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1. Introduction

In the recent years, problem solving has become one of the most important activities of school
mathematics, the main reason probably being that it ” places the student in the role of actor in the
congtruction of his’her own knowledge’ (Grugnetti, Jaquet, 1996). There has been a consderable
body of research concerning its use in teaching mathemétics (see e.g. Frank, Lester, 1994), the one
whichis particularly close to our gpproach is Y usof, Tall (1999) which explores the impact of this
technique at the university level.

In our contribution, we will present one context, which we cdl restricted arithmetic, whichiis,
in our opinion, suitable for problem solving both & the university and secondary levels. Fird, a series
of taskg/problems will be presented and then the context of restricted arithmetic will be explored as
to its value both for problem solving activities and for facilitating the trandtion from dementary to
abstract mathematics. This trangition can be characterised as adidactic reversal (Gray et d., 1999),
i. e "congructing amenta object from ‘known’ properties, instead of congtructing propertiesfrom
‘known’ objects’, which ” causes new kinds of cognitive difficulty” and has been given consderable
attention in the present research in mathematics education.

2. Regtricted Arithmetic?

Next, we will introduce so cdled redtricted arithmetic which is, in fact, an andogy with ” ordinary”
arithmetic (e.g. the arithmetic of integers) into which the operations of addition and multiplication are
transferred from ordinary arithmetic via the operation of reduction.

A non-standard arithmetic structure A,=(A,,A ,A) condists of the set A,={1,2,...,99} of 99
natural numbers (which we call z-numbers’) and two binary operations z-addition A and
z-multiplication A defined asfollows: " X, y : A, xAy=r(x+y) and xAy=r(xy) where
r: N->N wecdl reducing mapping.

The reducing mapping can be smply presented on the set of dl three digit numbers ABC and
four digit numbers ABCD as r(100A+10B+C)=r(A+(10B+C)),
r(1000A+100B+10C+D)=r((10A+B)+(10C+D)). For example 73A 69=r(142)=1+42=43,
81A90=r(r(7290))=r(72+90)=r(162)=1+62=63.

Students are first introduced to the operation of reduction, z-addition and
z-multiplication as shown above. Then they are asked to solve some tasks. Some of them will be
presented here and when appropriate, we will comment on them. The tasks were only divided into
sections for the purpose of this paper.

Note: Not dl problems are solved by each sudent. Many tasks can be formulated in various
different ways (as shown below) and students are asked that question which, at the moment, serves
best his’her needs. The way of a student’s work and hishher choice of tasks vary according to hisher
preference and level of knowledge. For example, a student who has aready discovered the additive
identity eement will choose different tasks and use different solving strategies than a sudent without
this knowledge.

It is obvious that thisway of presenting problems puts teachers under a different type of
pressure than traditiona teaching. They are facilitators, rather than ingtructors. They have to monitor
each individua’ s progress, monitor class discussons, react to sudents' different
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hypotheses, be careful not to disclose new knowledge to students prematurely, etc. It isin full
correspondence with the principles of congtructivism (see eg. Noddings, 1990, Rice, 1992).

3. Tasks

3.1 Reduction

- Solve the following tasks until you fed comfortable with reduction: r(134), r(605), r(2731),
r(1481), r(4605), r(1481), r(7777), r(100), r(1020),....

- By reducing which numbers do we get number 6 (18, 34, 99)?

- Find agraphic representation of numbersin A,.

A graphic representation, both on a circle and a number line, could lead to the discovery of
the additive identity element and/or additive inverses (" negative numbers’ on a number line).
3.2  Addition and multiplication

- Solve the following tasks until you fed comfortable with the operations: 6A 60, 38A 25, 68A 97,
99A 35, 73A49, 35A99, 25A 38, 54246, 6A9, 4A48, 2A 23, 33A5, 13A6, 99A 18, 21A 12,
59A 10, 85A99.

- Write aword problem for one of the previous caculations.

Tasks contain number 99 (i.e. the additive identity dement) in different roles.

3.3  Additive and multiplicative linear equations

- Solve the following linear equations: xA 17=99, xA61=4, xA6=92, 25Ax=36, 99Ax=13,
66Ax=66, 2Ax=40, 2Ax=1, 2Ax=99, 3Ax=30, 3Ax=1, 3Ax=99, 3Ax=45, 14Ax=91,
13Ax=45, 6Ax=3, 93Ax=3, 50A x=5, 6Ax=45, 3AxA 2=83, 5AxA 10=5.

- Let a, b, ¢ begiven z-numbers. Solve the following parametric equations. aAx=1, aAx=33,
aAx=99, aAx=c, xAb=c, aAxAb=c.

- Classfy additive and multiplicative linear equations according to the number of solutions.

1. Tasks contain number 99 in different roles.

2. Linear equations represent, in fact, the core of the initial work in A,. During their solutions,
the need to discover and/or define the concepts of identity elements, inverses, zero divisors,
the operations of subtraction, division, etc. arises.

3. Thelast two tasks should lead to the classification of linear equations with respect to the
number of solutions which israther interesting and different from the classification in
ordinary arithmetic.

34  Additiveidentity element

Students should be able to identify additive and multiplicative identity elements, whilst solving
tasksin 3.1, 3.2 and mainly 3.3 without the need of any explicit question. But if they do not do
S0, they can be asked one of the following questions.

- Isthere any number in A, with Smilar properties as 0 in the domain of integers?

- Solve quickly the following problems: 17A 99A 254 13, 28A19A80A 99, 23A31A 11A88,
33A66A22A 24

- Find as many ways as possible for expressng number 99 as the product of two z-numbers.

3.5 Some properties (commutative, associative, distributive laws)

- Find ot if it holds for dl z-numbersa, b, aAb=bAa. If so, prove.

- Smilaly, aAb= bAa; for dl znumbersa, b, ¢, aA(bAc)= (aAb)Ac; aA(bAc)= (aAb)Ac;
aA (bAc)= aAbAaAc.

Students do not often feel the need to verify these properties, they transfer them as obvious
from ordinary arithmetic. Some of them do so later, when they encounter something which
they initially believed to be true in A, but which was, in fact, false. Otherwise, a teacher
should cast doubt on their validity.



3.6  Other operations

See the note for 3.4.

- Define the operation of subtraction in A,.

- Find additive inverses of z-numbers.

- Check the divighility rulesfor numbers 2, 3,4, 5, 6, 7, 8, 9, 10, 33, 99, €c. in A,.

- Find multiplicative inverses of z-numbers,

- Define the operation of divisonin A,.

Numbers which are zero divisors contrast with the other z-numbers (as in the classification of
linear equations).

3.7 Zero divisors

— For which z-numbers does the equation aAx=m have more solutions? What are the properties of
such numbers?

- For which znumbers: aAb=aA c iff b=c?

For most students, thisistheir first encounter of zero divisors, i.e. a concept which is missing
in ordinary arithmetic. Our experience shows that students are intrigued by it and want to
explore its properties.

3.8 Odd and even numbers

- Define odd and even z-numbers.

- Determine some propositions concerning odd and even integers and verify them for

z-numbers.

- Define z- primes and the decomposition of z-numbersinto the product of z-primes.

3.9 Squares, squar e roots, quadr atic equations

- Aind dl z-squares, i.e. dl z-numbers of the form x?, where x is az-number.

- Draw adiagram of al z-squares and the appropriate square roots. Are there any patterns?

- How should the z-number a be given so that the quadratic equation x*=a had (i) only one solution,
(i) two solutions, (iii) three solutionsin A;? Is there any other possibility?

- Solve the following equationsin Ay: x?A2AxA 1=99, x°A 98AxA93=99, ..., x*AaAxAb=99,
3Ax°AaAxAb=99, 11Ax*AaA xAb=99, aAx*AbAxA c=99.

- Find out if Vieta sroot theorem holdsin restricted arithmetic.

The investigation of squares and square roots leads to very interesting results (particularly
when a diagram is drawn). The theory of quadratic equationsisin restricted arithmetic much
more complicated than in ordinary arithmetic. Some notions are the same (e.g. the number of
roots of quadratic equations depends on the discriminant), others are different (e.g. the
classification of quadratic equations as to the number of solutions).

3.10 Sequences, powers

- Find out what the sequence of z-numbers 2°, 2%, 2%, 23, ... looks like. Find out the 101st dement of
the sequence.

- In the previous task, we found out that 2'°=34. However, there is no z-number 100. Isthere a
mistake?

- Doesit hold that 2°A2%=2"?

- Doesit hold for dl znumbers athat a°=1?

- Invedtigate the sequence of z-numbersr?, n*, ré, ... for (i) n=1, (i) n=10, (iii) n=4,

(iv) n=25, (v) n=3.

Power s of z-numbers form another rich theme within restricted arithmetic. It is easy to start
exploring (to calculate powers of different z-numbers, distinguish them according to the
length of the period, etc.) and investigations can lead up to the concept of group, subgroup,
Lagrange’ s theorem, cyclic group, Euler’s theorem, etc.



3.11 Other tasks
Fibonacci’ s sequence, Pascd triangle, factorid, arithmetic and geometric sequences, algebraic
sructures (groups, subgroups, dgebraic structures with two operations), €tc.
Restricted arithmetic presents students with more and more tasks/problems and besides, they
can also pose their own problem on the basis of their knowledge of work within the domain of
integers.
4. Restricted arithmetic as a problem solving context and/or a bridge between elementary
and abstract mathematics
Let us summarise main features of redtricted arithmetic.
Students pursue mathematica explorations.
Some new ideas are involved which cannot easily be assimilated into the learner's existing
knowledge. New cognitive structures must be constructed.
Students experience congtructive doubt and conflict regarding mathemetica issues (contradictory
results, results that did not make sense, solutions which contrasted with what they had initidly
expected) (Borasi, 1994).
Students are forced to analyse in detail those activities which they have congdered obvious and
automatic so far (eg. solving linear equations, basic operations) to see how they can be
transferred (or if they have to be modified) to A,.
Redtricted arithmetic creetes alearning environment in which students themselves formulate the
problems and questions they want to study. It isa source of avariety of different tasks at
different levels of difficuity.
Redtricted arithmetic is not a ready-made product (as mathematics is very often introduced to
sudents), it is an open context which students must explore for themselves. The teacher
him/herself does not often know if a hypothesis formulated by studentsis valid* and hasto ”
tackle a problem in front of the class to show that even mathematicians do not produce neat
solutions at first. This encouraged students to fed less reluctant to meke conjectures which might
prove to be wrong on the possible route to success’ (Yusof, Tal, 1999).
The variety of tasksin A, provides an opportunity for the individuaisation of learning
mathematics. Sower learners can choose as many different tasks onthe samelevd of difficulty
as they need, while more able students can proceed to more difficult problems and both groups
reach a sense of achievement.
The structure of A, can be expanded easily. We have tried to use the structure of A;, which
contains only 9 numbers 1, 2, ..., 9, the operation of reduction is defined as the sum of digits and
the operation of addition and multiplication asin A,. On the other hand, students themsalves
suggested the use of the structure of Ag, in which, by anaogy, the reduction is defined as the sum
of three ciphers at arow.
New concepts are introduced and defined (preferably by students themsalves) when they are
needed (e.g. when solving additive linear equations they need subtraction which has not been
introduced to them yet and for subtraction they need inverses). Thus, the concepts are not
introduced formally and are seen in their mutual relationships and in a context different from
ordinary arithmetic. The traditiona gpproach to university algebra, (at least in our country) is
based on awell known sequence: primitive notion, axiom, definition, theorem, proof, illustration.
Our experiences show that this often resultsin forma understanding of concepts (with little
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knowledge of how to apply them). We believe that a number of fragmented examples as used
traditionally leads to the loss of connections among conceptsin the students mental structure,
Redtricted arithmetic is a context from which any semantics has been removed (and thusiit gets
nearer to absiract mathematics). Numbersin A, can no longer be understood semantically as
quantities, but rather structurdly as objects which can only be manipulated according to given
rules. As students can use their experience with ordinary arithmetic of integers when exploring
A,, it can serve as a bridge between eementary mathematics of counting and manipulation and
abstract mathematics of definitions and proofs.
Students tend to rely on their images from number theory when studying and applying group
theory (see aso Hazzan, 1999). Thus, they see number 0 as a universal modd of the additive
identity eement (the neutrd dement is understood in a semantic way (i.e. nothing) rather thanin a
Sructura way), or negative numbers as universal models of additive inverses. These associations
do not hold in A, and our experiments have shown that A, is an gppropriate context for
corrupting thiswiddy spread wrong image (it serves as akind of a counterexample).
The advantage of A, over modular arithmetic (modulo 99 in our case) liesin that (1) A, cannot
be found in any textbook (as far as we know) and students must only rely on their experience
with ordinary arithmetic, (2) no preiminary theory is needed before working in A,. Note:
Students usualy cannot see the connection between A, and arithmetic modulo 99,
notwithstanding the fact if they had aready been introduced to modular arithmetic (thanksto the
way the operation of reduction isintroduced). It is our experience that because they think that
they discover something redlly new which cannot be found in textbooks, they fed strongly
motivated.
Last but not least, the important result of work in A; is that sudents often fed motivated to study
abgtract agebraic structures (which can help them in exploring A,).
5. Conclusion
Problem solving is particularly important for prospective mathematics teachers (with whom our
experiments have been done) for severd reasons, one of the main being the fact that when solving
problems, they get plenty of opportunities to make conjectures, pose and prove or disprove their
hypotheses, to communicate with their colleagues, they experience difficulties smilar to those met by
sudents in the class, they learn the importance of evaluating the process instead of the result, etc.
(see dso Boero, Dapueto, Parenti, 1996).
Redtricted arithmetic has proved to be arich context for mathematical explorations. It
remains to be investigated in more detail what its other merits as to the development of mathematicd
knowledge and abilities are.
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