
“Quaderni di Ricerca in Didattica (Mathematics)”, n. 25, 2015
G.R.I.M. (Department of Mathematics, University of Palermo, Italy)

81	

	

	

On the impossibility to add and
multiply

G. Gerla1 & F. S.Tortoriello2

Abstract: In this article we have adopted modern theoretical computer science as our "higher standpoint", in
the hope that this may contribute constructively to a review of the way mathematics is taught in schools.
Since there is nothing more elementary than addition and multiplication, the article focuses on these two
operations.

1. Introduction

Many mathematicians are familiar with the expression "Elementary mathematics from a higher
standpoint" since it denotes a study unit that is common to the majority of mathematics degree
courses. The beauty and significance of this expression lie in how it highlights the way elementary
notions and problems may be revisited in the light of more recent and complex theories. As is well
known, the concept was first put forward in Germany by F. Klein3, spreading to Italy in the early
1900s, thanks to associations of mathematicians like Mathesis and the Italian Mathematical Union.
The purpose of the course is not to render simple things more difficult, but to achieve a deeper
understanding of seemingly simple concepts.

2. Finite memory machines: addition and multiplication

Since we have to examine the addition and multiplication algorithms, we feel that it is necessary to
say something about the concept of algorithm. Since an algorithm consists of a series of actions
that can be performed "mechanically", the concept may be defined as a "machine that performs
calculations". Various mathematical models exist for such a machine, and these form the basis of a
fundamental part of theoretical computer science: the theory of computation. These models may
be divided into two main types: the finite memory machine, represented by the concept of finite
automation, and infinite memory machines such as the Turing machine or the register machine
(See Minsky's work on Finite and Infinite Machines).

We start by focusing our attention on finite automata, which represent an accurate model for a
wide variety of machines, ranging from food distributors and elevators, through to the current
computers. Before arriving at a formal definition, let's examine the behavior of a simple machine
that many of us use on a day-to-day basis.

1Department of Mathematics, University of Salerno, gerla@unisa.it
2 Department of Mathematics, University of Salerno, fstortoriello@unisa.it
3	Klein, F .: Elementarmathematik vom höheren Standpunkt aus. 2 Bände. Teil 1: Arithmetik, Algebra,
Analysis, Teil 2: Geometrie. 2. Aufl. Ausgearbeitet von E. Hellinger. Leipzig: Teubner,
1911+1914

“Quaderni di Ricerca in Didattica (Mathematics)”, n. 25, 2015
G.R.I.M. (Department of Mathematics, University of Palermo, Italy)

82	

	

	

Elevators with integrated memory systems. Our observations are based on a coin-operated (ridurre
spazioe) elevator. Upon entering the elevator car we can provide it with various types of stimuli
(inputs), to which it reacts by providing various types of responses (outputs). For example, we may
insert a coin, press the alarm button or request the elevator to take us to a specific floor. Assuming
that, in addition to the ground floor, there are 7 other levels, these actions may be identified as M,
A, 0, 1, 2, 3, 4, 5, 6, 7, respectively. The elevator may respond in a variety of ways: sound the
alarm, go to a floor, or even do nothing, i.e. remain stationary. We use A, 0, 1, 2, 3, 4, 5, 6, 7, F to
identify these responses. At this point, if we press the A button, while standing inside the elevator
car, the elevator responds A, i.e. the alarm is activated. If we insert the requested coin, the elevator
does not seem to do anything. The input-output situation may be fully represented by the concept of
function. An entirely different phenomenon occurs if we push a floor button. In fact, there are two
possible reactions: the elevator may move to the selected floor, or it may remain stationary.
Obviously this depends on whether the appropriate coin has been inserted or not. This implies that
the elevator must have a basic memory system that is capable of assuming two different states,
already paid (denoted by P) and not paid (denoted by N).
Hence:

- at any given instant the machine is either in the coin already received state , or the coin not
received yet state,

- the response to an input depends not only on the input that the machine receives but also on its
state when it receives it;

- inputs determine not only outputs but also the transition from one state to another.
Therefore, if S = {P, N}, a complete description of the behavior of the coin-operated elevator is
given by two functions O : X × S → Y and C : X × S → S defined as follows, where n is a variable
between 0 and 7:

O(n,P) = n
O(A,N) = A

;
;

O(n,N)
O(M,P)

= F
= F

;
;

O(A,P) = A
O(M,N) = F

C(n,P) = N ; C(n,N) = N ; C(A,P) = P
C(A,N) = N ; C(M,P) = P ; C(M,N) = P.

The function O indicates which output is generated by the machine when it receives an input
x∈X while in the state s∈S. The function C determines the new state assumed by the machine. For
example the equations O(3,P) = 3 and C(3,P) = N indicate that the machine does two things when
it receives the input 3 while in the already paid state: it goes to the third floor and assumes the not
paid yet state.

On the basis of this example it is possible to propose the following general definition for a
finite memory machine.

Definition 1.1. A finite automaton consists of:

- three finite sets X, Y, S , identified as inputs alphabet, outputs alphabet and set of states,
respectively,

- a function C : X×S → S known as the state change or transition function
- a function O : X×S → Y known as the output function.

In some cases a specific state s0 is also determined; this is known as the initial state . The set of
states S is also known as the automaton memory, and the hypothesis of finiteness of S confirms our
intention to carry out a study on finite memory machines. As has already been stated, the two

“Quaderni di Ricerca in Didattica (Mathematics)”, n. 25, 2015
G.R.I.M. (Department of Mathematics, University of Palermo, Italy)

83	

	

	

functions C and O represent the behavior of the automaton in the sense that:
- if the automaton receives the input x while it is in the state s
- it then 1. assumes the state s' = C(x,s)

2. and generates the output y = O(x,s).
A precise description of the behavior of an automaton is given by the following definition.

Definition 1.2. Given an automaton, for each sequence x1, . . ., xn Input is a sequence s1,...,sn and a
sequence of states y1,..,yn output to the next mode.

s1 = C(x1,so) ; y1 = O(x1,so)
s2 = C(x2,s1) ; y2 = O(x2,s1)
. . . ; . . .
sn = C(xn,sn -1) ; yn = O(xn,sn -1).

It is important to note that the definition of a finite automaton includes all the types of digital (i.e.
non-continuous mode) machines that we encounter during our everyday lives. In particular, a
computer may be defined as a finite automaton whose state at any given time is represented by
how its memory registers are configured at that instant. It goes without saying that, irrespective of
the enormous number of states that a computer can assume, this number remains finite.

3. Adding and multiplying with a finite automaton
Having arrived at a mathematical definition of a finite memory machine, we wish to demonstrate
that the addition operation may be performed by an automaton. Before proceeding, it is necessary
to clarify that when we say "may be performed by an automaton" we refer to a sequential
operation where the digits of the two numbers to be multiplied, reading from right to left, are
received at the input, after which the output digits are printed out. This operation remains the
same, regardless of the number of digits in these numbers. This means that X = {0, ..., 9} × {0, ...,
9} is assumed as the set of the inputs, and Y = {0, ..., 9} as the set of the outputs. This automaton
may be represented by the image in the figure 1, where si corresponds to the state it assumes at a
given instant.
Assuming that the two numbers to be entered consist of the same number of digits does not

 si	
	

	

Figure	1.	

represent a restriction, since it is always possible to add as many zeroes as necessary at the
beginning of the number. It should also be noted that, due to the carry-over phenomenon, the sum
of two integers may have an additional digit with respect to the two initial numbers; this means that,
after the automaton has completed reading the two numbers, it is necessary to perform an extra
step. This problem is overcome easily by rewriting the two numbers with a leading 0. Then again,
this is what we normally do with the usual addition algorithm. If we have to sum 972 and 48, we
arrange the two numbers in columns and proceed as follows:

“Quaderni di Ricerca in Didattica (Mathematics)”, n. 25, 2015
G.R.I.M. (Department of Mathematics, University of Palermo, Italy)

84	

	

	

972+

48 =
1020

however, we interpret this procedure as follows:
0972+
0048 =
1020

Theorem 3.1. A finite automaton exists that is able to sum two natural numbers (regardless of the
number of digits they contain).

Proof.: Let's start with a look at how we perform additions in base ten. For example, returning to
the sum of the two numbers 0972 and 0048. We read the digits (2,8), (7,4), (9,0) and (0,0), one
pair at a time, as the inputs, and write 0, 2, 0, 1, as the output, where the latter digits depend both
on the input readings, and the carry-over, which we are required to remember for each step of the
calculation. The situation is similar to that of the elevator insofar as the system requires very little
memory capacity: all we need to remember is "carry over" or "don't carry over". Hence it appears
natural to consider an automaton where

- the sets X and Y represent the input and output sets, respectively
- the state S = {R, NR} represents the set of the states

 - NR represents the initial state
- the functions O and C are defined as follows:

O(0, 0, NR) = 0,
O(0, 0, R) = 1,
O(1, 0, NR) = 1,

O(0, 1, NR) = 1, …
O(0, 1, R) = 2, …
O(1, 1, NR) = 2, …

O(0, 9, NR) = 9,
O(0, 9, R) = 0,
O(1, 9, NR) = 0,

O(1, 0, R) = 2, O(1, 1, R) = 3, … O(1, 9, R) = 1,
. 	 	
O(9, 0, NR) = 9, O(9, 1, NR) = 0, … O(9, 9, NR) = 8,
O(9, 0, R) = 0, O(9 ,1, R) = 1, … O(9, 9, R) = 1.

C(0, 0, NR) = NR, C(0, 1, NR) = NR, … C(0, 9, NR) = NR,
C(0, 0, R) = NR, C(0, 1, R) = NR, … C(0, 9, R) = R,
C(1, 0, NR) = NR, C(1, 1, NR) = NR, … C(1, 9, NR) = R,
C(1, 0, R) = NR, C(1, 1, R) = NR, … C(1, 9, R) = R,
.
C(9, 0, NR) = NR, C(9, 1, NR) = R, … C(9, 9, NR) = R,
C(9, 0, R) = R, C(9, 1, R) = R, … C(9, 9, R) = R.

It is obvious that this automaton is able to sum two numbers regardless of the number of digits
they contain.

The situation changes completely when we switch to multiplication, which presents memory
problems that are insurmountable for a finite automaton. This is no secret, and everyone will be
aware that multiplication involves dealing with problems that simply do not exist when performing

“Quaderni di Ricerca in Didattica (Mathematics)”, n. 25, 2015
G.R.I.M. (Department of Mathematics, University of Palermo, Italy)

85	

	

	

additions. Below we compare the "pen and paper" method that schoolchildren are taught to use
when adding two multi-digit numbers, with the equivalent procedure used for multiplication.

972 + 972 ×
 48 = 48 =
1030 7776

38880
46656

In the first case we are able to carry out the operation mentally, reading the addends one at a time
and calculating the result. Our memory is perfectly capable of remembering the two states "carry
over" and "do not carry over." The demands placed on the memory in order to proceed with the
calculations are largely independent of the length of the numbers involved. In the second case, if
both numbers have multiple digits, we are no longer able to remember the results of the
intermediate calculations and feel the need to write them down on a sheet of paper. Moreover,
even supposing we had the ability to remember two long numbers, if we were to substitute 48 with
2348, at this point it would be necessary to remember three numbers. In general, we need to use
the same number of rows as there are digits in the smallest number involved in the calculation.
Hence, the larger the two numbers to be multiplied, the greater the space (or memory) required to
perform the calculation.

We now return our attention to finite automata and their ability to perform multiplications. In
this case it should be noted that the number of digits in the output may be twice that of the inputs.
For example the number 99 × 99 = 99 * 99 = 9801 has 4 digits, the number 999 × 999 = 998 001
has 6 digits and so on. In such cases it is sufficient to double the number of digits in the
multiplicands by adding the appropriate number of zeroes. For example, in order to calculate the
product of 972 and 48, we multiply 000972 by 000048, obtaining the result 46656.

Theorem 3.2. No finite automata exist that are capable of performing multiplications.

Proof.: If such an automaton were to exist then it would have to be able to calculate products in
the order of 10m×10m. Obviously, in this case, as the automaton reads the inputs (0,0) from right
to left, it must be able to store the number of pairs that it has read in the memory. This means that
it must assume the state s(1) after reading the first pair, the state s(2) after reading the second pair,
... the state s(m) after reading pair m. These states must all be different from each other, if for
example s(7) were the same as s(3) then 107× 107 would be the same as 103× 103. However, this
means that, in order to perform multiplication operations where there is no limit to the number of
digits, an automaton would have to have an infinite number of states.

3.Isolated automata and the concept of infinite carry-over

Another limitation of automata becomes apparent as the consequence of a rather surprising
phenomenon. If we provide an automaton with the same input repeatedly, after a certain number of
steps the sequence of the states, and hence of the outputs, enters a loop that is repeated
indefinitely.

Theorem 4.1. If we supply an automaton with inputs that are always exactly the same, sooner or

“Quaderni di Ricerca in Didattica (Mathematics)”, n. 25, 2015
G.R.I.M. (Department of Mathematics, University of Palermo, Italy)

86	

	

	

later the states and inputs sequence will enter a finite loop. More specifically, if n is the number of
states, and p is the length of the cycle, then the loop will start after a number h ≤ n-p steps.

 Proof.: When both the initial state s0 and the input x are constant, the states will evolve as follows:

s1 = C(x,s0), ..., si = C(x,si-1), ...

After n +1 steps, the machine must have assumed a state sj, which it had already assumed before
otherwise more than n different states would exist. Therefore sj=sh with h < j ≤ n+1. Assuming p =
j-h,

sh = sj = sh+p

sh+1 = C(x,sh) = C(x,sj) = sj+1 = sh+p+1

sh+2 = C(x,sh+1) = C(x,sj+1) = sj+2 = sh+p+2

...
sh+p = C(x,sh+p-1) = C(x,sj+p-1) = sj+p = sh+2p.

Therefore, since sh = sj, it follows that the sequence sh sh+1 ... sh+p is equal to the sequence sh+p sh+p+1

... sh+2p. Also, since sh+p = sh+2p it follows that the sequence sh+p ...sh+2p is equal to the sequence
sh+2p...sh+3p. Finally, if the machine receives a constant input, after having assumed a finite
sequence of states so, s1,, sh, starting from point sh it enters a loop sh, sh+1..., sj of length p which
is repeated indefinitely. The following figure illustrates what happens

so, s1,, sh, sh+1, ...,sh+p, sh+p+1, . . .

As far as the outputs are concerned, it is sufficient to observe that, given the fact that the inputs
always coincide with x, for each index i yi = O(x,si). Hence, since the states enter a finite loop, the
outputs are also repeated cyclically.

It is immediately apparent from this theorem that there is at least one operation that a finite
automaton is not capable of performing, and that, surprisingly, there exists a link between the
concept of a finite automaton and the decimal representation of a rational number.

Corollary 4.2. An automaton capable of printing all the digits of indefinitely does not exist. In
more general terms, a finite automaton capable of printing all of the digits of a real number can
only exist if such a number is rational.

Proof: As in the case of addition and multiplication, it is necessary to define our terms a little
before proceeding. Imagine that the automaton is equipped with an ENTER input-key, and that
each time this button is pressed the input corresponds to an additional digit of . Equivalently, it
is necessary to imagine the automaton operating in stand-alone mode, i.e. without any inputs,
endlessly printing the figures that follow the decimal point of the number in question. At this point
we find ourselves in the situation described by Theorem 4.1, where the automaton must
necessarily go into a loop and print figures that are repeated cyclically. Since is not a rational
number, this is impossible

“Quaderni di Ricerca in Didattica (Mathematics)”, n. 25, 2015
G.R.I.M. (Department of Mathematics, University of Palermo, Italy)

87	

	

	

It is also interesting to reformulate Theorem 4.1 in terms of isolated systems.

Definition 4.3. An automaton with a single possible input may be defined as a finite isolated
system.

Naturally, it is possible to replace the single input hypothesis with the no input hypothesis, since
we are able to image a situation where the constant input is supplied by some automatic
mechanism and not by outside intervention. A finite isolated system is identified by two functions
C : S → S and O: S → Y. The study of an isolated system coincides with the study of the behavior
of any automaton supplied with a constant input x. We can interpret the behavior of an isolated
system as:
- "Departure", which corresponds to the first time the system receives the input x,
and
- "evolution", which corresponds to the subsequent introduction of the input x.
Thus it is possible to prove that, if an automaton is "isolated" from the outside world, it will enter a
finite loop sooner or later.

Theorem 4.4. If we consider an isolated system, then we can see that the history of the system will
sooner or later enter into a cycle that repeats itself endlessly.

Proof. The reasoning is the same as applied in proposition 4.1. Let us consider the way in which
the states evolve from a given moment onwards, s0, s1, It follows from the hypothesis of
"deterministic behaviour" that the state si+1 is completely determined by the previous state
according to a given law, and therefore that there is a function f such that si+ 1 = f(si). The
hypothesis of finiteness means that the machine, after assuming a number of states, must
necessarily assume a state that it has already assumed previously. Therefore there exists a state sj

such that sj = sh when h≤j. However, assuming p = j-h,

sh+1 = f(sh) = f(sj) = sp+h+1
sh+2 = f(sh+1) = f(sp+h+1) = sp+h+2

. . .
sh+p = f(sh+p-1) = f(sp+h+p-1) = s2p+h

. . .

This theorem may also be applied to the entire universe in which we live, provided we accept the
finiteness of the number of states that can may be assumed and the deterministic nature of the
system, i.e. that the subsequent state to any given state is determined uniquely4.

4 The concept of ''infinite carry over" has occupied the minds of numerous philosophers, for example
Nietzsche, in The Gay Science, states: "What, if one day or night, a demon were to steal after you into your
loneliest loneliness and say to you: "This life, as you now live it and have lived it, you will have to live once
more and innumerable times more; and there will be nothing new in it, but every pain and every joy and
every thought and sigh, and every unspeakably small or great thing in your life must return to you—all in
the same succession and sequence [...]. The eternal hourglass of existence is turned upside down again and
again, and you with it, speck of dust!

“Quaderni di Ricerca in Didattica (Mathematics)”, n. 25, 2015
G.R.I.M. (Department of Mathematics, University of Palermo, Italy)

88	

	

	

5. Infinite memory machines: addition and multiplication

We have seen that the difficulties that arise when multiplying integers are the result of the finite
nature of memory, and this applies to both machines and humans. It follows that, if we wish to
create a mathematical theory of computability that does not exclude this simple operation, it is
necessary to disregard the hypothesis of finiteness. At first glance this may seem like a rather
questionable solution, since all real machines have finite memory capacity. Nevertheless, such a
concept is not entirely without justification. For example, suppose a teacher asks a student to
multiply 325467334345 by 57324256453; in all likelihood the pupil will be unable to complete the
necessary calculations since they would "not fit" on the sheet of paper provided. In this case,
rather than conclude that the student is unable to perform the multiplication, the teacher would
provide him/her with a couple more sheets and advise him/her to write smaller. In other words, the
student would be provided with additional memory. Accepting a mathematical model of a machine
with infinite memory capacity means being prepared to spend money on additional memory each
time the machine calculation process requires it. On the other hand, "behaving as if the memory
were infinite" falls into that most fundamental of mathematical concepts: abstraction. If we are
capable of pretending that there is no such thing as a line of infinite length or a zero-dimensional
point, then we should have no problem accepting the concept of a machine with (potentially)
infinite memory capacity.

The most famous mathematical model where such a choice has been made is the Turing
Machine, which is based on the idea of an infinite tape divided into a great number of cells. It is
possible to write letters from a finite alphabet to each cell in such a way that, even though the
number of letters is not infinite, it is not subject to any a priori limitations. However, other
mathematical models for a "machine that performs calculations" exist that come closer to current
computers. For example, Register Machines that function by means of programs and use memory
systems based on the ability to write finite sequences of ones and zeroes to certain registers, but
without imposing any predefined limits on the length of such sequences. It is beyond the scope of
this article to provide more precise definitions of a Turing machine, a register machine, or a
program for a register machine, therefore, if readers require additional information on such
matters, they should consult the literature on computability theory, for example, the
aforementioned book by M. Minski, or the two volumes published by G. Gerla. For the purposes
of this article, we refer to the concept of a program as defined in commercially available
programming language and assume that the reader understands the idea of a computer executing a
program.

The following definition illustrates the basic concepts of computability theory, where it shall
be recalled that the characteristic function of a set X ⊆Np is the function cX : Np→{0,1} such that
cX(x) = 1 if x∈X and cX(x) = 0 otherwise.

Definizione 5.1. A function f : Np → N may be said to be computable if a program capable of
computing it exists. A subset X of Np may be said to be decidable, if its characteristic function cX :
N→{0.1} is computable, X is effectively enumerable if the target set of a total computable function
h : N→Np.

It is important to note the difference between decidable and effectively enumerable. In fact, X may
be said to be decidable if a program exists that, after receiving and processing an input x, produces

“Quaderni di Ricerca in Didattica (Mathematics)”, n. 25, 2015
G.R.I.M. (Department of Mathematics, University of Palermo, Italy)

89	

	

	

the response 1 if x∈X or 0 if x∉X. Briefly, X may be said to be decidable if a program exists that
can tell whether an item x belongs to X or not, whereas, X may be said to be effectively
enumerable if a program exists that is capable of generating all the elements of X, i.e. by "printing"
them one after the other in the sequence h(1), h(2), ... Since the set of possible programs is
enumerable, for reasons of cardinality it is evident that the majority of functions are not
computable and that most of the subsets of N are neither decidable or effectively enumerable. The
following theorem is a little more difficult to prove, which means that we are obliged to ask the
reader to accept the statement at face value.

Theorem 5.2. There exists a set S that it is effectively enumerable but not decidable.

A typical example of this is the set of (code numbers of) the theorems of arithmetic used in

first-order logic. In fact, while these theorems may be produced one after another, it is not
decidable whether an arithmetical assertion may be considered a theorem or not.

Returning to addition and multiplication, it is no surprise that infinite memory machines are
able to perform these operations on integers.

Proposition 5.3. A program exists that is capable of adding two integers. A program exists that is
capable of multiplying two integers.

Proof: A rigorous proof of this proposition would require a set of definitions that the available
space does not allow us to reproduce in this document. Therefore, here we limit ourselves to
indicating two programs that are capable of carrying out these operations, in the hope that they are
readable. The following program is able to perform additions using the 'next' function:

input x ; input y
c : = 0 and s: =x

2. c := c+1
if c<y put s :=s+1 go to 2
output s

Of course it must be assumed that the language concerned is able to calculate the truth value of
c<y and the successor of a number. If we denote the addition function defined in this way as s(x,y),
we can write the following program, which is able to perform a multiplication as a series of
additions:

input x ; input y
c : = 0 and p: =x

2. c := c+1
if c<y put p := s(p,x) go to 2
output p

Note that in these programs, the variables x, y, c, s, p represent memory registers where it is
possible to store the value of any integer, without any limits on its size.

We now move on to the field of real numbers, which we identify by their corresponding

decimal expansions, taking care not to use the period 9 in order to avoid ambiguity. Hence, an
algorithm used to calculate the sum s = x + y of two numbers x and y must be able to calculate the
integer part of s and, for any integer n, the nth decimal place of s. Unfortunately, B H Mayoh has
proved the following theorem, which demonstrates the impossibility of such an undertaking.

“Quaderni di Ricerca in Didattica (Mathematics)”, n. 25, 2015
G.R.I.M. (Department of Mathematics, University of Palermo, Italy)

90	

	

	

Theorem 5.4. No infinite memory machine is able to multiply by 3 in the set of decimal
expansions of real numbers. It follows that none of these machines is able to perform the
additions.

Proof: In accordance with theorem 1, we shall consider a set S that is effectively enumerable but
not decidable, and assume that h : N →N is a computable function capable of enumerating S.
Furthermore, we use the expression x = 0,x1...xi ... to denote the real number defined by assuming

xi = 3 if h(i) ≠ n (i.e. if n∉S)
xi = 0 if h(i) = n (i.e. if n∈S).

The value will be a number along the lines of 0.333 ... where the series of 3s will be interrupted by
0 depending on whether n belongs to the set S or not. We affirm that we are unable to calculate the
product 3⋅x, or even determine which is the integer part of the product. It is immediately apparent
that
- if n∈S, then the integer part of 3⋅x is 0
- if n∉S then the integer part of 3⋅x is 1.
Therefore, if we were able to determine the integer part of 3⋅x we would be also able to decide if n
belongs to S or not, in contrast with the undecidability hypothesis of S.

From the impossibility of multiplying by 3, it follows that it is impossible to perform the sum,
since 3⋅x = (x+x)+x.

This demonstration is based on concepts that belong to computability theory. It is possible to
offer simplified "demonstrations", however not everyone would be willing to consider them
satisfactory (see below):

Demonstration illustrated by the use of a bet. Imagine we address a student, Carlo, as follows:

we bet that, if I provide you with the decimal expansion of a number x, you will not even able
to tell me which is the integer part of the decimal expansion of 3⋅x.

Once the student accepts the bet it is necessary to clarify the rules of the game: “I undertake to
communicate the integer part of x followed by all its decimal places, one after another.” Sooner or
later, Carlo must start to provide a response, indicating which is the integer part of 3x, followed by
its decimal places. Suppose I then say to Carlo "the integer part of the number x is 0, the first digit
is 3, the second is 3, ...and so on."

Sooner or later Carlo will be obliged to indicate which is the integer part of 3x. Now:
- if, after the mth digit, Carlo states that the integer part of 3⋅x is 0, I will reply that he is wrong
because all the subsequent digits of my number are equal to 3, and therefore, since x = 1/3, the
number 3x must be the same
- however, if Carlo informs me that the integer part is 1, I will, again, reply that he is wrong,
because all the digits after the mth decimal place are equal to 0, and therefore x<1/3 and 3x <1.

Naturally, not everyone would accept this is as a viable demonstration and in fact it has more
than a little of the trick question about it; it would have been fairer to fix the value of the number
before starting, by writing down it on a piece of paper and handing it over to a notary, for
example. But, in reality, this wouldn't be a problem. I could write down the value of the real
number on the piece of paper, and even allow Carlo to read it before starting the experiment. All I
need to write is "x corresponds to the number 0,x1x2...xi... whose integer part is 0, and

“Quaderni di Ricerca in Didattica (Mathematics)”, n. 25, 2015
G.R.I.M. (Department of Mathematics, University of Palermo, Italy)

91	

	

	

xi = 3 if, at the ith instant, Carlo has not yet provided me with the first decimal place or has
provided the answer 0

xi = 0 if, at the ith instant, Carlo has already provided me with the answer 1.
Despite this explicit definition of x, there is no chance that Carlo will be able to come up with the
correct value of the integer part of 3x.

Intuitionistic demonstration. At this point, the proposed demonstration may seem a little
"unmathematical" and more like the sort of trick that logicians use to prove unlikely concepts. To
counteract this, we propose a demonstration that makes use of intuitionistic mathematical
techniques. For example, let us consider the question of whether the sequence of numbers
0123456789 occurs in the decimal expansion of π or not. We are currently unable to provide an
answer to this question. Let us use A(i) to denote the statement: " i is the first integer such that the
sequence 012...9 occurs in the first i decimal places of π" and consider the real number x = 0,x1...
Xi ... such that:

xi = 0 if A(i) is true
xi = 3 otherwise;

Since we already have an algorithm for the decimal expansion of π, we have defined x using a
mathematical algorithm explicitly designed to generate x. Two cases are now possible:

1st case. - A(i) is always false because the sequence 0123456789 never occurs and hence 3⋅x = 1
2nd case. - A(i) is true for a number i and hence 3⋅x<1

Therefore, the integer part of 3⋅x will be equal to 1 in the first case and 0 in all other cases. Since
we are not currently able to decide whether the first or second case is true, we are not able to
determine the integer part of 3⋅x.

6. An argument for a definition based on Cauchy sequences
Teachers have always found it difficult to provide a rigorous definition of real numbers. The
sections method is often used, but this has the disadvantages of being boring and unintuitive. It
requires considerable effort on the part of mathematicians to think of 0.3 or π as sections, or that it
is possible to obtain the section 0.3 + π from such sections. Apparently, if you have the mind-set
of an engineer, a real number is identified by its decimal representation. But in this case does it
mean that π can be represented in both base 2 and base 10? What does it mean when we affirm
that number 1/3 is equal to 0.333..? In our opinion, a better method would be to construct the
range of real numbers as a quotient of the Cauchy equi-convergence modulus rational sequences
ring. When using this approach, a real number is defined as a complete class of Cauchy sequences
and its decimal representation is merely the selection of a suitable Cauchy sequence (power series
in base 10) from this class. Our preference is based on the fact that this way of looking at the real
numbers is the one that comes closest to the way that mathematicians treat them. An additional
motive is provided by the following proposition, which is in direction opposition to that of
Theorem 5.4.

Theorem 6.1. The sum operation can be effectively performed effectively in the set of Cauchy
sequences.

Dem. If I have two programs for calculating the values of the Cauchy rational number sequences
(rn)n∈N and (qn)n∈N , then it is possible to paste these programs together, add a simple operation for

“Quaderni di Ricerca in Didattica (Mathematics)”, n. 25, 2015
G.R.I.M. (Department of Mathematics, University of Palermo, Italy)

92	

	

	

adding rational numbers and obtain a program for calculating the values of the sum (rn)n∈N+(qn)n∈N

= (rn+qn)n∈N .

One could argue that every decimal expansion is also a Cauchy sequence and, therefore, that this
proposition, in contrast with the theorem of Mayoh, demonstrates that it is possible to sum two
decimal expansions. More precisely, given two computable real numbers x = x0,x1... Xi... and y =
y0,y1 ... Yi ... we can consider the sequences (rn)n є N and (qn)n є N obtained by assuming rn = X0, X1...
Xn and qn = Y0, Y1y2...yn. We obtain two effectively computable Cauchy sequences of rational
numbers, therefore we can state that (rn+qn)n є N is an effectively computable Cauchy sequence that
represents x+y. Unfortunately, as already demonstrated by the proof in Theorem 5.4, there is no
guarantee that it will be possible to transform the resulting sequence into an effectively
computable decimal expansion. In fact, although rn+qn is a rational number written in finite
decimal form, it does not necessarily correspond to the expansion of x+y truncated to n decimal
places.

Finally, we can see that similar considerations may also be applied to the other arithmetical
operations, as demonstrated by the following proposition.

Theorem 6.2. It is not possible to perform subtractions, divisions, multiplications or extract roots
effectively in the set of decimal expansions of real numbers.

Other fairly strange events also occur. For example, while we have seen that multiplication by 3 is
not executable, multiplication by 2 is, whereas, in the case of expansion of base 3, the opposite
applies. Moreover, the transition from a base p to a base q is only (effectively) possible if q divides
a power of p.

References

Gerla G., (1981) E' sempre possibile addizionare due numeri reali?, Comunicazione al Convegno
Mathesis "La matematica nell'educazione", Luciani Ed. Roma 171-175.
Gerla G., (2013). Cosa può fare un calcolatore?, Vol. I, Dalle prime “macchine” ai moderni
calcolatori, scaricabile da Ilmiolibro, Repubblica-Espresso
Gerla G. (2013), Cosa può fare un calcolatore?, Vol. II, Macchine che apprendono ed altro,
scaricabile da Ilmiolibro, Repubblica-Espresso.
Mayoh B. H., (1965) Unsolvable problems in the theory of computable numbers, in: “Formal
Systems and Recursive Functions”, edited by Crossley-Dummett (North-Holland, Amsterdam.
Minsky, M., (1967), Computation, finite and infinite machines. London: Prentice-Hall
International, INC.
Mostowski A. (1957),, On Computable Sequences, Fund. Math. 44 37-51.
Tortoriello F.S. (2015)., Nietzsche e la matematica dionisiaca, Archimede
Toffalori C. (2015), Algoritmi, il Mulino,.
Zappa P. (2011), Euclide e la calcolatrice, Archimede 122-125.

