ODE of thefirst order and second degree
Let us consder the equation [9]
(5.1) {yy?+y*=1

Here the derivative of the unknown function y agppears in the square, so we have an ODE of
second degree. A direction field is defined for equations of the form

y =f(xy),
30 we have to derive such rdations. In our case they smply are
(5.2) y'= 4/1- y2,
(53) y': - ,"1- y2 .
That's why we complete direction field of the equation (5.1) is composed of two fieds,
namely that defined by (5.2) and tha by (5.3). This interference appears in the crossing of
directions (in Fig.3 it looks like crosses). At points where these directions coincide (i.e. a
points having ordinates y=-1 or y=+1) any solution of the eguation (mm.2) may pass
smoothly into the solution of the eguaion (5.3). Obvioudy, this interlace takes place in the
opposite direction: from (5.3) to (5.2). Moreover, a every point laying on the line y=-1 or
y=+1 we can follow dong any of them. On these two lines the Lipschitz condition does not
hold, therdaionsy = - 1 and y = +1 are singular solutionsto (5.1).
Both equations (5.2) and (5.3) are andyticdly solved (by the separation of varigbles). Ther
solutions are defined on the whole red line and can be described by the one formula

y=d9n(x+ c).
Detailed description how to produce figures as Fig.3 can be found in [12] or [2].
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6. Conclusions

Differentid equations ae essentid (and, in the same time, one of the mog difficult) part of
higher mathematics and physcs. That's why dudents have to get asolid, well-grounded
knowledge on them. The nature of the subject makes that getting indructive examples is time-
consuming. In paticular, it concerns the notions of adirection fied, the uniqueness and the
acceptability of numerical solutions We ded with these problems occurring in ODE of the
first order and first or second degree. We treat them with the aid of computer programs (we
take use of DERIVE and WinPlot, but there are other ones which are gpplied, see eg. [6]).
This hdp is effective not only in the aspect of the time, it contributes essentialy to the deep
understanding what a direction fidd is, what asngular point, particular and sngular solutions
are, which phenomena may happen when anumericd method is used. An additiond
advantage is than asudent can individudly explore the area, eg. find sngularities, exposure
the unsuitability of applied methods (or abad choice in the values of their parameters). After
examining many cases (he may even underteke trids to formulate genera conclusons. It
intendfies amahemaicd activity, wha is the one of the mog important ams in
mathematical training [1].
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