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ABSTRACT 

The workshop will focus on the use of hand-held technology to improve teaching and learning in 
mathematics in secondary school, with an emphasis on 14-16 education. The talk will be illustrated 
with practical examples using a new graphic calculator, which contains a version of CABRI and 
DERIVE. In particular it will be shown how to use the graphic calculator to teach geometric plane 
isometries, both from a synthetic point of view and from an analytical one. 
 
1. Introduction 

In this workshop we want to show how a teacher in a secondary school can illustrate “geometric 
plane isometries” using a new graphic calculator, which contains the functionality of CABRI and 
DERIVE. The didactic path will be divided in several units. 

2. Explaining, by using CABRI, the following Theorem: Every isometry of the plane is a 
product of at most three reflections in lines. 

The geometric construction (given two congruent triangles ABC and A’B’C’) is composed 
by the following steps: 
(i) Using the “Perpendicular bisector” tool we draw the perpendicular bisector r of the line segment 

AA’. Then, using the “Reflection” tool, we take the triangle ABC to A”B”C” by the 
reflection in r (A” = A’). [Look at Figure] 

 
ii) If B” ≠ B’, using the “Perpendicular bisector” tool we draw the perpendicular bisector s of the 

line segment B’B”; s passes through point A’ (= A”) because BABA ′′′=′′ . Then, using the 
“Reflection” tool, we take A”B”C” to A’”B’”C’” by the reflection in s (considering that 
A’ = A” = A’” and B’” = B’). 

(iii) If C”’ ≠ C’, using the “Perpendicular bisector” tool we draw the perpendicular bisector t of the 
line segment C”’C’. Then, using the “Reflection” tool, we take (necessarily) A’B’C”’ to 

A’B’C’ by reflection in t. Consequently the composition of three reflections in lines r, s, t is 
the isometry which take ABC to A’B’C’. 

3) Verifying the congruence of two triangles whose vertices are given and drawing its graph 
We are given ABC and A’B’C’, whose vertices are A(−2,1), B(−7,9), C(−10,5) and A’(2,4), 

B’(10, −1), C’(6, −4). Using the function dist that we have included into the graphic calculator we 
can do the following check 
                                                 
1 ADT is the Italian version of T-cubed or T3 



 
89=AB      54=AC      5=BC      89=′′BA      54=′′CA      5=′′CB  

The congruence of triangles follows. 
To draw the graph we can begin from the vector equation of line rAB: 

p = a + t(b − a) 
where p is the position vector of a variable point P ∈ rAB and a and b are the position vectors of 
A(x1,y1) and B(x2,y2) and t ∈ R is the parameter. The previous equality can also be written in the 
following form 
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from which we get the parametric equations of the line 
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In particular, to represent the line segment AB it is enough to restrict the parameter t to the interval 
[0,1]. For the line segments that form our two triangles we have the following parametric equations 
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REMARK. When we graph our two triangles on the graphic calculator we can observe that the first 
triangle ABC is “traversed” in anticlockwise sense and the second one A’B’C’ in clockwise 
sense. Thus the two triangles are related by an isometry of second kind (or indirect or odd). 

 
It is possible to show in an analytic way that two triangles are related by an isometry of the 

second kind or, more generally, if they have the same orientation, using the following theorem. 



THEOREM. Let A(x1,y1), B(x2,y2), C(x3,y3) and , ,  be the coordinates 
of the vertices of the oriented triangles ABC and A’B’C’, respectively. In order that the 
triangles have the same orientation, it is necessary and sufficient that the determinants 
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have the same sign. 
For our two triangles we get 
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So the two triangles have opposite orientation. 
REMARK. We note that the absolute value of the above determinant is twice the area of the 
triangle. 
REMARK. Let us consider a transformation of the plane given by the following equation 
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We note that we can represent such an equation using only one object: a 3×3 matrix. In fact it is 
equivalent to the equation 

1 1 1

2 2 2

1 0 0 1

x a b c
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. 

The last row of the matrix that represents the transformation is always formed by the vector [0,0,1]. 
A point of the plane is represented by a vector with three components, having the third component 
always equal to 1. 

This representation is particularly convenient from an algorithmic point of view, because the 
transformation is completely described by only an object that is easy to implement. 

In particular, for the isometries we have 

Isometries of the first kind:      
1
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Isometries of the second kind:  
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                                             with a2 + b2 = 1. 

4) Determining analytically, using Theorem in 2), the isometry (of second kind) that take the 
triangle ABC to A’B’C’. 
Firstly we have to find the perpendicular bisector of the line segment AA’ using the function  

perpbis that we have included into the graphic calculator. Such a function takes as input two points 
given as lists of two elements. 



 
where linesp is the function that takes as input the slope and a point of line and midpoint is the 
function that calculates the midpoint of a line segment given as input its end points. 

 
REMARK. As we can see, a student can build a “library” of functions to use in the resolution of 
particular types of problems. Such functions can be used to build other functions or programs in the 
same way we use the functions built in the graphic calculator. 

In our case we have 

Perpendicular bisectorAA’: 2
5

3
4

+−= xy  

 

Thus the slope is m = 
3
4

−  and the intercept q = 
2
5 . 

In general the reflection in a line r whose equation is y = mx + q can be obtained by the method 
of double translation: by means of a translation we take the line r to r’ which is parallel to r and 
passes through the origin O, than we do a reflection in r’ and lastly we do a translation by a vector 
that is opposite to the first one. We can choose the point on r whose coordinates are (0,q) and 
therefore we can use the translation by vector [0,−q]. Consequently we have 

rifr(m,q) = trasl([0,q])⋅rifor(m)⋅trasl([0,−q]), 
where rifor(m) denotes the reflection in a line that passes through the origin, whose equation is 
y = mx. We remember on this subject that the reflection in a line that passes through the origin and 
makes an angle α with the positive half of the x-axis can be obtained by means of a rotation (about 
the origin) through an angle −α (that takes the line r to the x-axis), then a reflection in the x-axis 
whose 2 × 2 matrix is 
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and again a rotation through an angle α. Therefore the matrix we are looking for is 
rot(α)⋅rifx⋅rot(−α), 

where rot(α) denotes the matrix that represents a rotation through an angle α. 



 
The result of this calculation by a graphic calculator is 

 
that, if we keep in mind the double-angle identities, coincides with the 2 × 2 matrix 
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that, as we know [see Impedovo] represents the reflection in a line that passes through the origin 
and makes an angle α with the positive half of the x-axis. Since m = tanα, we can use the double-
angle identities to express cos2α e sin2α by means of tanα, so the above matrix becomes 
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or we can calculate the previous product with the condition a = tan−1(m) and we obtain 

 
that is the same matrix written above. 

Thus, using again a 3 × 3 matrix, the reflection rifor(m) has the following form 

rifor(m) = 
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Summing up, we obtain for the matrix rifr(m,q) the following form 



 
In particular, the reflection in the perpendicular bisector of AA’ is 

 
Such a matrix will be denoted with iso1. 

Let us denote with vert0 the 3 × 3 matrix whose columns are the vectors [xi,yi,1], 1 ≤ i ≤ 3, where 
xi,yi are the coordinates of vertices A, B, C of our first triangle. That is 

 
The product iso1⋅vert0 give us a matrix, that we call vert1, whose columns contain the coordinates 
of the transformed points A”, B”, C”. 

 
We can note that A” = A’. 

Now we find the perpendicular bisector of the line segment B”B’, with 

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perpendicular bisectorB”B’: 43
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and we can easily verify that such a line passes through A’. The reflection in the line s (s: 

43
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51

+= xy ) is expressed by the matrix 



 
that we call iso2. The product iso2⋅vert1 give us a matrix, that we call vert2, whose columns contain 
the coordinates of the transformed points A’” = A’, B’” = B’, C’”. 

 

Lastly we find the perpendicular bisector of the line segment C’”C’, with 
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C’(6,−4). We get 
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and we can easily verify that such a line passes though A’ and B’. The reflection in the line t 

(t:
4
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8
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+−= xy ) is expressed by the matrix 

 
that we call iso3. We can verify that the product iso3⋅vert2 gives us a matrix whose columns contain 
the coordinates of vertices of A’B’C’. 

 
Therefore the matrix that represents the isometry we are looking for is 

iso3⋅iso2⋅iso1 = . 
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Looking at the matrix we can easily infer that we can obtain our isometry by means of a reflection 
in the line y = x and a translation by vector [1,6] (first the reflection and then the translation). 



 
5) Determining the glide reflection that generates our isometry 

To find such glide reflection we first observe that its axis must pass through the midpoints of line 
segments AA’, BB’ e CC’. If we denote such midpoints with MAA’, MBB’ e MCC’, we have 
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The equation of line r that passes through MAA’ and MBB’ is y = x + 
2
5  and r is parallel to the line 

y = x. We can verify that MCC’ ∈ r. The reflection in the line r is expressed by the matrix 

 
The vector v of the translation is parallel to the line r and thus must be of the form v = [k,k]. But the 

reflection takes the point A(−2,1) to the point A* 
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Therefore the vector v is 
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The product of such a matrix with the matrix of the reflection gives us the same result we have 
obtained before and we can verify that this product is commutative. 
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