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Abstract

Following a theoretical introduction concerning tligficulties that people face for understandimg t
structure of the basic sets of numbers, we presefdssroom experiment on the comprehension dfrthe
tional numbers by students that took place at theilbt High School of lower level (Gymnasium) of éth
and at the Graduate Technological Educational st of Patras, Greece. The outcomes of our exgetim
seem to validate our basic hypothesis that the nmauitive difficulty for students towards the unstanding
of irrational numbers has to do with their semiatépresentations (i.e. the ways in which we descabd
we write them down). Other conclusions include dagree of affect of age, of the width of matherahtic
knowledge, of geometric representations, etc,Hercomprehension of the irrational numbers.
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1. Introduction

The empiric comprehension of numbers by childretakéng place during the pre-school age and it is
based on their practical needs to distinguish tie among many similar objects and to count thegectsh
(Gelman 2003). This initial approach of the conagfptumber helps children in understanding thecstme
of natural numbers. For example, it supports thenbuild” the “principle of the next of a giverumber”
and therefore to conclude the infinity of naturainbers (Hartnett & Gelman 1998). It also suppdrésde-
velopment of strategies for addition and subtractased on counting (Smith et al. 2005), the corspar
and order among the naturals, etc. The above agprgastrengthened during the first two years diost
education, where the natural numbers constitutesa ldidactic target.

The decimals and fractions are introduced lateer @he second year of primary school, while thgane
tive numbers are usually introduced at the firgtryef high-school. Mathematically speaking, the@eff ra-
tional is an extension of the g¢tof natural numbers that could be attributed torteeessity for subtraction
and division to be closed operations. Howees not simply a bigger set th&h but it actually has a com-
pletely different structure. In fact, while betweamy two natural numbers there exist at most finiteany
other natural numbers (i.H.is a discrete set), between any two rational nustheere always exists an infi-
nite number of other ones (i.€ is an everywhere dense set).

It is widely known and well indicated by researchtirat students face many difficulties for the coap
hension of rational numbers (Smith et al. 2005g5eéms that most of these difficulties have to ab &
false transfer of properties of natural numberthéoset of rational numbers (Yujing & Yong-Di 200&am-
vakousi & Vosniadou 2004 and 2007). For examplejesgtudents believe that “the more digits a number
has, the bigger it is” (Moskal & Magone 2000), batt “multiplication increases, while division deases
numbers” (Fischbein et al. 1985). The idea of ‘dsxrete” restricts also the understanding of thecture
of rational numbers. In fact, many students belinag, as it happens for the natural numbers, phi@ciple
of the next number” holds for the rational numbessvell (Malara 2001, Merenluoto & Lehtinen 2002).
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Another characteristic of the rational numbers fiagsibly affects their understanding is that ez of
. . .1 2 :
them can be written in several ways, e.g. we cate\%fr=z =....=0,5. In fact, novices have the general

trend to categorize objects by their surface ratttean by their structural characteristics (e.gi &hal.
1981), which for mathematics means that they hayeeat difficulty in understanding that differepn#ols
may represent the same object (Markovitz & Sowd@1). As a result of this many children considwet t
the different representations of a rational numtmrespond to different numbers (Khoury & Zarki®949
O’Connor 2001) and, even more, that decimals aactitms are disjoint to each other subset§ofThe
wrong perceptions about fractions and decimals laken roots as habits even to elderly people, wgn

ally consider fractions as parts of a set (ezr)g.of something), and decimals as being more simdathé

natural numbers.

Such misunderstandings are sometimes strengthgneertain obscurities appearing in school books and
therefore a great care is needed by authors ta akem For example, in page 115 of the mathembbok
for the first class of the high-school of lower é\{Gymnasium) in Greece (Vandoulakis et al. 2008)
read: “Rational numbers are all the already knosvog numbers: natural numbers, decimals and fragtio
together with the corresponding negative numberkis definition could make students to believe thiat
decimals are rational numbers, or that decimalsfeaadions are not related to each other rationahlvers,
etc. Notice that these wrong beliefs, when embedtiexinot so easy to be revised later.

It has been observed that students of all levedsnat in position to define correctly the notiorfsra-
tional, irrational and real numbers, neither theg able to distinguish among the integers and twex
numbers (Hart 1988, Fischbein et al. 1995). In ganéhe concept of the rational number remaintated
from the wider mathematical knowledge of real nurel{Bryan 2005, Toepliz 2007).

2. Methods of constructing thereal numbers

In order to develop the theoretical basis of oudgt it helps first to attempt a brief presentatafrthe
known methods of constructing the &of real numbers. The methods in which one can exieto R in-
clude:

¢ The infinite decimal representation of real numbers
* The Dedekind’s method
e The method of Cauchy

The first of the above methods will be discussetth@next section.

For the second method, we recall th@edekind cutor simply cut)is defined to be an ordered pair (A,
B) of non empty subsets A and B@f such that Al B=Q, An B=®, andJall A, IbOB=a<b .

Notice that the definition of Dedekind cuts is aityian adaptation of the definition of the anal@ggong
geometric magnitudes given by Eudoxus during theehtury B. C. (Artemiadis 2000: p. p. 485-4863, i.
approximately 22 centuries earlier (Dedekind presghis ideas at the late 1800's)!

It is well known that for each Dedekind cut (A, Bere exists at most one rational g such thata,

Oall A andg<b, Ob[B and this happens, if, and only if, A has a maxjmalB has a minimal element.

In this case (A, B) is calledrational cutcorresponding to the rational number q.

However there exist Dedekind cuts not satisfyirgydbove property. For example, if we take BEQ:
x>0, ¥>2} and A=Q-B, it can be shown that (A, B) is a Dedekind eutere A has not a maximal element
and B has not a minimal element. This means thaigk in A, there always exists y in A with y>x,dagiv-
en x in B, there always exists y in B with y<xblcomes therefore evident that, if we considerva mam-
ber, say a, such that=2, we can approximate it as much as we want, reitben the left, or from the right,
by rational numbers. Cuts like the above are caflational cuts

When we define the rational numbers as quotienistefers, we face the problem that different cgras

. 1 2 . . . .
determine the same number (e.—zg.z Z). There is a similar equivalence among Dedekirtd.da fact, we

say that (A, By) is equivalent to (4 By), if given a in A; we have thata& b, for all b, in B,, and given ain
A, we have that.& b, for all by in B;.
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The sum (A, By) + (Az, By) of two given cuts is defined to be the cut (A, 8)ch that for each b in B we
can write b=ktb,, with by in B; and b in B,, while A={qL1Q:q<b,1 bLIB}.

A cut (A, B) is called gositive cutif A contains at least one positive rational nemtrhe product (A
B1) X (A2, B,) of two cuts, where at least one of them is pesitis defined to be the cut (A, B), such that for
each b in B we can write bath, with by in B; and b in B,, while A={qJQ: g<b, L1 bLIB}.

Denote by F the set of all equivalence classeseafeRind cuts and let x, y be in F. Then, if x is thass
of (A4, By) and y is the class of $AB,), the sum x+y is defined to be the class of @) + (A, By). Also, if
at least one of x and y contains a positive cudr(tis said to be a positive class), then the proxlyds de-
fined to be the class of (AB,) x (A, B,). Further, if both x and y are negative then %.gléfined to be the
product (-x).(-y), while, if at least one of xdag is O, then x.y is defined to be 0. It can bevah that “+”
and “x” are well defined operations in F (i.e. ipdadent from the choice of the representativeshef t
classes involved).

Then (F, +, X) becomes a field, known as Beslekind fieldBagett 2006: Appendix). The Dedekind field

.is defined (up to isomorphisﬁh)o be the fielR of real numbers.
For the third method, we recall that a sequengeofaational numbers is calledGauchy sequencéd

UelQ, e>0,[h, LIN: Un,m=n, = |a-aq|<e.

In the set M of all Cauchy sequences we definetmtdand multiplication in the obvious way. Then M
becomes a ring and the set | of all null sequerscas ideal of M. It can be shown that the factog M/l is
a field. For each[dQ we correspond the class of M/l where the constaquisnce &g belongs. In this way
Q is embedded (up to isomorphism)* to M/I. The fiéld is defined to be the fiel® of real numbers. Ma-
thematically speaking this is a smart definitiorRofNevertheless our experience shows that many rgiiye
students are not in position to approach in comfoet real numbers in this way, because the infinite
processes and the concept of limit are always dersil by them as sources of difficulties.

They are also known the following two methods afistouctingR without making use of:

« The definition ofR as the set of all equivalence classes of almasgli functions&Z - Z,
whereZ denotes the set of integers (S. Shanuel’s definitio

We recall that a function £ — Z, is calledan almost linear functignf the set of numbers |f(m+n)-f(m)-
f(n)|, m, rdZ is bounded. Further two almost linear functiorenfl g are called “equivalent”, if the set of
numbers [f(n)-g(n)| is bounded. A real number, a&aig defined to be the equivalence class of thetfon
f(n)=[an], where [an] denotes the greater intagkich is < an. The sum and product of the real numbers
corresponding to the almost linear functions f grake defined to be the equivalence classes ddlthest
linear functions f + g and f o g respectively.

¢ The axiomatic definition oR as the unique (up to isomorphism) complete ordeedd

We recall that an ordered field K is calledmplete if every non empty subset of K that has an upper
bound has a least upper bound (supremum) in Karitbe shown that there exists a complete ordeedd fi
(e.g. the Dedekind field) and that any two comptetdered fields are isomorphic (e.g. Bagget 20C6ap-
ter 1 and Appendix, or Mac Lane & Birkoff 1988).UdR is defined to be the unique (up to isomorphism)*
complete ordered field.

3. Obstacles appearing towar ds the understanding of theirrational numbers

As Fischbein et al. (1995) observe, little attemtie paid to irrational numbers in school matheosti
which is mainly conceived as an ensemble of solt@udpniques and proving procedures of theorems Th

1 During the introduction of the “new mathematics”school education (1960-1980) elements from thebtiie ba-
sic algebraic structures (groups, rings, fieldsteespaces) were taught at the upper high-sclevel.INevertheless the
basic idea behind all these, i.e. the conceptavh@sphism, which was in fact the new “message” athramatics dur-
ing the 28" century, was not taught (at least in our coureece). Thus students lost the opportunity toefex’ this
message and, for example, to understand deeplyRftaynd the fieldC of complex numbers is the same thing in prac-
tice.

Of course there is no doubt that the introductibthe “new mathematics” in school education wasvptbto be a
complete failure (e.g. Kline 1990). However thexéndeed a doubt about the reasons for which dggéned. Accord-
ing to our opinion (and not only) one of the basiasons was the complete absence of practical dgarinpm teaching
and cues - like the concept of isomorphism- abloeitusefulness of the new material taught..
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idea of mathematics as a coherent, structurallgrozgd body of knowledge is not systematically eymad
to students.

The irrational numbers are usually introduced atgbcond class of high-school of lower level ararth
comprehension presupposes the complete understpofdmnational numbers by students. Thereforehid t
has not been achieved yet (as it frequently happstslents are facing many difficulties in apploag this
new kind of numbers. Apart from the above, it se#ims there exist further inborn (scientific andyeitive)
obstacles making the comprehension of irrationaéshanore difficult (Herscovics 1989, Sierpinska 499
Sirotic & Zarkis 2007, etc). Nevertheless, studlest focus on the comprehension and didactic appro&
the irrationals are very rare indeed.

Fischbein et al. (1995) made the hypothesis thasipte obstacles for the complete understandirtgeof
irrational numbers are the intuitive difficultiep@eared also in the history of mathematics fordiseovery
of them, that is the perception istommensurable magnitudasad the‘property of the continuous®df the
set of real numberR (i.e. the fact that, althoud@ is an everywhere dense set, it cannot cover @lptints
of a given interval, as it happens wi). Although, as they accepted by themselves, thelteeof their ex-
periments didn’t seem to validate completely thgipothesis, they suggest that these intuitive aliffies
ought to be projected rather, than to be ignorednder-evaluated, by teachers, because in thissiwaents
could have a better approach to the concept aftdonal numbers.

Our hypothesis, although it takes seriously unadasideration the above parameters, i.e. the incetepl
understanding of rational numbers and the intuitiifculties mentioned by Fischbein et al. (19988, pos-
sible obstacles for the comprehension of the orati numbers, it is based on a different argunidamely,
we claim that the main obstacle has really to db #iesemiotic representations of irrationaise. the ways
in which we describe and we write them down.

From the brief presentation of methods for consiingdR, attempted in the previous section, it becomes
evident that the only compatible to the school raathtics method for presenting the irrational nurstier
high-school students (and next to deflRgis the use of their infinite decimal represemtatiThe other
methods are out of question, because they invobthematics that is not taught at school.

For a successful introduction to irrational numberdhis way two prerequisites are necessary:

e First, students must already have understood tratreensurable decimal (periodic) numbers
and fractions are the samembers written in different ways. For this, thayst be able to
convert in comfort periodic numbers, even with a-periodic decimal part (mixed periodic
numbers), to fractions and vice versa (i.e. to kribat a fraction is a different expression of
the division of two numbers).

Notice that in the mathematics book of the firstssl of Gymnasium in Greece the mixed periodic num-
bers are not defined (Vandoulakis et al. 2008: p3%-136) and only two examples are presentedusee
solved Exercises 2 and 3 in p. 136), after the losian that every periodic decimal number can higtevr in
the form of a fraction!

e The definition of the incommensurable (disproparéite) numbers must be stated with great
care and austerity, in order to avoid unpleasastinderstandings by students.

The teacher must have in mind (and transfer itudests) that given a finite approximation of aided
number with infinitely many decimal digits, one @mot be sure that this approximation correspdncdm
irrational, when it could be a rational number with long period. For example the number

£:0,618025 ..... has a period of 232 digits.

-

It is characteristic that Fischbein et al. (19951 82-33) in one of the questions of their expents ex-
pected from students (high-school students andppotive teachers) to identify that 0,121221.... idrear
tional number. But how one could decide about thigen not knowing the complete sequence of the- deci
mal digits of the above number?

Sometimes students ask the following questivhich periodic number has the maximal periodThis
guestion gives a good opportunity to clarify ak thbove remarks and therefore we suggest thatdober
must pursue and “push” students to ask it.

For another related example, we refer to page 1&7eomathematics book for the second class of Gym-
nasium in Greece (Vlamos et al. 2007), wherefronteeal: “It can be shown thatis an irrational number,
that is a decimal number with infinitely many deaindigits that are not obtained with a concretecess”.
According to the above statement 2,0013113111311113see question 5 of our questionnaire in the next
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section) could be considered as a rational nundiece its decimal digits are obtained with a cotecre
process!

The problems however are increased, when we awivbe natural, but crucial, question (usually aske
by students):Which numbers can be written in the form of andmenensurable decimal number?”

At the lower high-school level students learn tiiig happens with the square roots of positiveonati
numbers that they cannot be exactly determinedtfiey have not an exact price). Later, usuallthatup-
per high-school level (which is called Lyceum ine@ce), they learn that this also happens with tte n
roots, 1N, n=2. However the converse is not true, since theyiram@mmensurable decimal numbers that
cannot be written as roots that they cannot betlgxdetermined, or in a more general expressioy Hre
not roots of an algebraic equation with rationag¢ftioients. Thus we arrive to the concept of trescen-
dental numbersfor which, apart from some characteristic exampl&en and e, we don’t know many de-
tails.

As a consequence of the above fact, it is rathevritable to remain some blanks to students (and &ve
elderly people) towards the comprehension of treiimal numbers. The teacher of course must speak
some stage to students about the transcendentélensnin order to complete the “puzzle” of real inans.

A good opportunity for this is given at the upp@haschool level during the repetition of the athg&nown
sets of numbers and before the teaching of complebers.

4. Theexperimental study

The targets of the classroom experiment that wgairey to describe below were the following:

» To check our basic hypothesis that the semioticesgmtations of irrationals is the main
difficulty towards their understanding by students.

» To validate the existence of the obstacles mentiaiso by other researchers, i.e. the
incomplete understanding of the rational numberstae intuitive difficulties with the
perception of incommensurable magnitudes and trep¥uty of the continuous &".

» To investigate if other factors like the geometriimstructions and the representation of
irrational numbers on the real axis, the age, tidithwof mathematical knowledge of
students, etc, affect the comprehension of themaabers.

Our basic tool in this experiment was a questiaenaf 15 questions, properly designed with respect
the targets that we described above. The quesiienwas forwarded at the end of school year 2008098
students being at the second class of theilbt Gymnasium of Plaka, in Athens, i.e. a fewnths after they
had been taught the irrational numbers for finsteti The above Gymnasium is considered to be otigeof
best public high-schools of lower level in the area

The same questionnaire was also forwarded, appeat&lyn at the same time, to 106 students of the
Schools of Technological Applications (i.e. progpexengineers) and Management and Economics of the
graduate Technological Educational Institute (TdIPatras, Greece, being at their first term ofligts. The
majority of these students, according to their ltesat the exams for the entrance in tertiary etiocacor-
responded to graduates of the secondary educdtiorediocre level. The students of TEI however, apar
from their experience from secondary educatiory titeended also a brief recapitulation of the basts of
numbers at their first term course “Advanced Mathgcs”.

In both cases the time given to students to comphet questionnaire was approximately one hour. We
present below the 15 questions accompanied by somenents, and the percentages (with unit approxima-
tion) of the correct answers that we received, imgply for Gymnasium and TEI. The answers wereathar
terized as correct (C) and wrong (W). In casesnobiinplete answers the above characterization create
some obscurities, which however didn't affect digantly the general picture of students’ perforizgn

Question 1: Which of the following numbers are natural, integeational, irrational and real numbers?

5 5

22
-2, -2 0, 908, 5, 7,333..,7=314159.., 3, -J4 K6 ££ 5/3, -2
11 J20

N A IR ]

3
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With the above question we wanted to check if sttalevere in position to distinguish the category in
which a given number belongs. The following magixes the percentages of wrong answers given by stu
dents:

ow 1-2wW 35w 6-10 W >10 W
Gymna- 0 5 22 21 52
sium
T.E. | 0 11 33 36 20

The most common mistakes were the identificatiothefsymbol of fraction with rational and the syrhbo
of root with irrational numbers. The failure of nyastudents to recognize that all the given numberse
real numbers was really impressive. Notice thastndents gave correct answers for all cases.

The following questions 2-5 were designed in otdezheck the degree of understanding of rationad-nu
bers by students.

Question 2: Are the following inequalities correct, or wrong#tify your answers.

2 14 2001>

3" 21" 1001

In this case we wanted to examine if students able to check the order @. We considered as correct
only the answers accompanied by a satisfactoryfipasion. The percentages of the answers receared
presented in the following matrix:

2C 1C 2W
Gymnasium 50 49 1
T.E.L 78 10 12

Notice that most students answered after convettiagractions to decimals. This means that thdty fe
more comfortable to work with decimals rather, thath fractions.

Question 3: Which is the exact quotient of the division 5:7?

The quotient of the division has a period of 6 gedipoints and therefore it was difficult for statieto give
the correct answer in the form of a periodic detmoanber. The expected answer was that the exatiegti of

the division is the fract|0n7— . The answers received were the following (onlyoBect answers by students of

TEI):
C W
Gymnasium 14 86
T.E.L 3 97

Notice that, in contrast to what happens in prinstyool (e.g. Dimou et al. 1984: p. 88), a frati®not
presented in the mathematics books of high-schio@reece as the exact quotient of the divisiorhefrtu-
merator by denominator.

-
Question 4: Convert the fraction§ to a decimal number. What kind of decimal numbehis and why we

call it so?

Here we wanted to check if students were able tveaxd a fraction to a decimal number and to recai
periodic decimal number of the simplest form, weh a period of one digit. The answers receivedevibe
following:

2C 1C 2W
Gymnasium 41 18 41
T.E.L 73 22 5
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Question 5: Are 2,8254131131131... and 2,00131311311131111..odierdecimal numbers? In positive
case, which is the period?

The first is a mixed periodic number with periodl13he second is not a periodic number, although it
decimal digits are repeated with a concrete prod#ssl3, 131, 1311, 13111, etc. No student notigkdt
happens in the second case, but the negative amsageronsidered as correct. This is a charactedsaim-
ple supporting our hypothesis about the semiopeagentations of irrational numbers.

The answers received were the following:

2C 1C 2W
Gymnasium 23 49 28
T.E.L 58 39 3

Quedtion 6: Find the square roots of 9, 100 and 169 and itbesgour method of calculation.
Here we wanted to check if students were in positiocalculate in comfort the square root of a sgua
positive integer by using the corresponding ddbinit A difficulty was observed for the calculation

ofv169.The answers are shown in the below matrix:

3C 2C 1C 3W
Gymna- 69 19 3 9
sium
T.E.L 75 25 0 0

Question 7: Find the integers and the decimals with one dddiligit between which Iies/i . Justify your
answers.
Our target here was to check the comfort of stuglfartthe approximate calculation of square rodkse

difficulty of students of TEI to give a decimal apgimation of\/i was impressive. The answers received
are the following:

z B ya
Gymnasium 59 15 26
T.E.L 18 79 3

Notice that the known practical method (similaidtaision) for calculating the square root of a gusira-
tional, although it was presented (without any amgtion) in the old book of mathematics of the sdadass of
Gymnasium in Greece (Papamichail et al. 1981:bp-155), it is not presented in the new one (Visuetal.
2007). We shall agree of course that the presentafithe above method without any explanation fttuger
explanation is not in fact so easy to be givenydtédelp towards a better understanding of theepnof the
square root, but some times it is very useful acpce, especially when we are not using a calmulat

Question 8: Characterize the following expressions by C if tla@g correct and by W if they are wrong:

\/E =1,41, \/5 =1,414444...,\/§ =1,41, there is no exact price fc/rz .
The matrix of the given answers is the following:

4C 3C 2C 1C AW
Gyma- 17 41 34 4 4
sium
T.E.L 3 33 47 14 3

The low percentage of right answers in all casesais the difficulty that students have in writicgrrect-
ly an irrational number, thus giving another straugport to our hypothesis about the semiotic sEpTE-
tions of irrational numbers.
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The following questions 9-12 were designed in otdezheck the perception of density of rational aret
tional numbers by students in an interval with paohts irrational numbers, or rational numbersawesal forms
(integers, fractions, decimals).

Question 9: Find two rational and two irrational numbers belwe@ andx/ﬂ). How many rational num-

bers are there between these two square roots?
The matrix of students’ answers is the following:

3C 2C 1C 3w
Gymna- 14 14 46 26
sium
T.E.L 50 41 6 3

Answers involving only one rational, or irrationalymber were considered as wrong. Many students (es
pecially from high-school) answered that they analyofinitely many rational numbers between

\/f)and\@.

Question 10: Find two rational and two irrational numbers betswd0 and 20. How many irrational numbers
are there between these two integers?
The matrix with the students’ answers is the follayv

3C 2C 1C 3W
Gymna- 24 22 31 23
sium
T.E.L 48 42 7 3

While there was no significant change to the answéithe students of TEI with respect to the presio
guestion, for high-school students the correct answincreased here, where the end points of tleevadt
were integers. This was expected, because, eventladt introduction of the rational numbers, intsgeon-
tinue to play an important role in teaching andregles (Greer & Verschafel 2007).

, , 1 1 i .
Quedstion 11: Are there any rational numbers betweﬁandﬁ? In positive case, write down one of them.
How many rational numbers are there between theeaom fractions?

Many students, especially from high-school, ansdiénat there is no rational number betwelélmnd%,

because these are two successive (!) fractiongdjmap transfer of the corresponding property ofirstnum-
bers to fractions). On the other hand a considenalnber of students converted the given two trastio de-
cimal numbers in order to arrive to the correcingns. The given answers are the following:

2C 1C 2W
Gymnasium 23 24 53
T.E.L 68 30 2

Question 12: Are there any rational numbers between 10,20 aril20In positive case, write down one of
them. How many rational numbers are in total betvibe above two decimals?

Here again many students considered 10,20 and &8,8dccessive decimals (!), thus transferringropgr-
ly the corresponding property of natural numberddcimals. Nevertheless the correct answers irexeagh
respect to the previous question, which meansstbdents had achieved earlier a better undersoditiecim-
als rather, than of fractions. Students, who aresveorrectly, were orally asked why there exihitely many
rational numbers between 10,20 and 10,21. A tymoaler was: After 10,20 there exist 10, 201, 10,209,
10,2099 and as many other digital numbers, as wa,\gmaller than 10,21 The above answer is an argument
of density, but it is only a special case. Therxatith the students’ answers is the following:

2C 1C 2W
Gymnasium 44 31 25
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| TE.L | 71 | 27 | 2 |

Quedtion 13: Characterize the following expressions as corneatrong. In case of wrong ones write the cor-
responding correct answer.

J3+5=4/3+ \/T:_)’\/3|:7 :\/EB/_7 S =—2 , the unique solution of the equatiof¥3 is x=/3,

3
,/(1—\/1_7)2 =1-J17

The target here was to investigate students’ ghofitusing correctly the properties of irrationainmbers.
The matrix with the answers received is the follogvi

5C 4C 3C 2C 1G 5\
Gymna- 3 19 35 29 14 0
sium
T.E.L 20 64 9 6 1 0

The majority of correct answers were given forfiret 2 cases, while the majority of wrong onesewvgiven
for the fourth case.

When students were asked why they considered #w@xis the unique solution of the equatidix3, they
asked*“Because we know that the square root of 3 is atigesnumber, such thafx3” . In fact, this is exactly
the definition of the square root of a positive le@mgiven in page 41 of the school book of mathemaf the
second class of Gymnasium in Greece (Vlamos ePG07).

It becomes therefore evident that the restrictiotin@ definition of the square root to positive raers only
creates a confusion to students, although in theasdook (Vlamos et al. 2007) they are someshabibut the
solution of equations of the fornfsa, (e.g. Exercise 6 in page 44: Find the positibers satisfying the

equations %=9,......... X =%) , Exercise 4 in page 48: Solve the equatidr x¢=5, X= -3, ¥=17, etc).

One could claim that the above restriction is nemgsin order to be able to consider f(xé;c , x>0, as a
function of x. Nevertheless we can pass throughsily, if we accept that a positive number x kas dquare

roots: A positive one, which is symbolized b& and its opposite\/; , Which is of course a negative number.
This is accepted so in several counties, incluingland.

We believe that the rejection of the negative sgwaot is an arbitrary restriction that imposesaoassary
difficulties for the teaching of roots of higherder not letting students to approach the rootsnasnserse

process of the process of raising to a power. Kamele, it is completely unreasonable to acceyit %{&_8

does not exist [as it happens in the book of madiiemof the first class of upper high-school lemeGreece

(Andreadakis et al. 2007: p.p. 44-45)], mainly hseawe always expect from roots to be positive ransib
Question 14: In the real axis of the below figure line segmé&# represents the unit of measuring the

lengths. Construct, by making use of ruler and @assponly, the line segments of Iength;_ and \/5
respectively and find the points of the given aagresponding to the real numba@ and -\/5

O A

Here we wanted to investigate the students’ abtlityconstruct incommensurable magnitudes and to
represent irrational numbers on the real axis. difmvers of students of TEI were really an unpldasan

prise. Nobody constructe(f% correctly, only two of them constructa@ and only one found the point cor-
responding to it on the real axis! On the contrémg, high-school students, recently taught theespwnding
geometric constructions, had a much better perfiocmarhe above phenomenon could be consideredeasf on
the negative consequences of neglecting the tepohiBuclidian Geometry at the upper classes di-bihool
(Lyceum) in Greece (e.g. Voskoglou 2007).
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The matrix with the answers received by studentisédollowing:

3C 2C 1C 3W
Gymna- 27 20 13 40
sium
T.E.L 0 1 1 98

Question 15: Is it possible for the sum of two irrational numbéo be a rational number? In positive case
give an example.

Here the superiority of correct answers of the esttel of TEI was impressive, obviously because eir th
greater experience. Correct answers were considatedhese accompanied by an example.

The matrix of the given answers is the following:

C W
Gymnasium 5 95
T.E.I 80 20

Next, and in order to achieve a statistical repreg®n of the experiment’'s data, we proceedechéo t
graduation of the 78+106=184 in total completedstipanaires by allowing 2,5 units to question 14n&s
to questions 1 and 13, 1,5 unit to questions Hid7&and 1 unit to each one of the other ques{(@dnits
in total). The above distribution of units to eagplestion was decided before carrying out the expeani,
according to its difficulty and the estimated méare needed to be answered by students. The nudtfig-
guencies of the marks obtained is given below, rseplg for high-school and TEI students and inltota

Mar 1+ 14 % ¢ 128 9 1 1 1 1 1 1 1 1 1
Kk 0|1 /2 |3 |4 |5]|6 |78

Gy 1Y ¢ 8 9 8 € € 3 § § 24 4 3§ 1 3
mn.

T.E 1 4 g § 4 1 9 1 1 § 1 § ¢ q (¢
L 0 |7 2 |3

To- 1Yy ¢ 1Ty 2 2 1 1 2 1 9 71 3 1 3
tal 3 |7 |53 |5 |5 |10

The means obtained, with approximation of two detidigits, are 9,41 for high-school, and 9,46 f&l T
students. The great accumulation of marks of Tadeshts between 8 and 12 is remarkable, while thvkana
of high-school students have a more uniform digtidm. All these can be observed better throughmbgi-
ces of frequencies of marks and the cyclic diagrfpmess) of the percentages of marks presented below
separately for students of Gymnasium and of TEI.

) Gymnasium

=

L T S Y R I - =]
T R R L1
w
w
w

w
=

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 1a: Frequencies of marks
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Finally, calculating the first and third quartef3,£7 and @=12 respectively) and the median (M=9) we
constructed the “Five Number Summary” shown in Fég8, that gives a concrete view of the distribuid
frequencies of marks of our total sample

Q M Qs
Kowis X nax
— : i
1 7 9 12 18

Figure 3: The “Five Number Summary” of the totahgple

We observe that the median is lying to the lefe sifithe orthogonal, which means that there ezistac-
cumulation to the low marks.

5.

Conclusions and didactic suggestions

The general conclusions obtained through the etraluaf our experiment’s data are the following:

The understanding of rational numbers was provdzttimcomplete by many students (questions 1-5
and 9-12). In general students worked in more camath decimals rather, than with fractions
(questions 11, 12, etc). Further, students whedaib give satisfactory answers to questions 1eb an
9-12, failed also in answering satisfactorily tlestrof the questions. This obviously means that, th
incomplete understanding of rational numbers i@t a great obstacle for the comprehension of ir-
rational numbers.

Our basic hypothesis about the intuitive difficedtiwith the semiotic representations of irrational
numbers seems to be validated (questions 5, &td)3,

The density of rational and irrational numbers igiveen interval doesn’t seem to be embedded prop-
erly by a considerable number of students, espediglthose of high-school (questions 9-12).

The students of TEI showed a complete weaknes®db with processes connected to geometric
constructions of incommensurable magnitudes artdeg@epresentation of the irrational numbers on
the real axis (question 14). However this didneyent them in answering satisfactorily the other
guestions.

It seems that the age and the width of mathemdtimalvledge affect in a degree the comprehension
of the real numbers. In fact, although the majoatythe TEI students corresponded to mediocre
graduates of secondary education, the superiofitiier answers was evident in most of the ques-
tions (apart from 3, 7, 8 and 14). However thisesiguity was not illustrated by the means of the
marks obtained. The reasons for this were the dlowmplete failure of the TEI students in answer-
ing question 14, whose graduation was the greates{2,5 units) and the superiority of high-school
students in obtaining high marks (15-18).

We underline also the following didactic suggestionhich, according to our opinion, could improtie t
comprehension of real numbers by students.

The definition of rational numbers must be giverewlstudents have already clarified that fractions
and periodic decimal numbers are the same numhbdtterwin different ways. For this, they must
embed that the result of the division of the nunmerhy the denominator of a fraction is always a
periodic number, and vice versa they must be abtonvert in comfort, by using the proper equa-
tions, a periodic number to a fraction, even wheasontains a non periodic decimal part (mixed pe-
riodic number).

The concept of incommensurable (non periodic) datmmbers must be the basis for the introduc-
tion to the irrational numbers and the definitidnRy Their definition must be given with a great
care by teacher: if the infinite decimal digitseoflecimal number are repeated with a concrete proc-
ess, this does nobean that it is necessarily a periodic number. Gegond case of question 5 of our
guestionnaire). Further students must understaat] given a finite approximation of a decimal

138



“Quaderni di Ricerca in Didattica (Mathematics)”, 21, 2011
G.R.1.M. (Department of Mathematics and Informatidaiversity of Palermo, Italy)

number with infinitely many decimal digits, one oah be sure whether or not this approximation
corresponds to an irrational number, even if itsirdal digits “seems” to be repeated in a random
way, since it could be a rational number with aglperiod.

It is also important for students to embed thanhamy cases the writing of an irrational number as a
non periodic decimal number is the only way to esgprit. In other words, there exist irrational
numbers that cannot be written, in an alternativenf as roots of rational numbers that they cannot
be exactly determined (e.g.and e). However the formal distinction betweerehfgic and tran-
scendental numbers must be presented at the ulgees of high-school (Lyceum), when students
have already acquire a good experience of real etesnbnd before the introduction to the complex
numbers.

A great care is needed by teacher in order to vedble confusion, created to students with respect
to the existing solutions of the equatidixa, a>0, by the definition of the square root gsitive
number (see comment in question 13 of our quesdioen At Lyceum also it must be clarified that

the symboR/; , n=2k+1, has meaning (and a negative price) wkén(e.g.}/ -8 =-2).

We shall close with some open questions on théniegof real numbers that require additional redear
and properly designed experiments in order to lsevared:

In the cultural environment of ancient Greek matheos, even after the introduction of Euclid’s
axioms, it seems that geometric figure was theslfasi“unfolding” mathematical thought. It helped
towards the production of conjectures, of fruitfodthematical ideas and explanations. The use of
auxiliary lines, the visual redesign and new mediffigures obtained convincing proof arguments
resulting to a more complete mathematical reasondyg the contrary, in our contemporary society
the numerical culture dominates over the geomairie. As a natural consequence, in school
mathematics the numerical thought is much moresenthan the geometric one, since the teaching of
mathematics is mainly based on formulas and cdlon However we are convinced that an early
and excessive “arithmetization” wounds the georodtituition. In fact, a rich experience of students
with geometric forms, before they have been intoediuto numerical thought and analytic proofs, is
not only useful, but necessary indeed (Kosyvas &bs 2010). Under this sense, an open question
is how useful it could be for the comprehensionhef irrational numbers by students to support our
teaching methods by geometric constructions ohoeduch numbers and their representation on the
real axis. Our experiment didn’'t succeed in givanglear indication about this, since the almost
complete failure of the TEI students to deal witlestion 14 didn’t prevent them in answering cor-
rectly the other questions.

Of course they are irrational numbers that caneatdnstructed by ruler and compass % m, e

and many others). However we correspond also pointise real axis to such numbers in an axio-
matic way, which usually is not justified clearty students. Therefore another open question has to
do with the proper use of “approximate mathematics”teaching and learning the real numbers.
During the last Panhellenic Conference on Matharadfiducation of the Greek Mathematical Soci-
ety (Halkida, 19-21 November, 2010) a high-schealkher told us that she was embarrassed when
she was asked by a student the following questiére there any circles whose length of circum-
ference is a rational number”The student added that the length of the circusnieg of a circle

. : 1 . . . .
with radius R=— should be 2 metric units. The problem is that Fhia case (and therefore the cor-
Vs

responding circle) cannot be geometrically conséaic

Finally another important open question (of cowse could find more) is how we can drive for-
ward and improve as teachers the intuition of dgrddi rational and continuity of real numbers by
students.
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