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Abstract In this paper the author identifies some common conceptual errors that learners tend to make when working with 
exponents and reflects on the informal action research she undertook as a teacher in order to assist her learners in 
overcoming these. The error patterns, learning to adapt to teaching multicultural classes and the implementation of a new 
curriculum in South Africa were the key factors that initiated and formulated her new approach to teaching exponents to 
Grade 9(14 year old) learners. The results were interesting, especially those of the generally “weaker” learners and those 
who do not have English as their home language. The author gained far more enjoyment from approaching the teaching of 
exponents in this new manner and the majority of learners demonstrated growth in their ability to simplify and calculate 
expressions involving exponents. This paper aims to underline the importance of identifying and addressing conceptual 
errors and suggests an alternative approach to the teaching of exponents.  
 
A. Introduction 
Learners have always made mistakes in mathematics, but unless we are able to identify why they 
make these mistakes, we are unable to do something about it. As teachers, all our interventions in the 
classroom are guided by some theory – conscious or subconscious – of how children learn 
mathematics. These theories vary from teacher to teacher, as does our approach to addressing 
learners’ mathematical mistakes. One such theory (although an escapist route) is to view many 
learners as rather dim, as not capable of understanding and label them as “weak”. Attributing learners’ 
mistakes to low intelligence, low mathematical aptitude, perceptual difficulties or learning disabilities 
is not useful in rectifying the mistakes. These factors naturally play a role but if it is our intention to 
help the individual learner, we need to examine available detail and determine the specific roots of the 
mistakes. (Olivier, 1989). 
In this paper, I reflect on my experience as a teacher of becoming more aware of recurring mistakes 
made by my learners in the section on exponents, what valuable information these error patterns 
provided me with regarding the thinking and conceptual understanding of my learners and the 
paradigm shift that subsequently occurred in my teaching. Although I am no longer teaching in a 
school but lecturing mathematics methodology at a university, the same conceptual errors were 
appearing in the work of some of my undergraduate student mathematics teachers. This then 
prompted me to address the issue of teaching and understanding exponents with them and to 
subsequently write up the paper.  
i) Contextualising the research 
The school I was teaching in was a middle -class single sex girls’ school consisting of a combination 
of learners from various backgrounds and cultures. The average class size was about 30 learners and 
one could expect at least one third of the learners to not speak the language of instruction (English) as 
their home language. These learners often struggled to access my bulky teacher-centered 
explanations. One such learner, in my Grade 9 class was Mpho, a learner labelled “weak” and not 
capable of continuing with mathematics beyond the Grade 9 level. Mpho admitted to struggling with 
mathematics and made no attempt to hide her obvious dislike of the subject and of anyone who had 
chosen to teach it! She subsequently rarely did her homework and we had frequent personal 
encounters regarding our obvious disagreement regarding this matter. Mpho had failed her mid-year 
examinations and was sharing my anxiety of the next five months we had to tackle. And I knew that 
the section I dreaded most was yet to come - exponents.  
ii) The problem 
I simply never enjoyed teaching exponents to Grade 9 learners. Looking back, I attribute this to the 
fact that I was originally textbook and “law” bound in my approach to this section. Normally we were 
allocated two weeks in our annual planning to complete exponents and my thinking then was that if I 
taught the laws quickly, the learners would still have ample time to practise the processes. It took me 
a few years to acknowledge the fact that although the teaching of exponents may be happening, this 
does not necessarily mean that the learning of exponents has taken place. It also does not mean that all 
learners have understood the notation and concept underlying exponents, even those that might be 
achieving high marks in their tests or exams. What led me to this conclusion (or acknowledgement) 
was my interest and subsequent frustration with the kinds of mistakes learners make regarding 
calculations and algebraic manipulations involving exponents. I began noticing a recurring trend in 
the types of mistakes being made by both learners who generally achieved low marks in mathematics 
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as well as those regularly achieving high marks. Some learners were achieving around 80%, but the 
20% of mistakes that they did make were cause for concern. 
I have summarised some of the more frequent types of mistakes below: 

743 422 =×   52 = 10  93 2 −=−  
 

111 523 −−− =+  
These mistakes really concerned me. It is my opinion that they more often than not indicate a lack of 
understanding of the meaning of the notation used as well as the basic concept of what an exponent 
represents. Research has also shown that few errors are random or careless and that many errors are in 
fact conceptual and learned and have become habitual and consistent with advancing years in school 
(Baxter and Dole, 1990). 
I subsequently began asking myself some questions: 
o How are the learners benefiting from learning a set of laws to apply according to     various algorithms, 

without necessarily gaining any understanding of the concept? 
o Other than for the purpose of marks, do the learners benefit from practising these processes over and over 

without internalising an understanding of the concept? 
o Has mathematics become a strict discipline governed by laws, rules and algorithms for the learners? 
B. Exploring some new options  
Meanwhile Outcomes-Based Education (explained in B.i) was starting to be enforced at schools in 
South Africa and the emphasis was being shifted from the teaching onto the learning. I found this 
paradigm shift really liberating. It led me to realise that my focus needed to change from what I was 
teaching to what sense my learners were making of the content I was offering them.  
i) Outcomes Based Education (OBE)  
Outcomes-Based Education was introduced in South Africa in the late 1990’s to address the 
imbalance in education and the changing demands in the market place arising from the need for a 
more skills-based workforce (Kramer, 1999). 
According to Killen (2000), the most detailed articulation of the theory underpinning OBE is given in 
Spady (1994, 1998). In Spady’s words: “Outcomes-Based Education means clearly focusing and 
organizing everything in an educational system around what is essential for all students to be able to 
do successfully at the end of their learning experiences. This means starting with a clear picture of 
what is important for students to be able to do, then organizing the curriculum, instruction and 
assessment to make sure this learning ultimately happens” (Spady, 1994:1). Killen expands on this 
definition in his article and goes on to say that three basic premises underpin OBE: 

o All students can learn and succeed, but not all in the same time or in the same way. 
o Successful learning promotes even more successful learning. 
o Schools (and teachers) control the conditions that determine whether or not students are successful at 

school learning.  
He also highlights an advantage of OBE being that it provides educators with a large degree of 
freedom to select the content and methods through which they will help their learners achieve the set 
outcomes. For me as a mathematics teacher, it meant an awareness of the need to shift the focus of my 
teaching away from the content to be covered towards the learners’ development (Murray, 2000). 
ii) A different approach 
My frustration with the conceptual errors, a desire to make mathematics more accessible to learners 
such as Mpho and my newfound focus motivated me to change my whole approach to teaching the 
section on exponents. Not only had I never found great fulfilment in teaching it, it also seemed to 
present a real stumbling block for many learners, even beyond the Grade 9 level. 
I first set about creating some outcomes to enable me to get “a clear picture” of what my learners 
should be able to do on completion of the section. I then designed my teaching and assessment around 
these outcomes.  
o The learner is able recognise, read, expand and understand exponential notation.  
o The learner is able to compute calculations involving powers and exponents.  
o The learner is able to manipulate expressions involving exponential notation, in order to simplify them. 
o The learner is able to critically query, think about and verify mathematical statements involving exponential 

notation. 
o The learner is able to state and communicate their understanding of the concept of exponents to others.  
None of these emphasised the need for learners to memorise and apply laws. Obviously the laws 
enable one to simplify an expression far quicker, but I decided not to teach any of them to the learners 
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this time but to allow them to be discovered and verified by the learner instead. It can be argued that 
some of the “weaker” learners (such as Mpho in this particular class) may never discover these laws 
on their own. This is in fact true, but then why should they use them? What I finally decided to 
embark on was to focus my two weeks of teaching exponents on ensuring that the learners know and 
understand the notation and concept of exponents and that they are able to convey this to others. 
Many of the learners had already learnt from Grade 8 that “if you are multiplying bases that are the 
same, you may add the exponents” and that “if you are dividing bases that are the same, you may 
subtract the exponents.” They did not however always apply these “discoveries” (or laws as they later 
became) correctly and I tried to encourage and challenge them to ensure that they understood the 
notation first rather than trying to apply laws that did not make sense to them. 
We started off with the basic notation and terminology used in the section on exponents such as:            
23   =   2 x 2 x 2   whereas  
3 x 2 = 2 + 2 + 2            and          2 x 3 = 3 + 3                     y4 = y x y x y x y 

I emphasised the terminology of base, exponent and power as well as pointing out the difference 
between 23 and 2 x 3. In the beginning I encouraged learners to make use of expansion and numbers 
(rather than variables) as much as possible as a means to verifying their instinctive short cuts and to 
check up on their initial thinking. All the time we kept returning to the notation and what it meant. My 
motivation for this was that at least they would have basics to go back to if they found themselves 
struggling at a later stage when things got more complicated.  
By understanding the notation, they were able to check up on themselves when simplifying 
expressions such as  (2y3)2 by expanding if necessary:  
They started reasoning that if y2 meant y x y, then (  )2 meant (   ) x  (   ) 

Therefore  (2y3)2  =  (2y3) x (2y3)  =  2 x y x y x y x 2 x y x y x y  =  4y6 

This also helped them avoid (or at least think about) assumptions such as: 

4y2 = 4y x 4y,     rather than the correct expansion of 4 x y x y  

I made use of the following types of tables to introduce and encourage a discussion on the use of 
negative exponents, as well as the concept of zero as an exponent always resulting in a value of one.  
A lesson dedicated to group work and later a full class discussion on trends in the tables enabled us to 
agree that a negative exponent indicates division and that for example: 

3-2 = 
9

1
 = 

23

1
      And that a0 = 1 

With this basic knowledge of exponents in place, I jumped straight into giving the learners algebraic 
expressions to simplify as well as calculations involving the use of exponential notation. At first I 
gave them exercises such as the ones below, where the exponents were not 
TABLE 1  

Base Exponent Power Value 
10 2 102 100 
10 1 101 10 
10 0 100 1 
10 -1 10-1 

10

1
 

10 -2 10-2 

100

1
 

TABLE 2  
Base Exponent Power Value 
3 2 32 9 
3 1 31 3 
3 0 30 1 
3 -1 3-1 

3

1
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3 -2 3-2 

9

1
 

too large. The purpose of this was to encourage them to still use expansion where necessary to guide 
and verify their thinking.  
 
(ab2)2(a2b)       

[3(2a2b3)]3    –2(4p)2(-p)2             (Laridon et al, 1995) 
I later also gave them more complex exercises (see examples below) to hopefully challenge some of 
them to search for ways of refining and/or improving their strategies and techniques. These also 
contained larger exponents which made the task of expanding more laborious. 
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                         (Laridon et al, 1995) 
 
C. Results 
Throughout the two weeks, the growth that learners demonstrated in their thinking and reasoning was 
very encouraging. When asked if: 

 4y –3 = 
34

1

y
 

many learners (even those labelled as “weak”) were able to point out that the statement is incorrect 
and verify this by using their ability to expand exponential notation and their understanding of 
negative exponents in the following way: 

33

3133 41
4444

yy
yyy =×=×=×= −−−  

They also managed to eliminate mistakes such as 23 x 22 = 45. Once they knew and understood the 
notation and were comfortable expanding it, they quickly realised that: 
23 x 22 = 2 x 2 x 2 x 2 x 2 = 25   which could not possibly be equal to   45 = 4 x 4 x 4 x 4 x 4 
The most interesting results, however, were evident when the learners wrote a traditional summative 
test at the end of the two weeks. One of the questions to calculate in the test was: 
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Below is the solution of one of the “higher achieving” learners (Nichola) who had discovered and 
adopted the laws early on in this section: 
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As you will notice, this learner has still made one of the mistakes I identified earlier. I attributed this 
to the tendency of this learner to find and use as many shortcuts as possible, without necessarily 
verifying that she understood the concept behind them. 
In contrast to this, I have also provided the solution offered by one of the generally “weaker” learners 
(remember Mpho?): 
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Although Mpho demonstrates another level of conceptual difficulty concerning addition of fractions, 
she does apply her understanding of negative exponents correctly.  
In another part of the test Mpho offers a further interesting solution (see Appendix A on page 8) 
whereby she demonstrates her ability to simplify complex algebraic expressions involving the 
manipulation of exponents. 
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The most rewarding result, however, was evident in Mpho’s increased self-confidence in the 
mathematics class and her newly acquired positive attitude to both the subject and myself. She passed 
the summative test, which caused much celebration from both parties, and also started doing her 
homework on a more regular basis.  
D) Conclusion 
Although this informal research was carried out a few years ago, it still plays a major role in my 
approach to teaching. Error analysis and diagnostic assessment have become a priority for me as a 
mathematics education lecturer and as a new researcher.  
Research and literature, relating to mathematics education, over the years have also identified and 
discussed error patterns and misconceptions in mathematics (Radatz, 1980; Farrell, 1992; Clarkson, 
1992; Gagatsis & Kyriakides, 2000) and suggested that errors can be overcome (Mestre, 1989) and 
foster a deeper and more complete understanding of mathematical content and the nature of 
mathematics itself (Borasi,1987). Some results suggest a greater need for emphasis on conceptual 
understanding in mathematics instruction (Woodward & Howard, 1994). 
This paper has highlighted some of the recurring mathematical mistakes made by both “low 
achieving” and “high achieving” Grade 9 learners in the section on exponents. Regardless of the 
marks obtained by the learner for this section, some of these mistakes indicated a lack of conceptual 
understanding of the content. This in turn resulted in frustration and therefore necessary reflection of 
teaching methods for the author. Simultaneously the onset of OBE in South Africa initiated a 
paradigm shift from what was being taught to what was being learnt. The combination of 
circumstances created a framework for a new approach to be tried out in the teaching of exponents to 
a multicultural Grade 9 class. The results reflected a growth in most learners’ ability to think about the 
expressions and calculations they were confronted with and to verify their conclusions. A learner 
labelled as “weak” demonstrated the required level of understanding necessary to manipulate and 
simplify complex algebraic expressions while still however showing conceptual gaps in her numerical 
skills.The new approach also resulted in learners in general experiencing mathematics as more 
enjoyable and accessible. 
While this new approach in teaching exponents had positive results for the author with a particular 
Grade 9 class, it is acknowledged that this is not the only approach to ensure that learning has taken 
place. As mathematics educators, however, it should be our goal to ensure that learning and 
understanding are continually driving our teaching. 
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