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ABSTRACT 

 

This article presents the results of research into sound, specifically vibrating strings and 

the frequency combinations which give rise to beats. The main aim of the research was 

to define a sound scale that takes account of the divergent partials 3 and 5,  and to 

construct a reliable model in both theoretical and practical terms. At the same time there 

was a need for an accurate rule able to counterbalance and manage the string 

inharmonicity which is partly responsible for increases in frequencies of partials, giving 

rise to the need to stretch the 2:1 octave interval ratio. The question was how to order a 

scale of frequencies in proportional terms without the 2:1 ratio. 

 Systematic analysis of beats frequencies revealed a new differences constant, that is, a 

1:1 beats ratio on harmonic partials 3 and 4. The order of sounds described here thus 

constitutes a set of proportional frequencies as a function of synchronic beats: a 

dynamic, stable and perfectly resonant system.  
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1.0 – INTRODUCTION 

This article describes a new approach to the temperament of the chromatic scale. The 

linkography of selected sites
[1]

 will enable the more demanding reader to further 

investigate with ease historical and theoretical aspects, partly provided here as context 

for presenting the study and describing the chas model. 

 A string, like many compounds, is made up of compact and elastic matter; sound can 

be understood as the effect of the energy passing through it. A vibrating string 

rearranges itself and releases superfluous energy, sound, which retains and conveys the 

imprint of the string’s intrinsic structural characteristics. In this way string matter causes 

interference with all other vibrating matter. 

 The behaviour of vibrating strings and the origin of beats are central to the problems of 

ordering sounds in a scale. 

 

1.1 – MODES OF VIBRATING STRINGS  

A string anchored at both extremities vibrates according to its normal modes, describing 

first a double C, then two Ss and then increasingly complex figures, a clear natural 

example of auto-similar forms produced by an increasing number of bellies and nodes. 

 

 

The number of nodes thus describes the wavelengths at which a string can vibrate.  

 

Given that the number of nodes must be a whole number, subsequent wavelengths have 

ratios of 1:2, 1:3, 1:4, …1:n. This specific and natural order, the harmonic series, is 

infinite and was described in scientific terms in the 18
th

 century by the physicist 

Sauveur
[2]

.  

 Since the frequency value is inverse to wavelength, a vibrating string produces a first 

frequency, the fundamental, together with infinite other frequencies of ever-diminishing 

amplitude, known as harmonic partials, or overtones, and expressed as whole multiples 

of the fundamental. Thus a string producing a first fundamental frequency sound 1, will 

theoretically simultaneously produce a second harmonic partial frequency 2,  a third 

partial frequency 3, and so on. 

The simple combination of two sounds thus translates into a complex juxtaposition 

between two fundamentals and their related partial frequencies. 

 

1.2 – COMBINATIONS OF SOUNDS AND BEATS 

Two sounds with wavelengths which relate to each other in ratios consisting of small 

integers, such as 2:1, 3:2 or 5:4, can in theory blend perfectly, since it is possible for the 

nodes of the respective waves to match each other. 

 However,  two frequencies of 1.25 (5:4) and 1.5 (3:2) cannot multiply in the same scale 

without producing node mismatches. The series of sounds deriving from the 3:2 ratio 
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(interval of fifth) will not match those deriving from the 5:4 ratio (interval of third) 

since these ratios are based on the prime numbers 2, 3, and 5, which do not have the 

same exponents. Three lines suffice to show this below (highlighted in red and blue). 

 
FREQUENCY VALUES *5/4          1                             1.25             1.5625                                  1.9531 
SOUNDS IN SCALE              0      1      2       3      4      5       6       7       8        9      10      11     12       
                                                                 THIRD 

FREQUENCY VALUES *2/1          1                                                                                                        2 
SOUNDS IN SCALE              0      1      2       3      4      5       6       7       8        9      10      11     12       
 

FREQUENCY VALUES *3/2: (4/3)  1           1.125      1.2656                  1.5           1.6875 

SOUNDS IN SCALE              0      1      2       3      4      5       6       7       8        9      10      11     12       
 

 

The pure third (5:4) does not reach the octave ratio (2:1): 1*(5:4)*(5:4)*(5:4) = 1.9531 

 

The pure fifth (3:2) and pure fourth (4:3) go beyond the third: 1*(3:2)/(4:3)*(3:2)/(4:3) 

= 1.265625 

The numeric differences from the exact arithmetic ratios give rise to beats, perceivable 

as a pulse-like variation in amplitude, which have a specific frequency. When two 

bellies match, the two sounds add to each other (constructive interference), and when 

they do not, the two sounds subtract from each other (destructive interference). When 

two sounds are close in frequency, beat frequency will be determined by the difference 

between the two frequencies
[3]

.  

 Generally, the greater the distance from a theoretical concurrence point of two 

fundamental or partial frequencies, the faster the frequency of the beat will be. 

 Indeed beats, which our auditory system perceives as rhythmic pulsation, faithfully 

reproduce the match and non-match between two bellies, and hence the precise 

proportions related to two different wavelengths.  

 

1.3 – HARMONIC RATIOS – CONSONANCE AND DISSONANCE 

 In the west, Pythagorus is believed to have first described harmonic ratios related to the 

length of a vibrating string: 1:2 for the octave and 2:3 for the fifth. 

 The numbers 1 and 2,  the unit and the dyad, seemed able to blend perfectly and close 

the interval known as dià pason (through all), the octave. 

 The pythagorean school saw these musical ratios as evidence of a universe which was 

fully harmonious or “consonant”, and which could be interpreted through the 

relationships between small numbers. The octave interval, theorised as a 2:1 ratio, has 

since been considered the most harmonious. 

 The history of music has always been influenced – and there is still debate over to what 

extent and how – by factors of harmonic consonance and dissonance
[4]

. This is because 

various levels of consonance distinguish sound combinations in the scale and arouse 

differing sensations and states of mind in the listener. We could also say that the 

converse statement is true: that it is listeners’ sensations that define the level of 

consonance between two sounds. In general consonance is synonymous for the listener 

with calm or relaxation, while dissonance is synonymous with turbulence or tension, 

thus producing the dichotomy between a static and a dynamic principle.  

 As with any debatable issue, consonance and dissonance have led to different 

approaches and theories relating to harmony and musical scales. 
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1.4 - MUSICAL SCALES 
Two facts have considerably affected the development of a solid theory of temperament: 

the apparent impossibility of combining, in scale, ratios deriving from prime numbers, 

and the great consonance deriving from the theoretical concurrence of partials 2, 3 and 5 

(and the related 2:1, 3:2 and 5:4 ratios). 

 The simple harmonic ratios of octave and fifth enabled the Pythagoreans to build the 

first diatonic scale, the succession of 7 notes on which the western system of music is 

built.  

 In the following centuries, renowned mathematicians such as Archytas, Philolaos, 

Didymus, and Ptolomy, contributed to the adoption of simple ratios for the other 

intervals. Thus the so-called natural scale
[5]

 came into being, formalised in the 16
th

 

century by Gioseffo Zarlino
[6]

, and built on the ratios of 2:1, 3:2, 4:3, 5:4 and 6:5, 

respectively for the octave, fifth, fourth, major third and minor third intervals.      

 As early as the 12th century, the use of poliphony and more complex combinations of 

sound raised the question still under debate today: how was it possible to make all 

chords melodious? 

 

1.5 - TEMPERAMENTS AND THE STATE OF THE ART 

Concepts of melody and harmony over the ages have influenced the search for new 

temperaments, which strove to match new styles of composition
[7]

 with broader sound 

horizons.  This happened as tonal music was formalised. 

 Moving away from a pure ratio involved a loss of consonance, while favouring such a 

ratio caused strong dissonance in at least one interval, known for this reason as the 

“wolf fifth”. The only solution seemed to be to make the best of a bad job, and avoid as 

far as possible those scale differences responsible for beats.  

 Within the pure octave, the scale initially calculated as a function of a 3:2 ratio 

(Pythagorean scale) was reordered as a function of a 5:4 ratio (meantone temperament). 

A variety of irregular temperaments in the 17
th

 century maintained the 2:1 ratio, aiming 

to facilitate modulations in all keys. Today more than a hundred temperaments are 

identifiable, for scales which contain from 12 to as many as 665 notes in an octave
[8]

. 

 The current system was developed at the end of the 17th century: it maintains the pure 

octave and distributes the so-called commas, or differences produced by the 3:2 and 5:4 

ratios, equally across 12 semitones. This equal temperament introduces a compromise: 

it multiplies the first frequency and subsequent frequencies by 2^(1/12) so that the 1
st
 

and 13
th

 frequency, in the 0-12 combination, have a ratio of 1:2. 

 In this way, the scale of sound values is formed of natural numbers which are multiples 

of 2, and, for the first time, of algebraic numbers in a logarithmic progression, that 

suggests Jakob Bernoulli’s spira mirabilis
[9]

 and can also contain the 5^(1/2) component 

of the golden ratio (section 4.3) . 

 There is still debate between the supporters and detractors of this solution. There is no 

doubt, however, that all differences are subject to partial 2,  a solution which today may 

appear difficult to justify. 

 Here it is appropriate to look at the results of more recent studies describing 

inharmonicity, the phenomenon correlated to string rigidity.  
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1.6 – STRING INHARMONICITY 

The term inharmonicity describes the deviation of partial frequencies from the natural 

values of the harmonic series. String rigidity is one of the causes of this phenomenon. 

String length, diameter, density and tension all contribute to calculating inharmonicity. 

The phenomenon, discovered last century, obliges the 2:1 octave ratio to be stretched. 

 Railsback
[10]

 measured average deviation from the 2:1 ratio in the pianoforte; from the 

lower sounds, the curve gradually flattens toward the middle sounds, where the degree 

of inharmonicity is slight, and again grows as the notes become higher. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

RAILSBACK CURVE – 
 

String parameters vary in all instruments, and this means that correction of any 

theoretical order of frequencies in scale will be required. This may explain loss of 

momentum in the search for a semitone temperament able to reach beyond the 

limitations of equal temperament in terms of both logic and efficiency. 

 The chas octave deviation curve is in line with the Railsback curve, as shown below 

(section 4.2). 

 

2.0 - THE CHAS MODEL APPROACH – SEMITONE TO MICROTONE  

We know that pure ratios between small whole numbers determine harmonious sounds. 

 However building a chromatic scale as a function of ratio 3:2 creates excessively high 

frequencies for the  thirds and octaves, just as ratio 5:4 creates frequencies which are 

excessively low for fifths and octaves (section 1.2). In other words, pure fifths and 

thirds do not help the octave. 

 So it remains to be understood with what logic the pure octave could help fifths and 

thirds. 
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We also know that string rigidity causes a deviation of scale frequencies from pure 

ratios (section 1.6). 

  

Thus two questions arise. The first: is it correct to theorise that the octave interval must 

have a 2:1 ratio? The second: which temperament model today is reliable in theoretical 

terms and is commonly applied in the practice of tuning? 

  

We see that although equal temperament finds a compromise between ratios 3:2 and 

5:4, it bases distribution of frequencies on the pure octave, that is the 2:1 ratio, a 

proportion with no logical or practical justification. 

 

The chas model approach starts from the traditional chromatic scale, but brings 

innovation to the theory and practice of tuning by recognising that beats are as natural 

for octaves as they are for the other intervals. Octaves, too, can and must be tempered, 

exactly as fifths and thirds have been. Thus the need arises to combine partials 2, 3 and 

5  in a new set. 

 

It is the differences and therefore the beats that constitute the real potential of the chas 

model. 

 A set of sounds in any scale, chromatic or of any other type, can achieve extraordinary 

resonance by drawing on the potential of proportional beats, a resource that every 

element which is part of the sound set can share to the full. 

 Purity no longer derives from a single combination or from a pure ratio, but from a new 

set which is pure because it is perfectly congruent and coherent. 

 The sounds in the scale all give up a small part of their pure partial value for the benefit 

of this set which is now harmonic and dynamic since it is the result of a natural, 

intrinsic correlation between frequencies and beats frequencies.  

 In conceptual terms, the model is trans-cultural; it also responds to a new requirement 

on the contemporary music scene, by providing an algorithm which can give form to all 

kinds of microtonal sound structures. The model provides a correct logical approach to 

ordering a scale system and a sample of proportionality from which an infinite variety 

of new sound combinations can be drawn, to create new music compounds. 

   

3.0 - DESCRIPTION OF THE CHAS MODEL 

The chas model discards two unjustified assumptions: that the range of the scale module 

must be 12 semitones, and that the octave, the 12th semitone, must be double the first 

note. 

 The system develops from the following observations: 

 

Firstly, pure intervals are not essential: slight frequency deviations from pure harmonic 

ratios do not upset the ear. In addition, string rigidity causes inharmonicity (section 1.6), 

making the partials higher and consequently never calculable in pure proportion.    

 

Secondly, differences translate into beats (section 1.2) and these determine the 

harmoniousness of two or more simultaneous sounds. Beats frequencies produce a 

specific rhythm and this rhythm expresses the effect of combinations of fundamentals 

and partials in time. Hence a proportional ratio must apply for the frequencies as well 
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as for the differences between the partials of the harmonic series and real scale 

frequencies.  

 

Thirdly, a 12-semitone module is not sufficient. This is clearly demonstrated by the fact 

that harmonic 3 corresponds to a sound situated beyond semitone 12, at semitone 19. 

Moreover, when commas are distributed only within a pure octave, the differences of 

intervals greater than an octave will always occur in proportion 2 (section 4.3). 

 

Fourthly, a double 12-semitone module is necessary
[11]

. A two-octave module gives the 

scale set an intermodular quality. From the minor second degree to the nth degree, all 

intervals will now find their exclusive identity. 

 

The chas scale model starts, then, from these fundamental principles: 

the sound scale constitutes a system-set that is dynamic since it is defined in time by the 

specific rhythm of beats. 

 In this set the ratio must be identifiable both in the single elements forming the scale 

foreground, as well as in the differences arising from the infinite combinations of its 

elements, and forming the background. 

 Each frequency or element in the scale must contain and bear witness to this bi-frontal 

ratio, which is pure in that it is natural, exactly proportional and perfectly synchronic.  

The solution to how to proceed without the pure 2:1 constant arises from analysis of 

ratio 3:2. This ratio marks off a span of 7 semitones in the octave module, the small set 

known as the dominant. It consists of 8 sounds and can create all the scale intervals: it 

contains ratios 6:5 and 5:4, and with 4:3, by convention, also the 2:1 ratio.  

 In a scale of sounds, the slightest deviation from the 3:2 ratio, which gives the first 

interval from which the semitone matrix can be extracted, will resound through all the 

other intervals, just as the slightest variation in a single lever modifies an entire system 

of levers. This fact suggested the existence of a correct differences constant. 

 Accurate synchronisation of beats, achieved through direct experimentation, led to two 

new coordinates: the differences produced by the two combinations 0-19 and 0-24, 

related to harmonics 3 and 4, now calculable in a ratio of 1:1. 

 

3.1 - THE CHAS ALGORITHM 

In the chromatic scale, just as 2 is the harmonic partial corresponding to semitone 12, so 

3 corresponds to semitone 19, 4 to semitone 24, and 5 to semitone 28.  

 Where the equal temperament formula 2^(1/12) employs harmonic partial 2 and its 

related scale position 12, the chas algorithm employs an equation between two algebraic 

expressions with 2 different harmonic partials, 2 related scale positions, and 2 variables:  

∆ and s.  The ∆ variable stands for the differences and appears in both expressions; the 

scale positions 19 and 24 determine period, module size and interval size: 

)24/1()^4()19/1()^3( ∆+=∆−                                                                       (1) 

 

3.2 - THE DELTA VARIABLE 

 

In the chas algorithm, the ∆ variable proportions the differences of two intervals, 

8th+5th (12
th

 degree) and 8
th

+8
th

 (15
th

 degree), that is, combinations 0-19 and 0-24. 

These intervals have constant differences from their respective partials 3  and  4. 
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 The delta variable obtains two differences, in a 1:1 ratio, equal in value and opposite in 

sign, one negative and one positive (0-19 negative and 0-24 positive). 

A solution to the chas equation is: 

 

...6460021253899.0=∆                                                                                     (2) 

 

Substituting this value for  ∆  in (1) gives the incremental factor for frequencies in the 

scale: 

 

...5010594865443.1)24/1()^6460021253899.04()19/1()^6460021253899.03( =+=−

                                                                                                                            (3)                                                            

 

The incremental factor is the constant ratio in the scale; delta represents the differences 

in constant ratio 1:1. 

 The 1:1 proportion of the differences related to intervals 0-19 and 0-24  is constant for 

all degrees 12 and 15. Their ratio, in this exponential scale, expresses a constant of 

linear proportionality which we find in the chromatic combinations (1-20, 1-25) – (2-21, 

2-26) – (3-22, 3-27) etc.  

 The chas model uses the delta variable to extend the distances between the natural 

values of the harmonic series. 

 The delta variable relates to partial frequencies in such a way as to make every sound in 

the scale equally powerful and thus perfectly adapted for every interval, and ready for 

any combination. In this system every frequency becomes resonance potential. 

 Two homogeneous size classes are obtained: frequencies and differences. Any 

combination of frequencies obtains differences with just one set ratio. 

 

3.3 - THE  S VARIABLE 

Equal temperament’s geometric progression, when clear of unjustified premises, 

suggested infinite exponential curves related to oscillations of partial values, and 

identifiable through a second variable, expressing an “elastic” potential and enabling the 

system to evolve. 

 When we add in the s variable, a rational number, (s from the concepts of stretching, 

swinging and spinning), equation (1) becomes: 

 

)24/1())^*(4()19/1()^3( s∆+=∆−                                                               (4) 

  

The s variable can change the delta value and swing the logarithmic scale from ratio 3:2 

to ratio 5:4, including ratio 2:1 of the equal temperament scale. The variable affects the 

distances and proportion of scale values related to partials 2, 3, 4 and 5, and obviously 

also the distances and logarithmic differences of all possible sound combinations.  

 

If s is a fraction (s/s1), the delta values will change so that: 

 

)24/1())^1/*(4()19/1()^3( ss∆+=∆−                                                          (5) 
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equals in value:  

 

)24/1())^*(4()19/1())^1*(3( ss ∆+=∆−                                                      (6) 

In fact, in equation (5) we can select values for s and s1, and calculate the value for 

delta that makes the equality true. In equation (6), we keep the same values of s and s1 

and compute a different delta value that makes the equality true. The resulting 

incremental factor will not change. 

 

s < 0 scale value of semitone 12 less than ratio 2:1  

        Incremental factor < 1.0594630943593..(equal temp. value) stretches to (5:4)^(1/4) 

 

s = 0 scale value of semitone 12 has ratio 2:1  

        Incremental factor (equal temperament) = 1.0594630943593… 

 

0 > s < 1  scale value of semitone 12 greater than ratio 2:1 

 

s = 1 scale value of semitone 12 has chas ratio 2.00053127693…:1 

        Incremental factor (chas) = 1.0594865443501… 

 

s > 1 scale value of semitone 12 greater than ratio 2.00053127693…:1 

        Incremental factor > 1.0594865443501… (chas value), stretches to (3:2)^(1/7). 

 

The two variables ∆ and s push not only the ratio for partial 2 but also for 5:4, 4:3, 3:2, 

3 and 4, a mix of natural and rational numbers, thus translated into a new set of scale 

values.  

 For s = 1 the scale values related to partials 3 and 4 add up to 7. 

 The infinite scale oscillations are all within the chas attractor which, in this version, has 

a period of 19*24 = 456.  In a unique way, the figures 4, 5 and 6 correspond to the 

harmonic partials which form the first major triad. 

  

3.4 - CHAS SET: THE SYMMETRY OF BEATS 

Until now, the pure octave has generally consisted of a module of 13 elements, from 0 

to 12.  

The chas model opens up a module of 49 sound elements, in a semitonal order, from 0 

to 48, whose scale ratio is:  

(4 + ∆) 
2
 

  

With the ratios (3 – ∆) and (4 + ∆), the combinations between elements 0-19, 5-24 and 

0-24 obtain constant, symmetrical beats frequencies with respect to the combinations 

between elements 29-48, 24-43 and 24-48. The module appears perfectly balanced: the 

delta variable makes element 24 a stable centre in absolute terms:  

 

         0 *(3 – ∆) → 19 →  24  → 29 *(3 – ∆) → 48 

 

                                0  → 5  *(3 – ∆)  →  24  *(3 – ∆) → 43 → 48 

 

                                 0 *(4 + ∆)  →           24  *(4 + ∆) →          48 
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                                                         5 →  24→ 29 

                                                         I--*(4 + ∆)--I 

                                                                    
                                                        12 → 24→ 36 

                                                         I--*(4 + ∆)--I 

                                                                    

                                                        19 → 24→ 43 

                                                        I--*(4 + ∆)—I 

  

Combinations                          0→5→12→19→24→ 29→36→43→48     Ratios 

 

0 – 5, 19-24, 24-29 e 43-48      I----I             I----IOI----I               I-----I  (4 + ∆)/(3 – ∆) 

 

0 –19  e 29-48                           I---------------I      O       I-----------------I     (3 – ∆) 

 

5 – 24 e 24- 43                          I---------------------O-----------------I             (3 – ∆) 

 

0 – 24 e 24- 48                          I---------------------O-----------------------I     (4 + ∆) 

         

5 – 29 e 19- 43                                I----------I===O===I-----------I             (4 + ∆) 

 

      12 –36                                               I----------O----------I                       (4 + ∆) 

 

       0 – 48                                O---------------------------------------------O    (4 + ∆) 
2
. 

 

Figure showing the equilibrium and stability of the set described by the chas model 
[12]

 

 

 

3.5 - EFFECT OF  ±DELTA ON INCREMENTAL RATIOS 

x represents scale elements (spaced in cents), y represents incremental ratios of scale per 

degree elevation. List of scale degrees (in ascending order), of ratios, and of number of 

related elements: 

 

4th    = (4 + ∆) / (3 – ∆)                      no. elements              6  - span from  0  to   5 

7thm  = (4 + ∆)^
2
 / (3 – ∆)^

2
                     “      “                 11 -    “    “        0   “ 10 

   

  9th     = (3 – ∆)^
2 

/ (4 + ∆)               no. elements              15 – span from 0  to 14 

12th     = (3 – ∆)                                         “      “                 20 -    “     “      0   “ 19 

15th     = (4 + ∆)                                         “      “                 25 -    “    “       0   “ 24 

18th     = (4 + ∆)^
2
 / (3 – ∆)                        “      “                 30 -    “    “       0   “ 29 

 

23rd     = (3 – ∆)^
2                                     

no. elements              39 - span from 0  to 38 

29th     = (4 + ∆)^
2             

                        “      “                 49 -    “    “      0  to  48
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Effect of delta on incremental scale ratios 

X = scale elements 

Y = incremental ratios  

 

 
 

4.0 - THE SEMITONE SCALE –  

IN ALL FIGURES:  s = 1 

TABLE 1 

In the foreground, in the values representing scale frequencies, we find the incremental 

logarithmic ratio: 1.0594865443501… 

 

             Chas scale    Scale of Frequencies        Cents 

Degrees        chas values          chas values      Offset in Cents  Semitone in Cents 

I 1.00000000000000 440.00000000000              0.00   

  1.05948654435010 466.17407951404              0.04 100.038318440222… 

 1.12251173765892 493.90516456992              0.08 100.038318440222… 

IIIm 1.18928608192467 523.28587604686              0.11 100.038318440222… 

III 1.26003260118204 554.41434452010              0.15 100.038318440222… 
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IV 1.33498758639483 587.39453801372              0.19 100.038318440222… 

IV+ 1.41440138465974 622.33660925028              0.23 100.038318440222… 

V 1.49853923535714 659.35726355714              0.27 100.038318440222… 

 1.58768215604158 698.58014865830              0.31 100.038318440222… 

 1.68212788103081 740.13626765356              0.34 100.038318440222… 

 1.78219185582829 784.16441656445              0.38 100.038318440222… 

 1.88820829070040 830.81164790818              0.42 100.038318440222… 

VIII 2.00053127692738 880.23376184805              0.46 100.038318440222… 

 2.11953596945608 932.59582656068              0.50 100.038318440222… 

IX 2.24561983990476 988.07272955810              0.54 100.038318440222… 

 2.37920400410472 1046.84976180608              0.57 100.038318440222… 

X 2.52073462861283 1109.12323658965              0.61 100.038318440222… 

 2.67068442089264 1175.10114519276              0.65 100.038318440222… 

 2.82955420814119 1245.00385158213              0.69 100.038318440222… 

XII   (3-∆) 2.99787461003480 1319.06482841531              0.73 100.038318440222… 

 3.17620781098067 1397.53143683150              0.77 100.038318440222… 

 3.36514943779371 1480.66575262923              0.80 100.038318440222… 

 3.56533054906974 1568.74544159069              0.84 100.038318440222… 

 3.77741974289974 1662.06468687589              0.88 100.038318440222… 

XV  (4+∆) 4.00212538996469 1760.93517158446              0.92 100.038318440222… 

   

 

Graph 1 - Chas scale 

 

Chas - Scala unitaria dei valori-frequenza

asse x: gradi semitonali - asse y: frequenze
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Chas scale frequency values 

x = semitone degrees 

y = frequencies 

 

 

 

4.1 -  CHAS DIFFERENCES 

In the background we find the difference values in 1:1 proportion: ± 0.002125389965… 

TABLE 2 - Differences between chas scale values and related partials 2, 3 and 4 
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Partial 2 differences Partial 3 differences Partial 4 differences 

0.0005312769 -0.002125389965 0.002125389965 

0.0005628808 -0.002251822070 0.002251822069 

0.0005963646 -0.002385775183 0.002385775182 

0.0006318403 -0.002527696704 0.002527696704 

0.0006694262 -0.002678060646 0.002678060646 

0.0007092481 -0.002837369220 0.002837369219 

0.0007514388 -0.003006154510 0.003006154509 

0.0007961393 -0.003184980253 0.003184980253 

0.0008434989 -0.003374443722 0.003374443722 

0.0008936757 -0.003575177719 0.003575177718 

0.0009468374 -0.003787852686 0.003787852686 

0.0010031615 -0.004013178953 0.004013178952 

0.0010628361 -0.004251909101 0.004251909100 

0.0011260606 -0.004504840480 0.004504840479 

0.0011930460 -0.004772817873 0.004772817872 

0.0012640162 -0.005056736315 0.005056736314 

0.0013392081 -0.005357544085 0.005357544083 

0.0014188730 -0.005676245868 0.005676245867 

0.0015032769 -0.006013906120 0.006013906119 

0.0015927016 -0.006371652613 0.006371652612 

 

Graph 2: Chas differences curves related to partials 2, 3, and 4 

Chas - Differenze delle combinazioni 0-12, 0-19, 0-24

asse x:gradi semitonali - asse y: differenze

-0,0100000000
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-0,0020000000
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Chas – Differences of combinations 0-12, 0-19, 0-24 

x = semitone degrees 

y = differences 
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4.2 – COMPARISON BETWEEN RAILSBACK CURVE AND CHAS OCTAVE 

CURVE 
 

 

 

 

 

 

 

 

 

 

-  

RAILSBACK  CURVE- 

TABLE 3 

 
    EQUAL VALUES             CHAS VALUES           CHAS DEVIATION (Hz)     CHAS DEVIATION (CENTS) 

 

 

Graph 3 – Chas deviations from ratio 2:1 (Hz)  

SCOSTAMENTO DEI VALORI CHAS DAL RAPPORTO 2:1 

 ASSE X: OTTAVE - ASSE Y: DIFFERENZE

-0,5000000000

0,0000000000

0,5000000000

1,0000000000

1 2 3 4 5 6

DIFFERENZE

DI OTTAVA

CHAS

 
x = octaves 

y = differences 

 

 

 

 

 

 

 

 

 

 

 

 

55.0000000 54.956192929 -0.0438070708             -1.37 

110.0000000 109.941582816 -0.0584171842             -0.91 

220.0000000 219.941575058 -0.0584249421             -0.45 

440.0000000 440.000000000 0.0000000000              0.00 

880.0000000 880.233761848 0.2337618481 0.46 

1760.0000000 1760.935171585 0.9351715846 0.92 
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Graph 4 – Chas deviations from ratio 2:1 (cents) 

SCOSTAMENTO IN CENTS DEI VALORI CHAS DAL RAPPORTO 2:1  ASSE X: OTTAVE - 

ASSE Y: DIFFERENZE 

-1,5

-1

-0,5

0

0,5

1

1,5

A1 A2 A3 A4 A5 A6

Serie1

 
x = octaves y = differences 

 

 

4.3 – COMPARISON BETWEEN EQUAL TEMPERAMENT AND CHAS 

DIFFERENCES FOR RATIOS 4:3 AND 3:2  

In the equal temperament scale, based on a ratio of  2, octave intervals have zero 

differences. As a direct consequence, the differences for partials other than 2 have ratios 

which are multiples of 2. 

 The differences, divided by themselves, have a quotient of 2 for combinations 0-12,  a 

quotient of  4 for combinations 0-24, and so on. With the exclusion of partial 2 and its 

multiples, the difference curves relating to all the other partials move away from each 

other exponentially in a monotone curve. 

 

Graph 5 - Exponential divarication of equal scale differences. 

 

Equal temperament - Octave 2:1 – divarication of differences 

x = degrees 1, 4, 5, 8, 11, 12, 15, 18, 19, 22, 26, 29 

y = differences  

 

In the chas frequency scale the differences curves describe the exact form ordered by 

the incremental ratio and by the difference ratio.  

This substantiates the optimisation of beats and the absolute coherence of the chas form. 

 

 

 

T. Equabile - Ottava 2:1 - divaricazione delle differenze

asse x: gradi 1°, 4°, 5°, 8°, 11°, 12°, 15°, 18°, 19°, 22°, 25°, 26°, 29°

asse y: differenze  

-0,015

-0,01

-0,005

0

0,005

0,01
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1 2 3 4 5 6 7 8 9 10 11 12 13
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Graph 6 - Exponential progression of chas differences 

Chas - Differenze

asse x: gradi 1°, 4°, 5°, 8°, 11°, 12°, 15°, 18°, 19°, 22°, 25°, 26°, 29° asse y: 

differenze

-0,005

0

0,005

0,01

0,015

0,02

0,025

1 2 3 4 5 6 7 8 9 10 11 12 13

 
Chas differences 

x = degrees 1, 4, 5, 8, 11, 12, 15, 18, 19, 22, 26, 29    y = differences 

 

4.4 – SCALE VALUES IN RATIO 1:2, 1:4, 1:8 ETC AND RELATED CHAS 

VALUES 

TABLE 4:  Differences 

Natural octaves 2:1   Chas octaves  Differences 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 1 0     DIFF: 00 

2 2.000531277 0.000531277     DIFF: 01 

4 4.002125390 0.002125390     DIFF: 02 

8 8.006377018 0.006377018     DIFF: 03 

16 16.017007639 0.017007639     DIFF: 04 

32 32.042524746 0.042524746     DIFF: 05 

64 64.102072949 0.102072949     DIFF: 06 

128 128.238201856 0.238201856     DIFF: 07 

256 256.544533718 0.544533718     DIFF: 08 

512 513.225363647 1.225363647     DIFF: 09 
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Graph 7 – Differences (in bold above) of chas values, related to partials 2:1, 4:1, 8:1 

etc. 

asse x: gradi 1°-8°-15°-22°-29°-36°-43°-50°-57°-64°

asse y:differenze dal valore 2:1, *2, *4 ecc.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1 2 3 4 5 6 7 8 9 10

Serie1

 
x = degrees 1, 8, 15, 22, 29, 36, 43, 50, 57, 64 

y = differences from value 2:1, *2, *4 etc 

 

TABLE 5: Deviation of chas octave values in scale where A4 = 440.0 Hz 

 

Octaves in ratio 2 Octaves in CHAS ratio  Deviation 

27.5 27.4707991637 -0.02920083627

55.0 54.9561929292 -0.04380707077

110.0 109.9415828157 -0.05841718430

220.0 219.9415750579 -0.05842494211

440.0 440.0000000000 0.00000000000

880.0 880.2337618481 0.23376184808

1760.0 1760.9351715846 0.93517158460

3520.0 3522.8058873966 2.80588739660

 

 

4.5 – SEQUENCE OF QUOTIENTS DERIVING FROM DIFFERENCES 

BETWEEN PROGRESSION IN RATIO 2 AND PROGRESSION IN CHAS 

RATIO 2.0005312…  

Generally if in a logarithmic scale we deviate from 2^(1/12), the combinations 0-12, 0-

24, 0-36 etc. will produce differences for ratios 1:2, 1:4, 1:8, etc.  

 If we divide these differences by each other, we see that the quotients return values 

close to the n/n+1 sequence of ratios typical of a vibrating string. 

 In the chas model the quotients of the differences for ratio 1:2, 1:4, 1:8 etc. return 

values which are very close (7th decimal point) to n/n+1 ratios. Every scale frequency 

value, in infinite combinations, returns these harmonic quotients for itself and for the 

set.  

 Using Table 4 (section 4.4), we divide the 01 difference by the 02 difference, the 02 

difference by the 03 difference and so on, to obtain the quotients: 
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DIFF. 01/ DIFF. 02  =    0.000531277 :   0.002125390 = q00 0.249973857  

DIFF. 02/ DIFF. 03  =    0.002125390 :   0.006377018 = q01  0.333289064  

DIFF. 03/ DIFF. 04  =    0.006377018 :   0.017007639 = q02  0.374950195  

DIFF. 04/ DIFF. 05  =    0.017007639 :   0.042524746 = q03  0.399946872  

DIFF. 05/ DIFF. 06  =    0.042524746 :   0.102072949 = q04  0.416611323  

DIFF. 06/ DIFF. 07  =    0.102072949 :   0.238201856 = q05  0.428514501  

DIFF. 07/ DIFF. 08  =    0.238201856 :   0.544533718 = q06  0.437441884  

DIFF. 08/ DIFF. 09  =    0.544533718 :   1.225363647 = q07  0.444385403  

DIFF. 09/ DIFF. 10  =    1.225363647 :   2.723392125 = q08  0.449940218  

 

After further dividing the quotients, we can compare the results with the n/n+1 values in 

table 6: 

q00 : q01    =   0.249973857 : 0.333289064                                                      

q01 : q02    =   0.333289064 : 0.374950195                                                     

q02 : q03    =   0.374950195 : 0.399946872                                                     

q03 : q04    =   0.399946872 : 0.416611323                                                     

q04 : q05    =   0.416611323 : 0.428514501                                                     

q05 : q06    =   0.428514501 : 0.437441884                                                     

q06 : q07    =   0.437441884 : 0.444385403                                                     

q07 : q08    =   0.444385403 : 0.449940218                                                     

  

TABLE 6: Comparison between quotients 

   qn : qn1  Chas                              n/n+1 – fraction                 n/n+1 – decimal value 

 

 

 

 

 

 

 

 

 

Now we see that the logarithmic scales built on the ratios 3:2, 5:4, 3:1 and 5:1 also 

determine differences from ratios 2:1, 4:1, 8:1 etc. which return the same quotient 

sequence.   

((3/2)^(1/7)) = 1.0596340226671…                       ((5/4)^(1/4)) = 1.0573712634406… 
Differences from ratios 2:1, 4:1 etc. -  Quotients     Differences from ratios 2:1, 4:1 etc. – Quotients 

0.0038754738 0.249758017 0.750000234-0.0468750000 0.252964427 0.750035151

0.0155169145 0.333010586 0.888889166-0.1853027344 0.337270095 0.888930544

0.0465958596 0.374636792 0.937500293-0.5494194031 0.379411077 0.937543924

0.1243760907 0.399612453 -1.4480847716 0.404686188 

0.3112417786  -3.5782905696  

3^(1/19) = 1.05952606473828…                              5^(1/28) = 1.0591640081942… 
Differences from ratios 2:1, 4:1 etc. - Quotients      Differences from ratios 2:1, 4:1 etc. – Quotients 

0.00142693 0.24991085 0.75000003 -0.00676468 0.25042351 0.75000072 

0.00570977 0.33321445 0.88888893 -0.02701298 0.33389769 0.88888974 

0.01713542 0.37486624 0.93750004 -0.08090196 0.37563454 0.93750090 

0.04571076 0.39985731 -0.21537411 0.40067646 

0.11431768  -0.53752623  

0.750000004408948 3/4    0.750000000000

0.888888894114416    8/9  0.888888888889

0.937500005511253   15/16 0.937500000000

0.960000005643583   24/25 0.960000000000

0.972222227937747   35/36 0.972222222222

0.979591842493441   48/49 0.979591836735

0.984375005786949   63/64 0.984375000000

0.987654326793812   80/81 0.987654320988



“Quaderni di Ricerca in Didattica”, n. 19, 2009. 

G.R.I.M. (Department of Mathematics, University of Palermo, Italy) 

 

A. Capurso, A new model of interpretation of some acoustic phenomena circular harmonic system 76 

 

If in a semitonal logarithmic scale we wanted to favour partial 5, we would have to take 

value 5 and position 12+12+4 = ordinal 28, so the formula will be 5^(1/28) = 

1.059164008…In this scale, as incremental ratio of degree 9 of the scale (element 14), 

we find the 5^(1/2) component of the gold section. In distances of octaves, (5*2)^(1/40), 

(10*2)^(1/52) etc. this ratio modifies towards 2^(1/12). 

 

If in a different logarithmic scale, we wanted to favour partial 3 we would have to take 

value 3 and position 12+7 = ordinal 19, so the formula will be 3^(1/19) = 

1.059526065… This ratio, too, in distances of octaves, (3*2)^(1/31), (6*2)^(1/43) etc, 

modifies towards 2^(1/12). 

 

The formula 2^(1/12), at distances of octaves (position+12) does not change: 4^(1/24) = 

8^(1/36) = 16^(1/48) = 1.059463094… 

 

 

The value 2 and the positional increment +12, to infinity,  modify ratios 5 and 3 to make 

them converge on ratio 2. The two diverging series deriving from 3 and 5 find a 

convergence factor in 2 which in the chas model is expressed in the curves related to the 

difference values (section 4.3, graph 6). 

 The sequence of difference quotients cannot occur in the equal temperament series 

calculated in a 2:1 proportion because pure octaves do not produce any difference. 

 

4.6 COMPARISON BETWEEN RATIO 9:8 SCALE VALUES AND CHAS 

VALUES 

TABLE 7: Differences values 

  Natural ratio 9:8              Chas ratio              Differences 
1.125 1.122511738 -0.002488262 

2.250 2.245619840 -0.004380160 

4.500 4.492432726 -0.007567274 

9.000 8.987252178 -0.012747822 

18.000 17.979279077 -0.020720923 

36.000 35.968110132 -0.031889868 

72.000 71.955329294 -0.044670706 

144.000 143.948886799 -0.051113201 

288.000 287.974250331 -0.025749669 

576.000 576.101494758 0.101494758 

1152.000 1152.509058989 0.509058989 

2304.000 2305.630419534 1.630419534 

4608.000 4612.485767480 4.485767480 

9216.000 9227.422042560 11.422042560 

18432.000 18459.746402221 27.746402221 
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Graph 8 - Chas differences (in bold above) for ratio 9:8 

 

x: degrees 2, 9, 16, 23, 30, 37, 44, 51, 58, 65 

y: differences from 9/8, *2, *4 etc. 

 

The difference curve for these intervals inverts its progression at degree 51. 

This inversion is determined by the s variable.  The same effect, we will see below, is 

found in degrees relating to ratios 3:2, 3:1, etc.  

 Thus the chas model remedies the exponential divarication of equal scale differences 

(section 4.3 graph 5). 

 

4.7 – COMPARISON BETWEEN RATIO 4:3 SCALE VALUES AND RELATED 

CHAS VALUES  

 

TABLE 8: Differences values 
 

Natural ratio 4:3      Chas ratio             Differences 
1.333333333 1.334987586 0.00165425306 

2.666666667 2.670684421 0.00401775432 

5.333333333 5.342787715 0.00945438185 

10.666666667 10.688413931 0.02174726393 

21.333333333 21.382506370 0.04917303636 

42.666666667 42.776372773 0.10970610655 

85.333333333 85.575471649 0.24213831610 

170.666666667 171.196407579 0.52974091205 

341.333333333 342.483767871 1.15043453794 

682.666666667 685.149489491 2.48282282462 

1365.333333333 1370.662983148 5.32964981457 

2730.666666667 2742.054168014 11.38750134683 

5461.333333333 5485.565126339 24.23179300589 

10922.666666667 10974.044607262 51.37794059540 

21845.333333333 21953.919472021 108.58613868762 

 

asse x: gradi 2°-9°-16°-23°-30°-37°-44°-51°-58°-65°

asse y:differenze dal valore 9/8, *2, *4 ecc.

-0,060000

-0,040000

-0,020000

0,000000

0,020000

0,040000

0,060000

0,080000

0,100000

0,120000
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Graph 9 - Chas difference values (in bold above) for ratio 4:3 

asse x: gradi 4°-11°-18°-25°-32°-39°-46°-53°-60°-67°

asse y:differenze dal valore 4/3, *2, *4 ecc.

0,000000

0,500000

1,000000

1,500000

2,000000

2,500000

3,000000

1 2 3 4 5 6 7 8 9 10

 
x: degrees 4, 11, 18, 25, 32, 39, 46, 53, 60, 67 

y: differences from 4/3, *2, *4, etc 

 

 

4.8 – COMPARISON BETWEEN RATIO 3:2 SCALE VALUES AND RELATED 

CHAS VALUES  

TABLE 9: Differences values 

 

 Natural ratio 3:2           Chas ratio            Differences 
1.50 1.4985392354 -0.0014607646

3.00 2.9978746101 -0.0021253899

6.00 5.9973419221 -0.0026580779

12.00 11.9978700941 -0.0021299059

24.00 24.0021143805 0.0021143805

48.00 48.0169805324 0.0169805324

96.00 96.0594713822 0.0594713822

192.00 192.1699769522 0.1699769522

384.00 384.4420493932 0.4420493932

768.00 769.0883440050 1.0883440050

1536.00 1538.5852869581 2.5852869581

3072.00 3077.9879888917 5.9879888917

6144.00 6157.6112420082 13.6112420082

12288.00 12318.4938812442 30.4938812442

24576.00 24643.5322949622 67.5322949622
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Graph 10 - Chas differences (above in bold) for ratio 3:2. The difference curve for ratio 

3:2 inverts its progression at degree 19. 

 

asse x: gradi 5°-12°-19°-26°-33°-40°

asse y: differenze dal valore 3/2, *2, *4 ecc.

-0,005000

0,000000

0,005000

0,010000

0,015000

0,020000

1 2 3 4 5 6

 
x: degrees 5, 12, 19, 26, 33, 40 

y: differences from 3:2, *2, *4 etc 

 

 

 

 

4.9   THE TORSION OF THE CHAS FORM  

 

 

TABLE 10:  Differences related to natural harmonic values 

 

       2:1             9:8               5:4        4:3               3:2                5:3               15:8        

0 -0.002488 0.010033 0.001654 -0.001461 0.015461 0.013208

0.000531 -0.004380 0.020735 0.004018 -0.002125 0.031816 0.027420

0.002125 -0.007567 0.042808 0.009454 -0.002658 0.065420 0.056846

0.006377 -0.012748 0.088296 0.021747 -0.002130 0.134417 0.117707

0.017008 -0.020721 0.181952 0.049173 0.002114 0.275988 0.243447

0.042525 -0.031890 0.374626 0.109706 0.016981 0.566291 0.502961

0.102073 -0.044671 0.770702 0.242138 0.059471 1.161217 1.038066

0.238202 -0.051113 1.584315 0.529741 0.169977 2.379721 2.140436

0.544534 -0.025750 3.254476 1.150435 0.442049 4.874046 4.409516

1.225364 0.101495 6.680690 2.482823 1.088344 9.977360 9.076387

2.723392 0.509059 13.704946 5.329650 2.585287 20.413377 18.667621

5.992259 1.630420 28.097209 11.387501 5.987989 41.744313 38.365212

13.075756 4.485767 57.569414 24.231793 13.611242 85.324228 78.790910

28.334570 11.422043 117.889551 51.377941 30.493881 174.320639 161.703888

61.036415 27.746402 241.282011 108.586139 67.532295 355.987592 331.654100
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As well as the differences produced by the combination of two sounds, we can now 

picture also a flow of differences, or flows of synchronic beats, deriving from infinite 

and contemporaneous combinations of sounds. The fundamentals, with the differences 

related to harmonic partials 3 and 4, determine helixes of differences on a third plane. 

These helixes cause the torsion in this kind of  set. The equal proportion 2:1, with its 

monotone differences curves, blocks this phenomenon.  

 

Graph 11 – The octave difference from 2:1, at degree 57 exceeds the fourth, 4:3, at 

degree 53 (highlighted in green). 
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Graph 12 – the difference of fifth, 3:2, at degree 89 exceeds the difference of octave, 

2:1, at degree 85 (highlighted in yellow). 
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Graph 13 - Combinations of differences values for various scale degrees showing 

torsion of set described by chas model. 

Chas - combianzioni delle differenze per 3 ottave

asse x: gradi di scala - asse y: valori di differenza
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CONCLUSIONS 

 

 

The chas model highlights the fundamental relationship between frequencies and 

harmonic partial differences. In the chas frequency scale, the deviation of octaves from 

partial 2 (section 4.2) draws a curve similar to the average inharmonicity curve observed 

in fixed tuning instruments. This suggests that for the octave interval and more 

generally for partial 2 it is finally possible to adopt a natural standard curve of 

reference. 

 This system sheds light on a harmonic sequence, the series of n/n+1 values (section 

4.5) which the harmonic partial values 3 and 5 also converge towards in their respective 

logarithmic scales. The n/n+1 sequence, like a spine, supports a network or rather a flow 

of differences, waves of synchronic beats. These differences describe a specific form 

which might aptly be called a “chorale”, with respect to the overall effect of partial 

sounds. 

 A “chorale” draws flows of beats, the effect of the infinite combinations between 

fundamental and partial frequencies in vibrating strings: fundamentals and partials 

which are manifest in nature with precise proportional ratios and always in the same 

order. This suggests that the chas model may open the way towards further research 

both in relationships between energy, sound and matter, and in those areas where 

resonance, beat, spin and other phenomena related to waves are studied.  

 We see here the helix effect and the torsion of the set (section 4.9) determined by the 

natural interweaving of the differences from harmonic partials 2, 3 and 5.  
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It is the partials, in this proportional scale (where s = 1), that combine to determine: 

the difference on partial 2: 

0.0005312769273… 

 

the ±∆ difference on partials 3 and 4:   

 

0.0021253899646… 

 

and the incremental ratio in the chas semitonal scale: 

 

1.0594865443501… 

 

In this thirty-year-long research, the numbers dispel all doubt concerning the simplicity 

and power of this long-awaited entity.  It is still believed that opening up a harmonic 

scale with just one ratio is impossible, like flattening a hemisphere on a plane. Yet we 

see how the superparticulares n/n+1 values give rise to a dynamic, coherent, balanced 

and perfectly synchronic set. 

 The number PHI describes a proportion on a plane; a fractal, starting from discretional 

values, describes auto-similarity.  

 The chas model “chorale” expresses a continuously evolving set, proportionate and 

auto-similar, with the power of its fundamental sounds and partial differences 

interacting in the dimension of time. 

 

NOTES, REFERENCES AND LINKOGRAPHY: 

[1] - The links selected relate to Italian universities or international institutes.  

[2] - Joseph Sauveur - Principes d'acoustique et de musique -  Paris, 1701. 

[3] - Link: Università di Modena e Reggio Emilia -  Dipartimento di Fisica - Battimenti 

http://fisicaondemusica.unimore.it/Battimenti.html 

[4] - Link: Articolo di Gianni Zanarini - Docente di Fisica e Acustica Musicale Unibo 

Il divenire dei suoni: http://www.memex.it/SONUS/art8.htm 

[5] - Link: Università di Modena e Reggio Emilia -  Dipartimento di Fisica – Scala 

naturale 

http://fisicaondemusica.unimore.it/Scala_naturale.html 

[6] - Gioseffo Zarlino (1517-1590) – Istitutioni Harmoniche – Venezia, 1588. 

[7] - Link: Carmine Emanuele Cella – Ricercatore IRCAM - Sulla struttura logica della 

musica 

http://www.cryptosound.org/writings/music/files/StrutturaLogica.pdf 

[8] - Link: David J. Benson  – Music: A Mathematical Offering - University of 

Aberdeen – 2006  
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[11] – Referred to the traditional scale. 

[12] - In the case of a planet’s orbit calculated on a plane, the ratio between the 

distances from the sun of two planets which have orbit periods one double the other is  

1.5874 …, a value that, together with the Delian Constant 2^(1/3) we find in the 

logarithmic scale in ratio 2:1 ratio. In the chas scale the corresponding scale value is 

obtained from the delta effect on partials 3 and 4, is the result of ((4 + ∆)^(1/2)*(4 + 

∆)^3)/(3 – ∆)^4 = 1.5876… and has a difference  of 0.0002.    
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- GIANNI ZANARINI – CONSAPEVOLEZZE SCIENTIFICHE E PRATICHE 

COMPOSITIVE 

http://www.ulisse.sissa.it/biblioteca/saggio/2004/Ubib041001s002/at_download/file/Ubi

b041001s002.pdf 

- ALVISE VIDOLIN – CONSERVATORIO DI VENEZIA – MUSICA 

INFORMATICA E TEORIA MUSICALE – NUOVI SCENARI 

http://www.dei.unipd.it/~musica/Dispense/cap1.pdf 
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