
326

APPLICATIONS OF MATHEMATICS IN THE REAL WORLD: TERRITORY AND
LANDSCAPE

Nicoletta Sala1, Silvia Metzeltin2, Massimo Sala1
1University of Italian Switzerland, Switzerland , Largo Bernasconi 2 – 6850 Mendrisio  n sala@ arch.unisi.ch, msala

@ arch.unisi.ch  2Alpinist, geologist, and scientific journalist  Via Morella 2 – Pura (Switzerland)

Abstract: The year 2002 has been dedicated to the Mountains by United Nations Organization.
The aim of this paper is to present some relationship between mathematics, territory and landscape. Territory is a
geographic entity, which we can divide in two parts: political and natural.  The environment (urban and extra urban)
consists of  biological and cultural evolution of the Territory. The landscape is an aesthetic concept strictly
connected with the relation: Man and Nature. In this paper we  will refer of  our attempt to describe Natural territory
in the extra-urban environment using a mathematics approach.
1. INTRODUCTION
Starting point for our investigation is the following question: “Is it possible to describe the territory where
we  live using the  mathematics?”
To answer this question we have defined a  mathematics and geometric  approach. In fact, to  describe the
territory we have identified  the following  subjects:
•  Numbers (e.g., to count the peaks present in a mountain chain);
•  Symmetry (e.g., the symmetry presents in the natural crystals);
•  Geometric shapes (e.g, curves, and  meanders present in the rivers);
•  Euclidean geometry (e.g., to describe the Nature using a simple geometry);
•  Stereographic geometry (e.g., to compare a mountain shape and a geometric shape);
•  Fractal geometry (e.g., to describe the  irregular shapes present in the Nature or to create the mountains, and the

dendritic structures using the computer graphics techniques).
Figure 1 shows an island we can note the presence of an irregular shape in the coastline.

Figure 1 An example of irregular shape which is present in a coastline.
In this paper we will describe an approach to model territories and landscapes.
The paper is organized as follows: the section 2 presents a  geometric approach to describe the Territory
and Landscape;  section 3 describes  the fractal geometry to model territory and landscapes, section 4
contains   some fractal models to realize some virtual terrain with the computer graphics; finally, in the
section 4,  we have our  conclusions.
2.  A  GEOMETRIC APPROACH TO DESCRIBE TERRITORY AND LANDSCAPE
A geometric approach to represent territory and landscapes is to determine 3D objects  which consist  in
finding a model that represent a set of data point:

(xi, yi, zi) ∈  R 3,  ∀  i = 0,…, n
A wide variety of representation methods have been studied for model these surfaces [5]. For example,
figure 2 illustrates the visualization of the 3D  function named “Lorentz hat”. It is defined by the
equation: y(x,z) ~ 1/(x2 + z2 + 1) .
Unfortunately, these models do not recover rough surfaces, i.e.  surfaces defined by continuous functions
that are  nowhere  differentiable. Models that are able to produce rough surfaces are mostly based on
random processes, and for this reason these models are not suitable for approximation. To propose an
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Figure 2 An example of 3D function: “Lorentz hat”.
efficient solution to the problem of rough surface approximation, the current study presents different
models based on fractal geometry [10, 11, 16, 19]. Before the development of fractal geometry, typically
Nature was regarded as "noisy" Euclidean geometry. A mountain is primarily a roughened cone, for
example. Indeed, this view was codified by Paul Cezanne's statement about painting: "Everything in
Nature can be viewed in terms of cones, cylinders, and spheres." In contrast to this, Benoit Mandelbrot
asserts, "Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark is not
smooth, nor does lightning travel in a straight line."
3. FRACTAL GEOMETRY TO MODEL TERRITORY  AND LANDSCAPES
The fractal geometry is  a young discipline (the first studies are the works of Gaston Julia (1893 - 1978) at
the beginning of last  century) but, only with the mathematical power of computers it is become possible
to obtain the beautiful and colourful images derived by the complex formulas.
The word "fractal" was coined less than thirty years ago by one of history's most creative mathematicians,
Benoit Mandelbrot, father of fractal geometry. In his book  The Fractal Geometry of Nature  introduced
and explained concepts underlying this new vision.   A fractal object is self - similar in that subsections of
the object are similar in some sense to the whole object. No matter how small a subdivision is taken, the
subsection contains no less detail than the whole. Mandelbrot, has defined fractal models  to describe
natural phenomena [14].
To realize a  “fractal mountain" we can  take an elastic string, then a random vertical displacement is
applied to its middle point. The process is repeated recursively to the middle point of every new segment.

a)                                                                         b)
Figure 3 Examples of  fractal mountains.
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The random displacement decreases two times each iteration. Figure 3 shows the generation process (3 a)
and the mountain realized using this procedure (3b).
To realize 3 D mountains is more complicated than 2D.  Some approaches are based on the midpoint
displacement method which can  work with triangle, square and hexagonal grids [19]. Another  method
which uses random midpoint displacement  has been  introduced by Fournier, Fussel and  Carpenter
(1982).  They developed  a mechanism for generating a class of fractal mountains based on recursive
subdivision [10].
For example, an initial square  is subdivided into four smaller squares (see figure 4). We obtain  four
points: [x0, y0, f(x0, y0)], [x1, y0, f(x1, y0)], [x0, y1, f(x0, y1)], [x1, y1, f(x1, y1)].  In the first step we add one
vertex into the middle. The vertex is denoted by [x1/2, y1/2, f(x1/2, y1/2)]. 
The added vertex is shifted in z-coordinate direction by random value denoted by δ1.
This procedure is recursively repeated for each sub-square, then for every their descendants, and so on.

Figure 4 First four steps in random midpoint displacement method.

In order to be resulting fractional Brownian surface, the random number δ1  must be generated with
Gaussian distribution ( µ = 0 and σ =1) and in the i-th iteration step the variation σi have to be modified
according to the following equation:

σ2
i = (1/2 2H(i+1) ) σ2                             (1) 

where H is  Hurst exponent (1≤  H ≤  2)  [14]. From equation (1)  we can note, that the first iteration has
the biggest influence to the resulting shape of the surface and influence of the others decreases.  In the
second step the points on the edges of initial square can be  calculate. We can virtually rotate square by
45° and calculate the values as in the previous step. The problem is in the cases when the new point has
just three neighbours (the encircled points in Figure 4).    In this case we calculate the average of three
neighbours only. The error produced on the border could be neglected.
In the next step we can virtually rotate the square back by 45° and we recursively apply the first two steps
on the four new squares as is mentioned above. This recursive process ends after given number of
iteration.  Fractal dimension D of this surface is obtained by D= 3 – H.
An example of fractal terrain obtained with random midpoint displacement algorithm is illustrated in
Figure 5.  The fractal dimension of this surface is D=2.5.

Figure 5 A fractal terrain generated with random midpoint displacement algorithm
In the this  example, we have considered only a terrain but not its erosion. Prusinkiewicz and Hammel
(1993) used context sensitive rewriting processes based on a random midpoint displacement method [19]
on a triangular grid. Their method creates one non-branching river as result of context sensitive L-system
[22]   operating on a set of triangles. Musgrave et al. (1989) introduced techniques which are independent
of the terrain creation algorithm and can be applied to already generated data represented as regular
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height fields [18]. They introduce two methods: hydraulic erosion and thermal weathering. Hydraulic
erosion is caused by the presence of water in the form of rain. Water is dropped on each vertex in a high
field and transfers the material. Thermal weathering is caused by temperature changes causing small
portions of the material to crumble and pile up on the bottom of an incline [16, 18]. These models can be
applied in the Computer Graphics to generate virtual environments.
4. FRACTAL MODELS IN COMPUTER GRAPHICS
Computer graphics concerns the pictorial synthesis of real or imaginary objects from their computer-
based models, whereas the related field of image processing treats the converse process the analysis of
scenes, or the reconstruction of models of 2D or 3D objects from their pictures [9]. Computer graphics
also uses fractal geometry to realize mountains, trees, and textures. Using a  technique called spatial
subdivision we can generate Fractal terrain. These results in surfaces are similar in appearance to the earth
terrain.
The idea behind spatial subdivision is quite simple. We consider a square on the x-y plane,
(1) split the square up into a 2x2 grid
(2) vertically perturb each of the 5 new vertices by a random amount
(3) repeat this process for each new square decreasing the perturbations each iteration.
Figure 6 shows three iterations  of this process.

Figure 6 Three iterations in  the generation process  of fractal terrain.
The controls normally available when generating such landscapes are:
•  A seed for the random number generator. This starts the random number generator and means that the same

landscape can be recreated by remembering only one number.
•  A roughness parameter. This is normally the factor by which the perturbations are reduced on each iteration.

A factor of 2 is the usual default, lower values result in a rougher terrain, higher values result in a smoother
surface.

•  The initial perturbation amount. This set the overall height of the landscape.
•  Initial points. It is often desirable to specify some initial points, normally on the corners of the initial

rectangles. This provides some degree of control over the macro appearance of the landscape.
•  Sea level. This "flood" the terrain to a particular level simulating the water level.
•  Colour ramp. This is used for shading of the terrain surface based on the height. Normally two or three colours

are defined for particular heights, the surface at other heights is linearly interpolated from these points.
•  Number of iterations. This results in the density of the mesh that results from the iteration process.
The following  figure 7 illustrates  a terrain surface at various grid resolutions from 2x2 to 32x32.
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Figure 7 A terrain surface at various grid resolutions from 2x2 to 32x32.
After the wire frame views, we can realize  the rendering  phase which includes: hidden line,
coloured, and   shaded. Next figure 8 illustrates two steps of this process.

Figure 8  The phase of rendering to generate a landscape.
Zair and Tosan (1996; 1997) proposed an interesting model for fractal curves and surfaces. This
method combines two classical models: an fractal model (IFS attractors)  and Computer Aided
Geometric Design model (CAGD) [24; 25].
The IFS (Iterated Function Systems) model  generates a geometrical shape or an image with an
iterative process [4].
An IFS – based modeling system is defined by a triple (X, d, S) where:
•  (X, d) is a complete metric space, X is called iteration space;
•  S is a semigroup acting on points of X such that: λ ∈  X → T λ ∈  X where T is a contractive

operator, S is called iteration semigroup.
This method permit to reconstruct smooth surfaces, and not only rough surfaces. Figure 10
shows  the experiment realized by Guérin at al. (2002)  on a natural surface [11]. The original
surface is has been extracted  from a geological database (found at the United States Geological
Survey Home page, http: // www. usgs.org). Terrains and mountains are only a part of the
landscape. To generate a complete virtual landscape it is necessary to create the plants and the
trees. We can use L-Systems (studied by Aristid Lindenmayer).     L-System is a set of string
rewriting rules which takes an initial string of characters called he axiom and on every iteration
replaces each of the characters in the string by other strings called production rules. For example
consider the axiom string: F+F+F+F and the single production rule F-->F+F-F-FF+F+F-F. Now
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if some characters are giving geometric meaning then the string can be drawn. Using these
geometric meanings for the symbols an example of an axiom, production rule, and the resulting
string after a few iterations ,  is a well known fractal  curve which has a fractal dimension

                                        Original                                                                                   Approximation
Figure 10 Geological surface

between 1 and 2 (for example the van Koch snowflake, space filling curves such as the Hilbert
and Peano curves, the dragon curve, as well as kolam patterns).
Recent usage of L-Systems is for the creation of realistic looking objects that occur in nature and
in particular the branching structure of plants.  One of the important characteristics of L-Systems
is that only a small amount of information is required to represent very complex objects. Using
suitably designed L-System algorithms it is possible to design the L-System production rule that
will create a particular class of plant. Figure 11 shows some  plants generated using   L-Systems.

Figure 11 Some plants generated using a L-System.
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Another way to realize, in Computer Graphics, the plants and the trees is to use Iterated Function
Systems. This approach, applying all the transformations to the entire picture, is called the
Deterministic Algorithm for generating fractals. Iterated function systems are described by
repeatedly computing terms in two series, one series describes the x coordinate and the other
series the y coordinate. The equations describe translation, scaling, rotation, and shearing of
points in a plane with the restriction that the transformations are "affine".  Figure 12 shows a
fractals fern generated using Iterated Function Systems.

Figure 12 A fractal fern.

5. CONCLUSIONS
We can apply the mathematics point of views in different disciplines. For example, in the arts, in
architecture, in design [1, 6, 7, 8, 12, 15,  23]. In our investigation we have presented an
approach where mathematics and fractal geometry play a central role to describe the territory and
the landscapes.
Mandelbrot presented one of the curiosities of fractal terrain: fractal terrain look like fractal
terrain  even when you turn them upside down [14]. Statistical parameters are equal in both
cases. This property is typical for geologically new landscapes in nature. Moreover; the fractal
techniques [2, 3, 10, 14, 19], provide only visual approximation of real terrains. This is almost
never the case in nature, where depressions in the landscape fill up with all manners of
detriment. This causes the landscape to be smoother over the ages of geologic time. Terrain is
eroded by water, by particles of sand and crannied from influence of temperature amplitudes.
Moreover; most of the terrains are also influenced by human factors. Majority of the natural
influences are reflected as a kind of erosion. This problem has been presented for example  by
Fournier et al. (1982), Musgrave et al. (1989), Peitgen & Saupe (1988), and Maràk et al. (1997).
Mandelbrot also pointed out in 1988 [19]: "The most basic defect of fractal landscapes - the fact
that this landscapes do not include the river network". The rivers represent another kind of
erosion in the same way as rain, temperature, wind, and time. This problem has been addressed
for instance in Kelley et al. (1988), and Prusinkiewicz & Hammel (1993) [13, 21].
Considering the criterion of terrain erosion, techniques for generation of eroded terrain models
can be divided into two classes. The first class of algorithms generates  eroded terrain [10, 13,
19, 20, 21] The second group describes erosion of any terrain [16, 18], regardless whether the
data representing the terrain was obtained with some artificial technique or real data was used.
The erosion algorithm run on real data (e.g. obtained from satellite photos) can be considered as
a simulation and therefore provides practical results useful in the Geographical Information
Systems (GIS), and in ecology.
Most frequently terrain model is defined as height field. Regular height field is defined as two
dimensional array of altitude values where the distance between rows and columns is constant.



333

We have also observed that fractal geometry can help to explain the Natural shapes and the
Landscapes (e.g., coastlines, stones, trees) but we have to define a limit between natural and
virtual environment [17].
This paper is only an attempt to describe some  applications of Mathematics in the studies of
territory and landscapes.  We are in agreement with Galileo that has emphasized the powerful of
mathematics (1623):   "Philosophy is written in this grand book - I mean universe - which stands
continuously open to our gaze, but which cannot be understood unless one first learns to
comprehend the language in which it is written. It is written in the language of mathematics, and
its characters are triangles, circles and other geometric figures, without which it is humanly
impossible to understand a single word of it; without these, one is wandering about in a dark
labyrinth."
REFERENCES
1. Albeverio, S. & Sala, N.  Note al corso di Matematica dell’Accademia, part II, University Press, Academy of

Architecture of Mendrisio - University of Italian Switzerland, 1998, Mendrisio
2. Andrle, R. “The angle measure technique: a new method for characterizing the complexity of geomorphic

lines”. Mathematical Geology, 26, 83-97, 1994.
3. Andrle, R. “The West Coast of Britain: statistical self-similarity vs. characteristic scales in the landscape”.

Earth Surface Processes and Landforms, 21, 955-962, 1996.
4. Barnsley, M.  Fractals Everywhere, Academic Press, San Diego, 1988.
5. Bolle, R. M. & Vemuri, B. C. “On Three-Dimensional Surface Reconstruction Methods”. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 13, 1, 1, 1991.
6. Bolós, M. et al. Manual de Ciencia del Paisaje. Teoria, métodos y aplicaciones. Colección de Geografia.

Masson, S.A.. Barcelona,  1992.
7. Bovill, C. Fractal Geometry in Architecture and Design, Birkhäuser, Boston, 1995.
8. Emmer, M. “Arts and Mathematics: The Platonic Solids”.  Leonardo, Vol. 15, n. 4, 277 – 282, 1982.
9. Foley, J. D.,  van Dam, A., Feiner, S. K. &  Hughes, J. F. Computer Graphics: Principles and Practice,

Addison Wesley, New York, 1997.
10. Fournier, A., Fussel, D. & Carpenter, L.  Computer Rendering of Stochastic Models. Communications of the

ACM, 25, 371-384, 1982.
11. Guérin, E., Tosan, E. & Baskurt, A. “Modeling and Approximation of Fractal Surfaces with Projected IFS

Attractors”. Novacs M. M.  (ed.) Emergent Nature: Patterns, Growth and Scaling in the Science, World
Scientific, New Jersey, 293 – 303, 2002.

12. Hargittai, I. & Hargittai, M. The Universality of the Symmetry Concept. In Williams K. (edited by),  Nexus I:
Architecture and Mathematics, Edizioni Dell’Erba, Fucecchio,  1996.

13. Kelley, A. Malin, M. & Nielson, G.. Terrain Simulation Using a Model of Stream Erosion. Computer Graphics,
22(4):263-268, 1988.

14. Mandelbrot, B. The Fractal Geometry of Nature, W.H. Freeman, New York, 1983
15. Manna, F. Le chiavi magiche dell'universo,  Liguori Editore, Napoli, 1988.

16. Marák, I. Benes, B. & Slavík, P.  Terrain Erosion Model Based on Rewriting of Matrices. Proceedings of
WSCG-97, II:341-351, Feb. 1997.

17. Milani, R. L’arte del paesaggio. Il Mulino, Bologna, 2001.
18. Musgrave, F.,  Kolb, C. & Mace,  R. The Synthesis and Rendering of Eroded Fractal Terrains. Computer

Graphics, 23(3):11-1-11-9, 1989.
19. Peintgen, H. & Saupe, D. The Science of Fractal Images. Springer-Verlag, New York, 1988.

20. Pickover, C.  Generating Extraterrestial Terrain. IEEE Computer Graphics and Applications, 17:18-21, 1995.

21. Prusinkiewicz, P.  & Hammel, M. A Fractal Model of Mountains with Rives. Proceedings of Graphics
Interface'93, 30(4):174-180, 1993.

22. Prusinkiewicz, P.&  Lindenmayer, A.. The Algorithmic Beauty of Plants. Springer-Verlag, New York, 1990.

23. Sala, N. The presence of the Self- Similarity in Architecture: Some examples. In M. M. Novak (ed.), Emergent
Nature, World Scientific,  273 – 283,   2002.

24. Zair, C. E. & Tosan, E.  Fractal modeling using free form techniques .  Computer Graphics Forum 15, 3, 269,
1996.

25. Zair, C. E. & Tosan, E.  Computer Aided Geometric Design With IFS Techniques . In M. M: Novak and T. G.
Dewey, eds.,  Fractal Frontiers,  World Scientific Publishing, 443 – 452, 1997.


