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Conceptual keys

Contemporary “algebra” is an aggregate of practices, problem types and approaches that

have only come to belong together through a historical process. In order to describe the early

history of algebra we therefore have to make clear which of these practices etc. we discuss.

Elementary algebra today is the practice of solving equations “analytically”, and this is

the aspect of algebraic thought that is most conspicuous in most mathematical cultures until

the outgoing sixteenth century.

An “equation” is the statement that some complex quantity (e.g., the area A of a square)

defined in terms of one or more simple quantities (the side s), or the measure of this complex

quantity, equals a certain number or (the measure of) another quantity. “Analysis”, as

formulated by Viète, is “the assumption of what is searched for as if it were given, and then

from the consequences of this to arrive at the truly given” (to assume that s exists, whence

s×s=A, s=√A).

Since Viète, equations are written in symbols. This was not always the case. It is customary

to distinguish (a) “rhetorical” algebra, in which everything is set out in full words; (b)

“syncopated” algebra, in which standardized abbreviations or signs are used, but the

stenographic expression still represents language; (c) “symbolic algebra”, in which the expression

has proper value, and operations are performed directly on this level – as when = 2 is1

1–x

multiplied by 1–x in order to yield 1 = 2 (1–x).

In particular with the advent of symbolization, equations can be trained as dealing with

abstract number. In all applied equation algebra, however, the abstract numbers intended by

the symbols represent other kinds of magnitudes – prices, velocities, population densities, etc.
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Beyond being a technique for solving equations, algebra is also a theoretical discipline,

dealing with the classification of equations, the principles used to solve them, the existence

of and relations between solutions, etc. Such concerns are less frequent in pre-Modern times.

Finally, contemporary algebra encompasses group theory and its kin, which (inter alia) grew

out of methods developed in traditional theoretical algebra, but which has left the concern

with equations behind.

Antiquity

Egyptian texts from the early second millennium BCE present us with two basic elements

of algebraic thought: a representation in terms of an abstract quantity or “heap”; and the use

of a “false position” in an analytical argument, exemplified by the following problem with

solution (in paraphrase):

A heap with its fourth part added produces 15. Assume for convenience that it is 4. Adding

its fourth part gives 5. Since we should have 15/5 = 3 times as much, the quantity must

instead by 3 4 = 12.

Arguments by false position were also used to solve homogeneous problems of the second

degree.

Much more is offered by cuneiform texts from the Old Babylonian period (c. 2000–1600

BCE, mathematical texts c. 1800–1600).

Firstly, the false position was widely used in first degree problems (as elsewhere until

recent centuries). Secondly, a functionally abstract representation

by means of measurable segments (“length”, “width”, “square

side”) and rectangular areas served to treat first- and second-

degree problems about quantities of many kinds.

Second-degree problems were solved by means of “naive”

cut-and-paste procedures. An example finds two numbers (say,

p and q) whose product is 60 and whose difference is 7. The

numbers are represented by the length and width of a rectangle

with area 60 (see the figure). The excess of length over width is

bisected and the outer half moved so as to contain together with

the inner half a square 3½×3½; adding this small square produces

a large square of area 72¼ and thus side 8½. Restoration of the

piece that was moved shows that the width of the rectangle must

be 5 and its length 12. The procedure is “naive” in the sense that

no effort is made to prove that the procedure is correct – this is
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“seen” immediately.

This problem corresponds to our system x–y = a, xy = b; the same geometric procedure

was used to solve problems about square areas and sides corresponding to z2+m z = d and

z2–n z = e, and a similar one for the geometric analogues of the system x+y = a, xy = f and

of the equation p z–z2 = g. In non-normalized cases corresponding to the equation r z2+s z =

h, a change of scale in one dimension was applied, corresponding to the transformation into

(rz)2+s (rz) = rh. When linear conditions corresponding to a x+b y = c are discussed, explicit

terms for coefficients and contributions of the members may turn up. We also encounter two-

step procedures corresponding to the change of variable x’ = ax+b.

When areas or volumes were represented by segments, biquadratic and certain other higher-

degree problems could be formulated and solved. Irreducible third-degree problems were

attacked by means of a variant of the false position combined with factorization – which

presupposed that an easily factorizable solution was known to exist (all algebraic problems

were scribe school problems constructed backwards from the solution, no single problem above

the first degree had any practical use).

The description of problems and procedures often employed words signs heavily. It has

been claimed that these functioned as algebraic symbols, but since interpretation of the word

signs depends on the total text, this cannot be the case (non-mathematical genres, indeed, used

word signs just as much). However, certain standard phrases allowed the “nesting” of

expressions, achieving part of what modern symbolism does by means of parentheses.

The original inspiration for this naive-geometric algebra appears to have come from lay

practical geometers (surveyors etc.), among whom a small stock of geometric riddles circulated

already in the late third millennium, remaining alive until the late Middle Ages: To find one

side of a rectangle from the area and the other side; the sides from the area and their sum or

difference; the side of a square from the sum of the area and one or all four sides, or their

difference; the sides of two squares from the sum of or difference between the areas, and the

sum of or difference between the sides; and a few more. Here, the same analytic naive-geometric

procedures were used; but no coefficients beyond those appearing “naturally” appear, nor did

the technique serve for representation. In this original context, the technique is thus not to be

characterized as “algebraic”.

The Old Babylonian social system collapsed around 1600 BCE, and the scribe school

disappeared together with advanced algebra. The surveyors’ tradition survived, however, and

inspired a revival of school algebra in Babylonia after 500 BCE; in the Hellenistic age, its stock

of riddles swelled, as can be seen in unmistakeable borrowings in Demotic, Indian and Greek
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practitioners’ mathematics. More important, however, was its influence in Greek theoretical

mathematics.

Elements II.5–6 correspond to the algebraic identity = . Similarly, propositions( x–y

2
)2 xy ( x y

2
)2

1–3 correspond to p (q+r+...+t) = pq+pr+...+pt, 4 to (x+y)2 = x2+y2+2xy , 7 to(x y)2 x 2 y 2 2xy

x2+y2 = 2xy+(x–y)2, 8 to 4 = x2–y2, 9 and 10 to x2+y2 = 2 ( ). Propositions 5x y

2

x–y

2
[ x y

2
]2 [ x–y

2
]2

and 6, moreover, allow finding the sides of a rectangle from the area and, respectively, the

sum of or difference between the sides, 8 allows finding the sides of two squares from the

difference between their areas and the sum or difference between the sides, 9 and 10 allow

finding them from the sum of the areas and the difference between or sum of the sides.

Such implications of the theorems have been noticed since the Middle Ages. In the 1880s

they were summed up by H. G. Zeuthen in the claim that the propositions constituted a

geometric algebra, and the discovery around 1930 of Babylonian algebra (then interpreted as

a numerical, not a geometrical technique) gave rise to O. Neugebauer’s further assumption

that they represented a translation of Babylonian results into geometric language. The discovery

of the geometric nature of the Babylonian technique and of the continuity of the surveyors’

tradition allows a reformulation of this thesis: Elements II.1–10 constitute a theoretical

investigation of the basis of the age-old technique, of the conditions under which the procedures

are justified, and of the identities which underlie the solutions – the diagram on which II.6

is based is indeed identical with the one shown about, with the only difference that Euclid

does not move areas around but constructs them and demonstrates their equality.

The presence of the surveyors’ tradition in the Greek orbit is confirmed by the appearance

of some of its riddles in characteristic phrasing in several manuscripts belonging to the pseudo-

Heronian corpus (put together in modern times as Geometrica).

The same manuscripts contain problems related in structure to the traditional riddles (to

find a right triangle whose perimeter equals its area) but indeterminate and meant to be solved

in integer numbers, seemingly via factorization and use of identities corresponding to Elements

II.

Indeterminate algebra searching for rational solutions constitutes the main body of

Diophantus’s Arithmetic (only book I, consisting of pure-number translations of the surveyors’

and other traditional mathematical riddles, is in part determinate). The beginnings are simple

(e.g., II.8, to split a square number into the sum of two square numbers), but soon matters

become intricate (e.g., V.18, to find three numbers whose sum is a square, so that each added

to the cube of their sum is also a square). The formulation is syncopated, making use of specific

abbreviations for the unknown and its powers, for subtraction (the sum is made by juxtaposi-

tion) and for the square root. Mathematicians of later ages have complained that the procedures

are opaque and do not reveal the underlying basic ideas.
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Diophantus explains that his abbreviations belong to an established tradition within

“theoretical arithmetic”, which is confirmed by papyrological evidence. Passages in Plato’s

writings suggest that this tradition goes back to the fifth century BCE and was carried by an

environment of practical calculators (but no evidence points toward a level much above

Diophantus’s book I combined with certain cubic problems).

The Indian Śulbasūtra’s from the mid-first millennium BCE, containing rules for altar

constructions fulfilling sophisticated mathematical conditions, contain solutions to non-

homogeneous metro-geometric problems of the second degree; whether the solutions were

found by any kind of algebraic argument is not clear, however. A few centuries later, on the

other hand, it is likely that members of the Jaina community solved linear, quadratic and

reducible higher-degree equations (the original texts are lost, but agreements between subjects

cultivated in Jaina environments in late pre-Christian times and the contents of Mahāvı̄ra’s

ninth-century Ganita-sāra-saṅgraha corroborate the assumption). Other evidence for early Indian

algebra are a manuscript from Bakhshālı̄, probably a copy (with commentary) of a late ancient

original, and the Āryabhatı̄ya (499). Taken together, these sources show that the Near Eastern

surveyors’ tradition had reached India, both in the early and the Seleucid variant (Mahāvı̄ra

distinguishes); that intricate second-degree problems were solved currently, but in versions

that seem independent of the surveyors’ riddles (they mostly deal with magnitudes and their

square roots, not with magnitudes and their squares or products); that equations could be

organized in schemes (combined with abbreviations) in which operations were made

algorithmically, meaning that a transition to symbolic algebra (though very different from ours,

and not allowing nesting whence less productive) had taken place; and that astronomers, for

purposes of correlating planetary movements with each other, treated indeterminate linear

equations.

Even the Chinese first-century CE Nine Chapters on Arithmetic betray some familiarity with

the Near Eastern metro-geometric algebraic tradition, whose impact however was modest. Fully

autochthonous is the creation of a technique (quite similar to our matrix manipulations, and

thus another transition to symbolic algebra) for reducing systems of several linear equations

(widely circulating riddles, which Diophantus was to treat with different techniques in

Arithmetica I).
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Algebras of the mature Middle Ages

The first surviving presentation of the technique from which our algebra developed and

took its name is al-Khwārizmı̄’s early ninth-century Kitāb fi’l-jabr wa’l-muqābalah, “Book on

restoration and opposition” – according to al-Khwārizmı̄’s preface a brief introduction to an

existing art. In the wake of al-Khwārizmı̄’s work, “restoration” came to designate the addition

of a subtracted member on both sides of an equation, and “opposition” subtraction on both

sides; originally, “restoration” appears also to have encompassed multiplicative completion,

and “opposition” to have designated the formation of an equation or of its reduced form).

Pre-al-Khwārizmı̄an al-jabr consisted of two components, which may not have common

origin. The core of al-jabr proper were fixed rules allowing the solution of equations dealing

with a (monetary) possession (māl, becoming census in Latin), its square root (jidhr, becoming

radix) and a number of dirhams (a coin); negative numbers not being considered, three rules

were needed for the simple cases with two members and three for the “mixed” cases. The style

(the square root of property) and certain linguistic clues suggest a connection to Indian algebra,

most likely through a common ancestor. In al-jabr, however, these monetary riddles had become

a general representation for second-degree problems.

The al-jabr rules went together with a technique for rhetorical transformation of equations,

in which the unknown magnitude was spoken of as “a thing” (Arabic šay , Latin res, Italian

cosa), functioning like our x. Leonardo Fibonacci speaks of the technique as regula recta (referring

to its analytical nature), and treats it independently of al-jabr and with examples that suggest

a link to elementary Greek “calculators’ algebra”.

What made al-Khwārizmı̄’s work pivotal was his introduction of (geometric) proofs for

the al-jabr rules. The aim was no doubt to present the discipline in agreement with the already

familiar Greek norms; the proofs themselves, however, were cut-and-paste proofs borrowed

from the surveyors’ tradition, only slightly adapted to Greek style.

This may have been a pedagogical advantage, but was deemed unsatisfactory by the slightly

younger Thābit ibn Qurrah, major translator of Greek texts and a prominent mathematician

on his own account. In a small treatise he supplied new proofs for the rules based on Elements

II.5–6 without even mentioning his predecessor.

The following major Arabic algebraist was Abū Kāmil (c. 850 – c. 930). He glued the

reference to Elements II.5–6 to the naive diagrams in the proofs, but added others that produced

the māl directly and not the root, showing thus that this quantity could be understood as the

an unknown in its own right. Much in Abū Kāmil’s treatise on algebra repeats and expands

what al-Khwārizmı̄ had done, but it goes beyond this model in the use of other monetary units

as names for auxiliary variables (probably a borrowing from current practice), in its unconstrain-

ed use of irrationals, and in the expanded operation with higher powers of the unknown in
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biquadratic and other reducible problems. In one section he calculated the sides of the regular

pentagon and decagon, elsewhere he investigates indeterminate problems of the first and second

degree.

Around 1000, al-Karajı̄ produced more striking innovations. His handbook presenting

practitioners with “the sufficient about reckoning” (al-Kāfı̄) suggests (inter alia through its pre–al-

Khwārizmı̄an use of “restoration” and “opposition”) that his starting point was the “low”,

not the “scientific” al-Khwārizmı̄–Abū-Kāmil tradition. His major works (al-Fakhrı̄, al-Badı̄)

demonstrate familiarity with this tradition as well as with the newly translated Diophantus,

but go further by systematizing the treatment of reducible higher-degree equations; by applying

the Euclidean theory of irrational magnitudes to number (and expanding it); by formulating

an arithmetic of polynomials (including division and root extraction); and, in indeterminate

analysis, by formulating principles where Diophantus had only given solutions.

All of this was developed further around the mid-twelfth century by al-Samaw al, who

also extended the notion of “subtractive” magnitudes into a concept of negatives (“subtractive

2” can only be subtracted; but “n–(–2)” is meaningfully interpreted as n+2). In order to represent

polynomials, he invented a schematic symbolization similar to what was used in Indian algebra.

Already al-Bı̄rūnı̄ and other astronomers had formulated the finding of the chord of a

trisected angle (the kind of problem which the Greeks had solved by intersecting conic sections)

as a cubic equation, solving it however by numerical, not by algebraic methods. In the context

of a full classification of equations until the third degree (14 of which are irreducible cubics),

al-Khayyāmı̄ (c. 1100) made the reverse step and solved cubic equations by means of intersecting

conic sections, identifying also the cases that were not solvable (in positive numbers) and some

of those that have several solutions. Certain solutions of this kind had already been obtained

by al-Khāzin (d. c. 965) and others, as al-Khayyāmı̄ relates.

Developments of a different kind occurred in the Maghreb in the twelfth to fifteenth

century, carried by a teacher-student network dense enough to be regarded as a “school” (and

indeed organized as a teaching system and linked to mosque and madrasah teaching). Its algebra,

as evidenced by its neglect of geometrical proofs, was basically in pre–al-Khwārizmı̄an style.

Its essential innovation with regard to the “low” fundament was the development of abbrevi-

ations for both unknowns and their powers and for operations; seemingly, this systematic

syncopation inspired parallel developments in Italian algebra, ultimately leading to the

development of modern symbolic algebra.

In India, astronomers from Brahmagupta (598–c. 665) to Bhaskara II (1114–c. 1185) followed

the lead of Āryabhata I, associating expositions of mathematics with astronomical treatises.

The solution of indeterminate linear equations remained an important topic, but Brahmagupta
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also took up the study of the equations Nx2±c = y2 (Pell equations), and showed how from

one solution (found by trial and error) others can be produced. Bhaskara II formulated a general

method. To judge from Brahmagupta’s exposition, the pretext was artificial astronomical

computation, and the purpose the display of professional skill.

In China, the level of mathematics declined in the later first millennium. Between 1247

and 1304, however, a number of works introduce a sophisticated polynomial algebra, working

with up to four variables and until degree 14, representing polynomials in a positional notation

and solving equations by a procedure seemingly inspired by algorithms for root extraction

(the “Horner-Ruffini method”): an approximate solution is found, a new equation for the

remainder is derived, to which again an approximate solution is found, etc.

Latin Europe

Al-Khwārizmı̄’s Algebra was translated twice into Latin in the twelfth century, first by

Robert of Chester and next by Gerard of Cremona. The riddles of the surveyors’ tradition

became available through Gerard’s translation of an Arabic work on mensuration, the Liber

mensurationum, and to some extent through Plato of Tivoli’s translation of Savasorda’s Collection

on Mensuration.

The echo was faint – the curriculum of the schools had no space for algebra. However,

Gerard’s translations were used (at times copied verbatim) by Leonardo Fibonacci in his Liber

abbaci (1202, revised 1228) and Practica geometrie (1220) together with much material he had

found in Islamic territory. The chapter of Liber abbaci dealing with “algebra et almuchabala”

proves the rules for the mixed cases in ways reminding of Thābit’s but possibly created

independently (one, “naive”, seems inspired by Elements II.4 and does not copy al-Khwārizmı̄).

The level and contents of problems are comparable to those of Abū Kāmil (who was only

translated in the fourteenth century, without generating any response) and (in his use of the

Euclidean theory of irrationals) of al-Karajı̄. Earlier in the work, rhetorical first-degree algebra

is used under the name regula recta.

Leonardo was linked to the Italian urban patriciate and to the philo-Arabic Hohenstaufen

court. The contemporary university mathematician Jordanus de Nemore (probably active in

Paris somewhere between 1210 and 1240) responded differently to the challenge of Arabic

algebra. Strongly attached to the metatheoretical ideals of Greek mathematics, and

acknowledging that algebra dealt with number, he wrote a treatise On given numbers that was

related to his Elements of Arithmetic much as Euclid’s Data were related to the Elements of

geometry. It consists of theorems of the form “If certain arithmetical combinations of certain

numbers [e.g., their difference and product] are given, then the numbers themselves are given”.
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It thus does not teach the technique of solving equations (often it merely reduces a case to

another previous dealt with), and does not mention algebra at all; it is a theoretical investigation

of solvability. However, the theorems are illustrated by numerical illustrations, and these are

often unmistakeably borrowed from the Arabic tradition.

Jordanus’s proofs are arithmetical and general, not based on numerical examples. This

was possible because he represented numbers by letters (a technique he had probably developed

when proving the validity of the algorithms for calculating with Arabic numerals in an earlier

work, and also used in his Elements of Arithmetic). Since the outcome of every operation is

designated by a new letter (thus “the quadruple of d” immediately becomes f ), this should

not be mistaken for a symbolic algebra; the letters serve the same purpose as the segments

used by Euclid in Elements VII–IX.

Leonardo represents numbers in the same way in a few problems and alternative

procedures that may have been added in the revision from 1228. Oresme and Peurbach also

refer to Jordanus’s Data and betray to have understood its particular aim; but apart from that

it had no perceptible influence.

Leonardo’s Liber abbaci was embraced by the emerging “abbacus school”, in which Italian

merchant youth was trained in practical arithmetic – but only its elementary parts, not the

algebra. When eventually taking up the subject, the school adopted it via different channels.

The first influential abbaco treatise containing algebra was apparently written by one Jacopo

of Florence in Montpellier in 1307; apart from the term censo for the second power, it shares

nothing with the Latin predecessors. Containing no Arabisms, it must draw on a tradition that

was already established – most likely in Provençal-Catalan area, from which however no

evidence before the fifteenth century has been traced.

Jacopo’s algebra is in the “low” Arabic style, as evidenced for instance by the absence

of geometric proofs and by the way “restoration” and “opposition” are used (the latter appears

as “putting equal to”). It contains correct rules (but no problems) for reducible cubics and

quartics, and not the slightest trace of syncopation.

Within two decades, Jacopo had spurred a surprising development (detailed verbal

agreements demonstrate that Jacopo was in fact the starting point). Pure-number problems

were created as illustrations of the higher-degree rules, and examples and non-valid rules for

non-reducible cubics and quartics were produced and transmitted; they proliferated and

remained alive throughout the fifteenth century. The reason is double: the abbaco masters used

them to impress their public and the municipal authorities that might employ them; and

solutions contained intricate expressions involving roots, whence fallacies were difficult to

expose.
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Ongoing contacts to the Maghreb area are likely to be responsible for the introduction

of syncopation, for the increasing operation with subtractive quantities, and for the first hints

of symbolization (fractions containing polynomials in the denominators and subjected to cross-

multiplication, schemes for the arithmetic of polynomials). In the fifteenth century, geometrical

proofs were gradually taken up – in part borrowed from Leonardo, in part coming from al-

Khwārizmı̄, in part from the surveyors’ tradition, in part independent.

In 1494, algebra went into print, constituting part of Luca Pacioli’s Summa de arithmetica,

geometria, proportioni: et proportionalita. The wording of the rules and many problems are

borrowed from the abbaco tradition, but geometrical proofs copied from Leonardo form the

theoretical basis. Moreover, Luca has discovered that the widely circulating solutions to the

non-reducible higher-degree problems were false; restricts himself to giving solutions to the

reducible cases; and points out that the others have not been solved so far.

During the fifteenth century, a parallel to the abbaco tradition existed in Provencal area

but under the name of algorism. It has been supposed to be borrowed from Italy, and interactions

were certainly present; however, the work of Jacopo of Florence (which indeed goes under

the same name) suggests an independent and earlier origin. Towards the mid-sixteenth century,

Italian abbaco algebra was adopted by the German Rechenmeister under the name of Coß (from

Italian cosa). This was the source of Robert Recorde’s treatment of “the coßike practise” in The

Whetstone of Witte (1557).

The transition phase

The solution of these irreducible third- and fourth-degree cases became pivotal in the

transition to modern algebra. The first step was made around 1515 by Scipione del Ferro, who

discovered how to solve the case “cube and roots equal to number”. He communicated the

rule to his pupils, one of whom used it in a public disputation with Niccolò Tartaglia in 1535

(though the solution was no longer fake, it served the same career purpose as before). Tartaglia

managed to find the solution and was persuaded to disclose the rule to Gerolamo Cardano

(according to his own account under oath of secrecy, according to Cardano’s disciple Ludovico

Ferrari without such conditions). When Cardano was informed about del Ferro’s earlier

discovery he felt free to publish (crediting both del Ferro and Tartaglia) in the Ars magna.

He published not only the rule for the case in question (and for the related case “cube

equal to roots and number”, which he may also have received from Tartaglia), but also gave

geometric proofs. The proof for the latter case can be summarized as follows in modern symbol-

ism. The equation is x3 = 3px+n. We represent x3 by a cube (see the figure), express x as a sum

x = u+v, and dissect the cube into 5 pieces corresponding to the transformation x3 = (u+v)3 =

u3+v3+3uv (u+x) = (u3+v3)+3uv x (one of the three pieces uv x is shown separately). If u3+v3 =
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n, uv = p (whence u3 v3 = p3) , x = u+v will fulfil x3 =

3px+n.

Now, the problem r s = A, r+s = b was familiar in

the abbaco tradition, from Elements II.5, and was part of

the surveyors’ stock since millennia. Its solution is

r = , t = .b

2
( b

2
)2 –A b

2
– ( b

2
)2 –A

Substituting p3 for A, n for b, and finding u and v from u3 and v3, we get

x = u+v = + .
3

n

2
( n

2
)2 –p 3

3
n

2
– ( n

2
)2 –p 3

This might have been nothing but an ingenious but traditional solution to a traditional

problem, had it not been accompanied by other novelties. Firstly, all the cubic cases are solved

(the case x3+px = n analogously, the others by transformation into this or the previous one),

the necessary transformations being proved by Euclidean geometry. Secondly, Cardano operated

without difficulty with negative quantities and solutions (though considering them “fictitious”),

which allowed him to clarify the relation between the sets of solutions to related equations

and between different solutions to the same problem (and led him to the notion of coinciding

solutions). Thirdly, he applied the theory of irrationals in order to find conditions which

solutions would have to fulfil.

Also contained in the book is a discovery made by Ferrari: that the complement to be added

to a quartic in order to transform it into a biquadratic (and thus solve it) can be determined

by means of a cubic equation.

A curiosity is Cardano’s introduction of imaginary and complex solutions – regarded,

respectively, as “a second kind of false” solution (the negatives being the first) and as

“completely false”. He may possibly have been provoked to think about these because they

occur in some of the solutions to cubics (e.g., in the above, if p3>(n/2)
2); but he does not say

so, and the example through which he introduces them is the corresponding second-degree

problem, r+t = 10, rt = 40.

In 1572, L’algebra of Bombelli was published. Its declared aim was to put into intelligible

shape what had so far been written confusedly on the subject – not least by Cardano.

Part of this clarification consisted in the introduction of new symbols. Cardano’s style had

been purely syncopated – appears as “R. V. cubica 42. p. R. 1700
3

42 1700
3

42– 1700 2

p. R. V. cub. 42 m. 1700 m. 2” – “p.” representing “più”, “m.” “meno”, “R.” “radice”, and “V.”
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indicating that the root is taken of two members. Bombelli introduces algebraic parentheses

(written ... , and used for multiple nesting) and an arithmetical notation for powers, in which
n represents our xn. Both devices constitute steps toward symbolization. He had been preceded

in part by Nicolas Chuquet in the Triparty (c. 1480), the culmination of the Provencal tradition,

but Chuquet’s notations were uninfluential.

Bombelli also invented new geometrical constructions “in a plane surface” though

“by means of instruments” (not compass and ruler only) that showed the existence of solu-

tions to the cubics even in cases where Cardano’s formulas gave them only in the form

. These solutions also made him take up the study of imaginary numbers
3

a b –1
3

a–b –1

(designating them “più di meno” and “meno di meno”, respectively a and –a ) and–1 –1

their arithmetic. He does not refer to Cardano’s modest beginnings, and successive work on

complex numbers was derived from Bombelli, not Cardano.

Jens Høyrup
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