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RESUME  

Les objets émergents des systèmes de pratiques mathématiques dans les différents contextes d'utilisation sont 
structurés par des configurations épistémiques. La détermination et la description des configurations épisté-
miques, associées à la notion d'égalité des nombres réels, nous permet d'introduire la notion d’holo-signifié 
d’une notion mathématique. La notion d’holo-signifié est constituée par l’interaction des différents modèles 
mathématiques associés à cette notion. Les notions d’holo-signifié et de modèle constituent un cadre pour la 
sélection des signifiés à enseigner par rapport au curriculum et pour la recherche de situations fondamentales 
dans un projet global d'enseignement. 

ABSTRACT 

The emergent objects of systems of mathematical practices, in different contexts of use, are structured 
through epistemic networks. The determination and the description of the epistemic networks associated to 
the notion of equality in real numbers are used to establish the idea of holistic-meaning, which is formed by 
the interaction of different mathematical models associated to a mathematical notion. The notions of model 
and holistic-meaning establish the referential framework in the selection of curricular meanings used in 
teaching, as well as in the search for fundamental situations within a global educational project. 

RESUMEN 

Los objetos emergentes de los sistemas de prácticas matemáticas en los distintos contextos de uso se 
estructuran formando configuraciones epistémicas. La determinación y la descripción de las configuraciones 
epistémicas asociadas a la noción de igualdad de números reales nos permite introducir la noción de holo-
significado de una noción matemática, constituido por la interacción de distintos modelos matemáticos 
asociados a dicha noción. Las nociones de holo-significado y de modelo constituyen un marco para la 
selección de los significados curriculares que se pretenden enseñar y para la búsqueda de situaciones 
fundamentales dentro de un proyecto global de enseñanza. 
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1. Theoretical MOTIVAtioN and general PLAN  

One of the major problems that research in mathematics education confronts today, if not the most important, 
is the analysis of the processes of construction and communication of mathematical knowledge by individu-
als and institutions. In fact, in a generic way, it can be said that the “didactics of mathematics” as a scientific 
discipline represents “a fundamental theory of communication of mathematical knowledge” (Brousseau, 
1998, p.358). This objective brings with it the need to differentiate and describe the mathematical notions, 
processes and meanings that must be taught. In particular, it is necessary to determine the meanings associ-
ated to mathematical objects in different contexts within academic institutions, and organize them as a com-
plex and coherent totality. 

Godino and Batanero (1994) introduce the notion of “system of operative and discursive practices associated 
to a class of problems in which a mathematical object is put into play” as the primary focus of attention when 
describing the institutional and personal meaning of such mathematical objects. In this work we are espe-
cially interested in determining and describing the relation between the systems of practices, the emergent 
objects of these systems, and the relations that are established between the objects (which should be taken 
into account in the analysis of the meaning of the mathematical notions). 

Godino (2002) identifies the “system of practices” with the content that an institution assigns to a mathe-
matical object, establishing in this manner a correspondence between the system of practices (the systemic 
meaning) and the expression of the mathematical object. In this work, the description of the meaning of a 
mathematical object is presented through a list of specific objects that are classified in six categories: prob-
lems, procedures, languages, notions, properties and arguments. 

We consider that this description of a system of practices is insufficient, for several reasons. In the first 
place, the categories that are mentioned are emergent objects of the system of practices in which the mathe-
matical object is put into play and, for this reason, the objects refer explicitly to the institutional meaning.  

“The meaning begins by being pragmatic, relative to the context, but there exist types of uses that al-
low the orientation of the processes of the teaching and learning of mathematics. These types of uses 
are objectified by means of language, and they are the referents of the institutional lexicon.” 
(Godino, 2003, 38). 

In second place, both the systems of practices and the emergent objects are related amongst themselves, 
forming epistemic networks or configurations; the description of these networks should be the objective of 
the epistemological analysis of a mathematical notion, from the perspective of the teaching and learning of 
mathematics. In third place, the global teaching project can be divided in subsystems of practices linked to 
specific types of problems; to elaborate curriculum and construct teaching projects it is necessary to identify 
and describe both the subsystems of practices and the emergent objects of any project in question.  

We ask ourselves, based on these considerations:  

− Is it possible to structure, in a coherent system, the different definitions of a mathematical notion that 
emerge in the midst of different subsystems of practices in specific contexts?  

− What does it mean to understand a mathematical notion?  

− Does the description of a notion such as “totality” have consequences in the development of curricu-
lum and, in particular, can the analysis of applications of educational proposals in relation to such a 
notion be carried out? 

As a response to these questions, and to center the ideas on the notion of equality2, we introduce the con-
cepts of model and of holistic-meaning of a mathematical notion. Briefly, the model of a mathematical notion 

represents the structured complex of a system of practices in a specific context of use3 and the objects that 
                                                           

2 In this text, the term equality will be employed as a synonym of “equality of real numbers”. 

3 In a first approximation, the contexts of use can be identified with the notion of framework introduced by Douady 
(1986, 10). However, this approximation does not take into account the characterization of a framework according to 
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emerge within those systems (including definitions); the holistic-meaning of a mathematical notion repre-
sents the expression of the diversity of models associated to that notion (understood as a single system). In 
the same way, the notions of holistic-meaning and model allow us to analyze the notion of praxeology from 
the Anthropological Theory of Didactics (TAD) (Chevallard, 1997) in relation to mathematical practice, and 
frame the search for fundamental situations (Brousseau, 1998) in a global teaching project; concretely, we 
will show that it is good for a fundamental situation to include a representative sample of the models that 
make up the holistic-meaning (although frequently that representativity will have to be restricted to some 
models associated to the mathematical notion introduced or developed) 

In relation to the notion of equality, the objective of this paper is to show how the different contexts of use 
delimit specific meanings, which are synthesized in different definitions of these notions, without it being 
possible to privilege any of them. Thus, in section 2 we introduce different definitions of the notion of equal-

ity; illustrating with the proof of the proposition
2

2
2 = , we indicate how these definitions condition the 

mathematical practices in the different contexts of use4. In section 3, after comparing the modelling of 
mathematical activity in the Anthropological Theory of Didactics (by means of the notion of “praxeology”) 
and in the Onto-Semiotic approach (by means of the notion of “operative and discursive systems of prac-
tices”), we briefly describe the primary entities and the type of language associated with the notion of equal-
ity in different contexts of use. 

In section 4 we make the structuring of the models and the meanings associated to the notion of equality, ex-
plicit. En section 5 the notion of holistic-meaning is introduced and the holistic-meaning of the notion of 
equality is described. Then some curricular implications of the generic notion of holistic meaning are ana-
lyzed (section 6). Finally, in section 7, some implications are highlighted and classified by their macro-
didactical nature (referent to the evolution of the fundamental questions about the institutional, social, and 
cultural state of mathematical objects), micro-didactical nature (where the singularity of the mathematical 
objects and the individuality of the subjects prevail) and theoretical nature (related to the tools and tech-
niques introduced together with the didactical notions as accepted within the scientific community).  

 

2. DEFINITIONS OF THE NOTION OF EQUALITY 

From the strictly formal and official viewpoint (Brown, 1998) it is accepted that the definition of a mathe-
matical object forms its meaning, given that the definition points to the object’s unmistakable situation in the 
universe of mathematical objects in which it is introduced. “Every definition is a classification. It separates 
the objects that satisfy the definition and those that do not, and it situates them in two different classes” 
(Poincaré, in Lorenzo, 1974, 58). Then, to introduce the notion of equality, it is sufficient to state: the sign 
‘=’ (equals) indicates that what is found to the left of this sign, the first member of the equality, and what is 

                                                                                                                                                                                                 
the type of objects (notions, processes and meanings) that are genuinely representative of the framework. This charac-
terization requires the consideration of a reference institution given that, for example, it is not possible to associate the 
same problems, notions, properties, arguments, procedures and language to “elementary algebra in schools” and to 
“formal algebra in the university”. For this reason, in a second approximation, the contexts of use can be considered as 
frameworks of the organization of mathematical notions and propositions that determine the type of arguments, proce-
dures and language that is admissible and pertinent to put into action in a specific institution, referent to a type of prob-
lem. 

4 The mathematical definitions and propositions are the most visible part of the anthropological and cultural reality of 
mathematics (that which is susceptible of being explicitly reconstructed and communicated). The mathematical defini-
tions are a part of the systems of mathematical practices, a discursive component of such practices that, from the onto-
genic point of view, are dependent and “posterior” to the operative practices. The definitions interact in a complex and 
recursive manner with the problems, the previously established propositions, the type of arguments and language rela-
tive to the operational action and the discourse (in relation to a specific mathematical notion). This interaction gives 
way to new questions and new systems of practices; in this sense, we can affirm that “the definitions condition the ma-
thematical practices in the different contexts of use”. 
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found to the right of this sign, called the second member of the equality, are two ways of designating the 
same object, or two different ways of writing the same thing. This description of the notion of equality does 
not reference explicitly any system of mathematical practices or mathematical context of use. The academic 
institutions usually accept (irreflexively) that students possess the capacity to adapt this formal definition of 
the notion of equality to different contexts of use, producing the phenomenon called the illusion of transpar-
ency. 

When students are not told that the “=” sign can have different meanings, the presence of didactical transpo-
sition can be ascertained; In fact, this can be explained by the desire to simplify: the student is led, implicitly 
to believe that the “=” sign always has the same status. However, in the different academic curricula, explicit 
study about the different statuses of the “=” sign is not carried out. Often those who teach may not be really 
conscious of the different functions of the “=” sign. This might explain the reason why de-transposition is 
not carried out when it is necessary. Indeed, we insist, to de-transpose a notion it is essential to have unders-

tood what the initial transposition of the notion consisted of (Antibi and Brousseau, 2000, 31)5. 

“Although quantitative sameness is conventionally encoded in the equal symbol, it had not been nec-
essarily so interpreted by the students. Hence, it was clear that the children needed to experience a 
variety of numerical equalities to continue their progressive understanding of the meanings of the 
equal sign.” (Sáenz-Ludlow & Walgamuth, 1998, 182). 

The definitions of equality represent the emergent objects of the systems of practices associated with the dif-
ferent contexts of use; they are not, in any case, a finished product of the meaning attributed to this notion. 
To justify that a and b represent the same number, it is necessary to make a context of use explicit: numeri-
cal, arithmetic, algebraic, analytic or topological. This way, according to the context of use, the equality be-
tween two numbers a and b (a = b) is determined by the specific relations that are given in these contexts. 

In this section we will give the definitions of the notion of equality according to the mathematical context, as 
well as to certain properties of real numbers; we will carry out a brief discussion of the properties, which 
contribute to their correct interpretation; finally, we will show how the given definitions condition the opera-
tive and discursive practices.  

 

2.1. Definitions 

The definition of equality as equivalence classifies a set (the real numbers) in classes R/=; in other words, the 
representation of the number is not important, what counts is the value that the number takes on: 

(
2

1

4

2 ≡ ;1 0.9≡ ; etc.); we are not interested in determining how the classes became defined (Cauchy se-

quences, Dedekind cuts, etc.). They just are defined as: 

Definition 1 (Equality as equivalence) Two real numbers a y b are equal, denoted as a = b, if they 
represent the same class; that is: 

a= b ⇔ a ≡ b 

The equality of two real numbers a y b can also be established by a double inequality; R, equipped with the 
operations sum (+) and product (⋅) and with the relation less than or equal to (≤), is an ordered field. It is de-
fined: 
                                                           
5 In French in the original: “Le fait de ne pas signaler aux élèves de Collège que le signe «=» peut avoir des significa-
tions différentes, relève de la transposition didactique; en effet, ceci peut s’expliquer par un souci de simplification: on 
laisse ainsi croire à l’élève, implicitement, que le signe «=» a toujours le même statut. Or, dans le cursus scolaire d’un 
élève, aucune étude explicite sur les différents status du signe «=» n’est effectuée. Les professeurs eux-même peuvent 
alors, souvent, ne pas avoir vraiment conscience des différents rôles du signe «=». Ceci peut expliquer que la dé-
transposition n’est pas effectuée lorsqu’elle devient nécessaire. En effet, répétons-le, pour pouvoir dé-transposer conve-
nablement une notion, il faut avoir bien compris en quoi consistait la transposition initiale de cette notion.” (Antibi et 
Brousseau, 2000, 31). 
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Definition 2 (Equality of order) Two real numbers a and b are equal, denoted as a = b, if the order 
relation on R (≤) has the antisymmetric property, that is: 

a = b ⇔ [ a ≤ b ∧ b ≤ a] 

Or equivalently: 

a = b ⇔ (a ∈ (−∞; b] ∧ b ∈ (−∞; a]) 

Absolute value equips the set of real numbers with a metric (standard). The distance between two numbers a 
and b is defined and denoted d(a; b), as the absolute value of the difference (|a − b|). It is defined: 

Definition 3 (metric equality) Two real numbers a y b are equal and denoted a = b, if the distance be-
tween them is null; that is: 

a = b ⇔ d(a; b) = |a − b| = 0 

The absolute value metric can be interpreted as a topology on R, in which case (R; d) is a topological space; 
in this context, to affirm that the distance between two points a y b is zero is equivalent to determining that 

the set {a; b} is connected6. This is defined as: 

Definition 4 (connective equality) Two real numbers a y b are equal, denoted as a = b, if the set {a; 
b} is connected. 

The algebraic definition supposed the determination of a number as the solution of an equation. We will de-
note by δ() the characteristic function that associates 1 to a true sentence and 0 to a false one; and by E() the 
relation associated to an equation E. This way, δ(E(a)) = 1 means that the value a verifies the relation E() or, 
in other words, a is the solution to the equation E. In the same way, δ(E(a)) = 0 means that the value a does 
not verify the relation E(), that is, a is not a solution to the equation E. It is defined: 

Definition 5 (Algebraic equality) Two real numbers a y b are equal, denoted a = b if, when a is a so-
lution to an equation E, b also is a solution: 

a = b ⇔ [δ(E(a)) = 1 ⇔ δ(E(b)) = 1] 

Equality between real numbers can be defined as well by turning to the theory of functions. In effect, to de-
termine if two real numbers are equal it is sufficient to determine if their images with respect to an injective 
function are equal. This is defined: 

Definition 6 (functional equality) Let Fi(D) be the set of real injective functions with domain D. Two 
real numbers a and b are equal, denoted as a = b, if their respective images with respect to an injec-
tive function are equal; that is: 

a = b ⇔ ∃ f ∈ Fi(D), {a; b} ⊆ D, such that f(a) = f(b) 

In the previous definition, if f is the identity function, a semantic tautology is established. The distinction is 
made between logical tautology and semantic tautology. A logical tautology is an affirmation of the type a = 
ā, where a and ā represent the same object, without their having the same ostensive representative (for ex-

ample, a > 0, 
a

a
a = ). The semantic tautology is a logical tautology that demands the equivalence both of 

the object and its ostensive representative (for example, a > 0, aa = ). A semantic tautology is self-
evident; a logical tautology does not have to be. In practice, the proof of the equality of two numbers, given 
by different ostensive representatives, implies the determination of an injective function that is different from 
the identity function. 

                                                           
6 “By topology we understand the study of those qualitative aspects of spatial forms, or of the laws of connectivity, of 
the mutual position and order of points, lines, surfaces, volumes, as well as their parts and unions, making abstraction of 
measure and magnitude” (Listing (1836), in Ayala et al. (1997, p. ix)). 
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In the context of mathematical analysis, the equality is substituted by the intersection of a whole uncountable 
class of inequalities or neighborhoods. It is defined as: 

 

Definition 7 (Equality as the process of taking the limit) Two real numbers a y b are equal, denoted 
as a = b, if a belongs to every open neighborhood centered at b (B(b; ε)) or vice versa; that is:  

a = b ⇔ ∀ ε > 0, a ∈B(b; ε) ⇔ ∀ ε > 0, b ∈B(a; ε) 

Or, equivalently: 

a = b ⇔ ∀ ε > 0, |a – b| < ε 

 

Finally, the numerical definition of equality presupposed the acceptance of a margin of error that depends on 
the nature of the problem, or is attributed to the instrument with which the calculations are made. The rupture 
with the previous definitions is radical from the formal point of view; its inclusion has pragmatic reasons 
(restrictions on measuring and computing, instruments to do calculations calculators, computer program) 
and epistemological (notions like sufficient approximation and neighborhood, monad, etc. non-standard 
analysis). 

Definition 8 (numerical equality) Let T > 0 be the admitted error tolerance; two real numbers a y b 
are equal, denoted as a = b, if a belongs to an open neighborhood centered at b with radius less than 
or equal to T (B(b; t), 0 < t ≤ T) or vice versa; that is: 

a = b ⇔ ∀ t > 0, t ≤ T, a ∈ B(b; t) 

⇔ ∀ t > 0, t ≤ T, b ∈ B(a; t) 

Or, equivalently: 

(a = b) ⇔ |a – b| ≤ T 

 

2.2. Brief analysis of the previous definitions 

The objective of the following analysis is to clarify the previous definition in order for a correct interpreta-
tion. A concise confrontation of the different definitions will be carried out at the end of section 2.3. 

The arithmetic definition takes us to the “identity of a name”. In other words to show, basing oneself on the 
arithmetic definition, that two expressions represent the same number, transformations are made that pre-
serve equality, until a semantic tautology is obtained, that is, the same ostensive representative for both num-
ber. 

The metric and order definitions give criteria for procedures that show the equality of two real numbers; they 
represent an interpretation of the arithmetic definition in function of certain characteristics attributed to R 
(ordered field, metric space). This way, theoretically, a two step process is used to identify real numbers: R 
is given a property (order, metric) and, in terms of the property, the equality (or inequality) of two numbers 
is established. 

The algebraic definition of equality is founded on what, traditionally, has been named conditional equality: 
the equality only is true for certain values of the variable. It is logical to associate to every equation the set of 
solutions or values that make the equality true and, in an indirect way, define a number as the solution of a 
class of equations. To talk of a “class of equations” is strictly necessary, given that infinite equations have a 
certain real number as a solution, and only the set distinguishes that certain real number. In fact, the defini-
tion results more operational if it is formulated as a negation: 

a ≠ b ⇔ ∃ E tal que [δ(E(a)) = 1 ⇔ δ(E(b)) = 0] 
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In other words, two numbers a and b are different if an equation E is known such that a is a solution and b is 
not; and, vice versa, if b is a solution and a is not. An equation E definitely exists for which a and b are not 
simultaneously solutions.  

The definition as a process of taking the limit does not lead us to the identity of a name, but to a reasoning 
process by sufficient conditions and a controlled loss of information, through chains of inequalities. This fact 
determines a radical difference between the analytic proofs and the algebraic ones. 

It was in this vein that Newton wrote in Philosophiae Naturalis Principia Mathematica, in an analytic pas-
sage: “Quantities, and the ratio of quantities, that in any finite interval of time converge continuously to 
equality and that, before the end of this time approximate each other more than any given difference, are fi-
nally equal.”, quoted by Boyer (1969, 500). 

The functional definition relates a genuinely analytic concept (function) and the solution of an equation. In 
effect, let f be an injective function and consider the equation f(x) = h; then, if a and b are solutions to the 
equation, that is, the relations f(a) = h and f(b) = h are true, necessarily a = b. This way, the analysis of the 
equation f(x) = h in terms of the properties of the associated function f determine a sufficient condition for 
algebraic equality: it is not necessary to verify that, for every relation E(), “δ(E(a)) = 1 ⇔ δ (E(b)) = 1”, it is 

enough to find a homogenous7 relation E*(), such that y = E*(x) is injective, where E*() ≡ f()– h. 

This way, the functional definition does not explicitly involve the limit notion, which is central in the model 
of analytic equality. However, if the function f is continuous, it is possible to make that notion explicit. In ef-
fect, if f is continuous at the point a, f (a) = h, then:  

∀ ε >0, ∃ δ > 0 tal que si |b – a| < δ ⇒ |f (b) – f(a)| < ε 

⇔ límb→a f(b) = f(a) 

 

The numerical definition of equality can be understood as a “restriction” of the analytic definition, when un-
derstood as the process of taking the limit: it fixes orders of approximation or establishes admissible 
neighborhoods of inclusion. In other words, two analytically equal numbers are numerically equal for any 
margin of error. On the other hand, the numerical definition can be also be given in terms of solving equa-
tions; in effect, if we denote the characteristic function that associates 1 to a true sentence and 0 to a false 
one by δ(), and by E(,T) the relation associated to an equation E with an order of approximation T, two num-
bers a y b are numerically equal (with an order of approximation T) if: 

a = b ⇔ [δ (E(a, T)) = 1 ⇔ δ (E(b, T)) = 1] 

This way, the numerical equality totters between the algebraic equality and analytic equality as taking the 
limit.  

Finally, each definition of equality that has been introduced in section 2.1 is an emergent notion of a system 
of mathematical practices relative to a class of specific problems that include linguistic objects, notions and 
concrete operational techniques. These systems of practices are differentiated one from the other by their 
relative efficiency and generality in carrying out mathematical work, as will be exemplified in section 2.3.  

 

2.3. Influence of the definitions in mathematical work: proof of the proposition “
2

2
2 = ” 

The act of defining consists of the establishment of a set of necessary and sufficient conditions that allow the 
unmistakable differentiation of an object within a universe. In many circumstances, this differentiation is car-
ried out by means of formalization; a formalization that has made certain authors assert that to define in 
mathematics is to give a name (Leikin & Winicki-Landman, 2000). This perspective supposes the assertion 

                                                           
7 In this context an equation is homogeneous when one of its members is zero. 



“Quaderni di Ricerca in Didattica (Mathematics)”, n.21, 2011 
G.R.I.M. (Department of Mathematics, University of Palermo, Italy) 

 

60 
 

that the formal definition differentiates the mathematical object; it is its “measure”. However, the same 
mathematical object can be defined by means of equivalent forms. Two definitions are equivalent if they des-
ignate the same object; it is not possible to privilege a priori any of them. The relevance in the use of a defi-
nition is measured by the level of adaptation in the context of applications. In particular, basing ourselves on 

the proof of the proposition
2

2
2 = , we will show how the definitions of equality, that will be introduced, 

condition the operative and discursive practices. The example will also allow the observation of non-trivial 
relations between the given definitions and their associated practices. 

 

Proof according to the arithmetic definition as equivalence 

We will carry out the arithmetic proof by transformation of one ostensive representative into another, using 
basic properties of the real numbers, that are presumed justified previously from the axiomatic definition of 

R (14 axioms organized in four groups: existence, algebraic, ordinal, and topological or continuous8). 

( )
2

2

2

2

2

22

2

2

1

2

2

2
2122

)6(2)5()4()3()2()1(
==⋅=⋅=⋅=⋅=  �  

The equalities are justified in the following way: 

)1(
= Existence of an identity element in R. 

)2(
=  ∀ a ∈ R \ {0}, 1 = 

a

a . 

)3(
=  ∀ a ∈ R, 

1

a
a = . 

)4(
=  Product in R. 

)5(
=  exponentiation in R. 

)6(
=  ∀ a ∈ [0; ∞), ( ) aa =

2
. 

 

The proposed proof is not unique. If 2 is the only positive real such that the square is equal to 2, it is 

enough to carry out the following calculation; ( ) 2222
2

⋅==  and, dividing by 2 , we have: 

2
2

22

2

2 =⋅= . The way of proving “by successive equivalences” implicitly supposes the acceptance of 

certain privileged operative practices, naturalized in contemporary academic institutions (know how, tech-
nique) in relation to the notions of equality. 

“The analysis of textbooks, as well as of the answers of students and teachers […], show that when faced 
with this type of problem [Show that A=B],it is almost always “better” to transform A in a series of equal ex-
pressions A1,… , An such that A = A1 = … = An = B, so that “we start with A to get B”. It is clear that A and B 
could be […] transformed together, using the type of reasoning “A = C and B = C then A = B” […] These 

                                                           
8 These aspects (existence, ordinal, algebraic and topological) of the structure of R have abundant interdependence, 

some of which come from the axiomatization of R; for example, to postulate that (R, +, ⋅, ≤) is an ordered and complete 
Arquimidean field. 
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procedures are seldom used by students, and there are teacher that do not even accept them.” (Antibi and 

Brousseau, 2000, 30)9. 

 

Proof according to the arithmetic definition of order 

Let A = (–∞; 2 ) y B = ( 2 ;∞ ). By the trichotomy law: 

2

2 ∈ A; or 
2

2  ∈ B; or 2
2

2
= ; 

Suppose that 
2

2  ∈ A, then: 2
2

2
<  and, given that 2 > 0, then 222

2

2
⋅<⋅  hence, 2 < 2; which is 

absurd. In the same way, it is proved that 
2

2  ∉ B, which proves that 2
2

2 = . 

Proof according to the metric definition 

Let ε be the distance between 2  and 
2

2 : 

2

2
2

2

2
;2 −=









= dε  

 

Then ε = 0; in effect (∀ x ∈ R, |x| = 2x ):  
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In conclusion, ε = 0 and, therefore, 
2

2
2 = . 

 

Proof according to the connective definition 

 

In the set of real numbers, the notions of connected and convex sets are equivalent; then to prove that A = 









2

2
;2  is connected, it is sufficient to show that [ ] ArrrB ⊆









∈⋅+−⋅= 1;0|
2

2
)1(2 .10 Let x ∈ B: 

                                                           
9 In French in the original: “L’analyse des livres scolaires et des réponses des enseignants et des élèves […] montre 
que, presque toujours, en présence d’un problème de ce type [Démontrer que A = B], «il convient» de transformer A en 
une suite d’expressions égales A1,… , An telles que A = A1 = … = An = = B de façon à «partir de A pour arriver à B». Il 
est clair que l’on pourrait […] transformer à la fois A et B en utilisant le raisonnement «A = C et B = C donc A = B» 
[…] Ces procédés sont rarement utilisés par les élèves et il se trouve des enseignants pour ne pas les accepter.” (Antibi 
et Brousseau, 2000, 30). 

10 It is not necessary to use the equivalence of the notions of connectivity and convexity of the set of real numbers. It 

is enough to observe that there does not exist y ∈ R between 2  y 
2

2
 such that y ∉ A. 
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Proof according to the function definition 

Let f(x) = x2 in [0; ∞ ). We know: 

2
2

4

2
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This way, given that f is injective, we conclude that 2
2

2
= . 

 

Proof according to the definition as a limit process 

Let f(x) = x and g(x) = 
x

2
 in [1; ∞). To show that 2  is a point that evaluates to the same values in f and g 

( ( ) ( )22 gf = ) is equivalent to showing that x = 2  is a zero of the function 
x

xxh
2

)( −=  in [1; ∞) : 

∀ ε > 0, ∃ δ > 0, such that | x – 2 | < δ ⇒ |h(x) – 0| < ε 

In effect, given ε > 0, ε ≤ 1, one takes δ =
21+

ε , then (x ≥ 1):  
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In conclusion, 0)(lím
2

=→ xh
x

 or, equivalently, )(lím)(lím
22

xgxf
xx →→ =  and, given that f and g are con-

tinuous in [1; ∞), it is shown that 
2

2
2 = . 
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Proof according to the numerical definition 

The same as with the analytic proof as a limit process, it can be proved that the approximations to x= 2  are 

“zeros” of the function 
x

xxh
2

)( −=  (with an arbitrary margin of error, but fixed; within the limits of the cal-

culator or computer program used). Then, the proposition 
2

2
2 =  is proved “margin of error to margin of 

error”.  

A program edited with a graphing calculator, programmable on a TI-81, is shown in table 1. The program is 
based on Newton’s method (the tangent method). Other programs could have been edited; however, the dis-
cussion about characteristics such as efficiency, correctness, robustness and friendliness of a program is not 

within the bounds of this text11. 

PrgmD:NEWTON 
:DisP “TOLERANCIA” 
:InPut T 
:1->X 
:Lbl 1 
:4X/(X^2+2)->R 
:If abs(X–R)<T 
:Goto 2 
:R->X 
:Goto 1 
:Lbl 2 
:DisP “SOLUCION” 
:DisP R 

Table 1. Program edited with a TI-81 for obtaining zeros of the function
x

xxh
2

)( −= ,  

x ∈ [1; ∞), given a margin of error T. 

 

This way, for every margin of error T, it is shown that (E ≡ h(x) = 0): 

δ (E( 2 , T)) = 1 ⇔ ( 2 , T) = 
),2(

2

T
 

 

Concise confrontation of the proofs of the proposition 
2

2
2 =  

The proof, according to the definition of equivalence, can be generalized for any integer a > 0:
a

a
a = ; or, 

reciprocally, the proposition 
2

2
2 =  can be accepted as a particular case of the formula 

a

a
a = . This way, 

the proposition 
a

a
a =  can be seen as an “arithmetic in algebraic language” proof, that is, a relation be-

                                                           
11 It is said, in informatics, that a program is robust if it fulfills the following two conditions: first, it is correct, that 

is, every value introduced that satisfies the fixed entrance conditions produces an admissible result (that satisfies the ex-
it conditions); the other is that the program allows the detection of errors, that is, for every entrance that does not satisfy 
the fixed conditions an error message is obtained, which indicates that the choice is faulty. If, apart from these two con-
ditions, the program gives the user the possibility to correct an error in the entrance so that it does satisfy the fixed con-
ditions, it is said that the program is friendly. 
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tween the practices in the arithmetic context, and those referred to in the algebraic context, is made explicit. 

In fact, the formula 
a

a
a =  highlights permanence more than action; the same occurs with the identity (a + 

b)2 = a2 + 2ab + b2. This change from “action to permanence” delimits the change from an arithmetic lan-
guage to an algebraic one. Gascón (1994) has concluded that the equal sign in arithmetic contexts represents 
an action: “2 + 3 = 5” is equivalent to “2 plus 3 gives 5”. However, in algebraic language, there exists a dual-
ity between the use as an action (3x + 2 = 1) and the static use as permanence (a (b + c) = a b + a c).  

The duality of the equal sign is not exclusive to the algebraic context. The analytic equality as a process of 
taking the limit also has static and dynamic states, associated to the notion of limit. If we consider the con-
stant a as a sequence (an = a, ∀ n ∈ N), then an tends to b: a = b ⇔ ∀ ε > 0, ∃ N such that |an – b| < ε, 
∀n > N. The duality itself has more “impact” than in the algebraic context, given that the notion of equality 
manifests itself as a process and as an object at the same time; deep down, the radical difficulty that is pro-
voked is the double nature of mathematical infinity (potential-actual). For this reason, given that the infinite 
processes, which in many circumstances imply some limit operation, are dense in Mathematical Analysis, it 
appears that the duality process-object should play a central role in didactical analysis. Along these lines, 
Tall (1991) calls certain mathematical objects with a dual nature procepts pro(cess)(con)cepts; Cornu 
(1991) identifies two essentially different conceptions in students with relation to the notion of the limit of a 
sequence (static and dynamic); Schneider (2001) establishes the need to structure the introduction to the no-
tion of derivative in two stages: first, an affine approximation (not dynamic); then the limit of secants (dy-
namic); etc. 

On the other hand, it is possible to identify the proposition 
2

2
2 =  as the result of the search for the points 

that are cuts of the functions f(x) = x and 
x

xg
2

)( =  in [1; ∞): 

2

2
222

2
)()( 2 =⇒=⇒=⇒=⇒= xx

x
xxgxf  

The Theory of Functions allows the justification for obtaining the quadratic equation (and, implicitly, to give 
it a graphical interpretation. This equation should be solved with the type of arguments and procedures of al-
gebra (and do not require interpretation in terms of the specific problem). This fact can be formulated in the 
following terms: the proof has a discursive component common to the theory of functions, as well as an op-
erational component that belongs to algebra. In fact, if 2  is defined as the only positive real number whose 
square is equal to 2, then: 

202 2 =∧>⇔= xxx  

This way, 2  is the only positive solution to the equation x2 = 2 and, for this reason, the proposition 

2
2

2
=  is justified only by verifying that 2

2

2
2

=









, showing that, in this case, an identification of the 

proofs can be established according to the functional and algebraic definitions. 

Finally, the numerical proof can be understood in analytic terms and solved in the algebraic framework. In 
effect, the determination of the existence and uniqueness of the limit of the sequence (xn), is given by the re-
cursion formula (Newton’s method): 






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=
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21

x

x
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x

n

n
n  

This expression involves discursive and operative practices that are analytic (bounding, controlled loss of in-
formation, etc.) and algebraic (manipulation of the algebraic expressions involved); it is difficult to label the 
different moments (aspects) of mathematical activity (as a complex of mathematical notions, processes and 
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meaning put into play). Once the convergence of the sequence (xn) is justified (a positive number), the limits 
are introduced in both members of the recursion rule, and the equation that results is solved: 
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The proof of the proposition “
2

2
2 = ” has exemplified how the different definitions of the notion of equal-

ity condition mathematical work. The evolution of the notion of equality has followed an inverse process: the 
mathematical process has conditioned the meanings attributed to the notion of equality and, only afterwards, 
when this notion is taken as an object of study, is the meaning formalized in definitions (that emerge from 
certain systems of mathematical practices relative to problems in specific areas). Hence, the fundamental 
task consists of reconstructing this process, that is, of determining the discursive and operative practices that 
have caused the definitions of the notion of equality to emerge in different contexts of use. In section 3 we 
sketch these practices. 

 

SUBSYSTEM OF PRACTICES ASSOCIATED TO DIFFERENT CONTEXTS OF USE 

The Anthropological Theory of Didactics (TAD) and the Onto-Semiotic Approach (OSA) share the same an-
thropological assumptions about institutional knowledge. In fact, the operative and discursive systems of 
practices are to OSA what mathematical praxeologies are to TAD. However, the description of the systems 
of practices is not equivalent to the description of the praxeologies. TAD characterizes mathematical activity 
starting with the tasks and the techniques, to finally arrive at the technological-theoretical discourse (without 
challenging the nature of the objects that intervene in the discourse). The notion of praxeology models 
mathematical knowledge as a human activity, understanding by knowledge the product (refined) of a sys-
tematic, intentional, historical and social study. The most immediate product of the study is the techniques 
(“know-how”), whose validity is subjected to a technological-theoretical discourse which justifies (“knowl-
edge”, by-product). This way, “know-how” and “knowledge” make up the two faces of a praxeology 
(“praxis-logos”).  

“A mathematical organization always arises as an answer to a question, or set of questions. It is not 
specified what a mathematical organization is, but a sketch is given of its structure, postulating that it 
is made up of four principal components: types of problems, techniques, technologies and theories. If 
we put the emphasis on the dynamic relations that are established between the components, with the 
object of carrying out the necessary mathematical activity to be able to respond to the challenging 
initial question, then two inseparable aspects appear: mathematical practice, or ‘praxis’ (formed by 
tasks and techniques) and the rational discourse, or ‘logos’ about the actual practice (formed by 
technologies and theories).” (Bolea, Bosch and Gascón, 2001, 251). 

This way, the work that is shown allows the determining of a praxeology associated to the generating ques-
tion (Chevallard, 1999, 232): Given a, b ∈ R, do a and b represent the same number? The task is to show 
that two numbers represented by different ostensive presentations are equal. The techniques that are associ-
ated to each one of the definitions: transform by successive equivalences one of the numbers, until the other 
is obtained; justify that, given a, b ∈ R, that simultaneously a ≤ b and b ≤ a are true; reason out that, given 
a,b∈R, none of the following two inequalities can be true: a < b y b < a, and that by the law of trichotomy a 
= b; determine that the Euclidean distance between two numbers is zero; etc. The technology allows the jus-
tification of the steps that are carried out by means of each one of the techniques; indeed, in the institution 
where the study process is carried out, it is common to accept that the technical movements made (multiply 
by one, raise to the second power, etc.) and the mathematical objects employed (square root, order relation, 
connectivity, etc.) have been previously justified or defined. The theory refers to the fundamental structural, 
topological and analytical notions of real numbers that play the role of support and reference and that, in the 
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majority of cases, represent abstractions or generalizations of the presuppositions and technologies stated. 
The “level of justification”, that is, the development of the technological-theoretical block, is inherent to 
each institution. 

“The style of rationality that is put into play in an institution varies, of course, according to its sec-
tors, and also varies as the institution evolves in time, with its own institutional history, such that a 
given institutional rationality can seem…highly irrational in the eyes of another institution”. (Che-

vallard, 1999, 226)12. 

However, OSA is interested in theorizing about the notion of meaning in didactics, which is done by means 
of the semiotic function and its associated mathematical ontology. The starting point of OSA is to try and 
characterize the nature and the meaning of mathematical notions; it begins with the elements of the techno-
logical discourse (notions, properties, arguments, etc.) and it is thought that their nature is tied to the corre-
sponding systems of practices and contexts of use. In this realm, the necessary and sufficient conditions of 
each one of the definitions are the explicit antecedent (expression) of a semiotic function whose consequent 
is the notion of equality; the properties determine the meaning of the notion of equality as a technological-
theoretical object. 

“A deeper study would show that many difficulties caused by the “=” sign appear in the language-
object: the equation, the identity, the calculation, and in the working language in which the object is 
immersed: as the descriptor of transformations, as a meta-theorem or as ‘inference’.” (Antibi and 

Brousseau, 2000, 31)13. 

Nevertheless, the definitions that are given do not determine the meaning of the notion of equality by them-
selves; they only represent the “visible aspect” of the systems of practices, the crystallization of certain ways 
of doing and justifying, of operating and elaborating the discourse. To describe the operative and discursive 
systems of practices in relation to a mathematical object, in the first place it is necessary to identify the prin-
cipal notions, properties, language, arguments and procedures that are used in a wide range of prototypical 
problems in different contexts of use and, in second place, to describe the relations between the mathematical 
objects involved in the different subsystems of practices that are developed. A detailed description of these 

subsystems of practices goes beyond the objective of this article14. A brief sketch will be given in the fol-
lowing paragraphs. 

The fundamental notions associated to the notion of equality are:  

(i) the numerical context: approximation and margin of error, as they determine the acceptable inter-
vals; 

(ii)  the arithmetic context: identity and order relation; 

(iii)  the algebraic context: equivalence and function (in the majority of cases, algebraic functions); 

(iv) the analytic context: function (in particular, transcendental) and limit (convergence); 

(v) the topological context: distance (measure) and connectivity. 

                                                           
12 In French in the original: “Le style de rationalité mis en jeu varie bien entendu dans l’espace institutionnel, et, en 
une institution donnée, au fil de l’histoire de cette institution, de sorte qu’une rationalité institutionnelle donnée pourra 
apparaître… peu rationnelle depuis telle autre institution.” (Chevallard, 1999, 226). 

13 In French in the original: “Une étude plus approfondie montrerait que de nombreuses difficultés proviennent aussi 
de ce que le signe «=» est mobilisé en même temps dans la langue objet: l’équation, l’identité, le calcul, et dans la 
langue de travail sur l’objet: comme descripteur des transformations, comme métathéorème, ou comme «inférence»”. 
(Antibi et Brousseau, 2000, 31). 

14 Well understood, the detailed description of the system of practices associated to a mathematical notion supposes a 
rational reconstruction (Lakatos, 1976) or the elaboration of an anthropology of knowledge (Chevallard, 1985) of the 
notion. 



“Quaderni di Ricerca in Didattica (Mathematics)”, n.21, 2011 
G.R.I.M. (Department of Mathematics, University of Palermo, Italy) 

 

67 
 

 In the arithmetic context the mathematical language is not very formal. The discourse relies on the manipu-
lation of concrete values and the argument is based on the properties of symmetry and transitivity of equal-
ity, implicitly accepting that “the symmetric and transitive relations are formally part of the nature of equal-

ity” (Russell, 1903, 257)15. In fact, this lack of formality implies an abusive use of the equality sign in 
arithmetic contexts. 

“In exercise books of arithmetic 2 + 7 = 9 + 7 = 16 + 7 = 23 + … is a well-known feature. We reject 
it. It is not because it cannot be justified not without long hesitation has this notation been forbid-
den. There are still rudimentary traces of the mathematical style which would allow such formulae. It 
could be maintained with appropriate such as (((((2 + 7 = 9) + 7) = 16) + 7 = 23) + …, or by the con-
vention that with no further comment every formula is read by progressing from left to right. In fact 
this is the rule with all expressions that contain additions and subtractions only.” (Freudenthal, 1986, 
299−300). 

In the algebraic context, the objects are represented by means of symbolic-literal language, whose objective 
is to generalize the concrete operations, constructing a system of signs that are easily recognized and estab-
lishing an operational and discursive structure that allows the reduction of mathematical objects to canonical 
expressions, so that just “by simple observation” the objects can be described. In the numerical context the 
discourse is organized by means of sentences that determine the order in which programmable algorithms are 
carried out. In this way, the language is typical of programming. Equality has two functions: logical, in sen-
tences of the type “if a = b then…”, and arithmetic, assigning the value a to b (a → b).  

In the analytic context, the language of infinitesimals is used and the “classical” argument en terms of the “ε 
-δ” notation.  

“To say that a real quantity λ ∈ R is zero exactly when 

|λ| ≤ ε, ∀ ε > 0, 

occurs, forms part of the language and reasoning style of the analyst (in the same way, an analyst 

immediately says that two numbers a, b ∈ R are equal if ∀ n ∈ N, |a – b| <
n

1 ). An algebraist would 

probably say (admitting that we are in a field of characteristic zero) that λ = 0 ⇔ λ + λ = λ (some-
thing that forms part of the language and reasoning style of the algebraist). If we return to the ana-
lytic “slang” ‘epsilon-delta’ we see that there is an underlying structure […] The principal charac-
teristic that the language of Mathematical Analysis has is the form in which its concepts are 
systematically structured, as well as its typical methodological philosophy.” (Induráin, 2001, 64−65).  

Finally, the topological language shares part of the algebraic symbolism (transformation by equivalences), 
set theoretic (belonging to, contained in, etc.) and analytic-arithmetic (sum and product operations, order re-
lation, etc.).  

The basic arithmetic propositions16 highlight some of the fundamental properties of the real numbers pro-
vided with the binary operations sum and product; In fact, “It is also important to take into consideration that 

                                                           
15 Lorenzo (1974, 55) formulates this fact in the following terms : “Calculus with equality: Rule or reasoning process 

[…] by means of which the same uniform operation applied to two equal numbers will give identical results […] It is 
standard that the translation to symbolic language is ‘a = b ⇒ f(a) = f(b)’ constituting one of the characteristic premises 
of the equality relation, while the other premise would be a form of the identity principal ‘every quantity is equal to it-
self’.” This formulation remits us to the functional definition presented in this article. 

 

16 The propositions are mathematical properties that mathematical conventions and culture have privileged. There is 
no mathematical justification for considering them as primary elements. Hence, in the OSA the propositions play a 
similar role to the definitions, that are also considered as a particular type of property: one that differentiates an object 
unmistakably in a given universe. 
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the symbol for equality did not evolve independently from the symbols for arithmetic operations and opera-
tions with variables” (Sáenz-Ludlow & Walgamuth, 1998, 155). Often the arithmetic propositions are mod-
elled by means of algebra (Bolea, Bosch y Gascón, 2001, 257−265); in this sense the algebraic propositions 
generalize the arithmetic ones and make up an explicit justification of these propositions. Other types of al-
gebraic properties deal with the structure of Q (and, by extension, of R): from the proof of basic laws such as 
the cancelation for the sum (a + c = b + c implies a = b) or the cancelation for the product (a⋅ c = b⋅ c and c 
≠ 0 implies a = b) to the justification that the “subtraction” and “division” operations or the proof of the rule 
of signs, all are deduced from the axioms of the definition of the rational (real) numbers and imply the notion 

of equality17.  

Furthermore, the analytic propositions suppose, in many cases, a radical rupture with the arithmetic-algebraic 
ones. This rupture is identified, in many cases, with the need to carry out infinite processes that often require 
taking a limit (or, in a more abstract setting, the notion of convergence), or by the presence of a transcenden-
tal function. Thus, the proposition: 
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that determines the “transcendental (not algebraic) Euler number (e) that can be expressed in at least two 
equivalent ways” is an analytic proposition. In the same way, the statements about and proofs of the basic 
properties of limits imply the notion of equality; for example the uniqueness of the limit of a sequence (con-

vergent18).  

The propositions in the numerical context always suppose the acceptance of a margin of error. It is not about 

determining that 0.9 1.0=  (with infinite nines or zeros) but that it is possible, for a specific margin of error, 
to have a finite number of nines and zeros such that the difference between these two numbers is less than 
that margin of error. This manner of stating and proving the propositions establishes the fundamental differ-
ence between the numerical and analytic contexts. Thus, in an analytic context, the previous proposition 
would be stated in the following way: 

“Theorem. A real number x has exactly one decimal expansion or else x has two decimal expansions, 
one ending in a sequence of all 0’s and the other ending in a sequence of all 9’s.” (Ross, 1980, 108). 

A fundamental problem in the arithmetic and algebraic contexts is obtaining the canonical representatives; to 
solve this problem, the characteristic action is the manipulation of objects by means of equivalences (that are 
justified by the axioms of the real numbers or by previously established properties). This problem explains 
the importance that the arithmetic and algebraic models of the notion of equality have in contemporary insti-
tutions, given that they provide an alternative to a fundamental task of all mathematical activity.  

“The way in which the purpose is identified is generic: given a system of mathematical objects, it is 
very useful to provide, when it is possible, a canonical writing system of these objects, so that two 

objects of the system can be compared without ambiguity.” (Chevallard, 1999, 244)19. 

In the numerical and analytic contexts a fundamental problem is comparison; however, the two contexts are 
differentiated by the type of entities compared: in the numerical context they are intervals, whereas they are 
numbers (unique, points) in the analytic context. The determination of a number in the numerical context 

                                                           
17 Aliprantis & Burkinshaw (1999, 12−−−−20), for example, state and prove a collection of these problems. 

18 If the existence of a limit has not been proved, it is justified that “every sequence has at the most one limit”; if the 
existence has been shown for a particular sequence or, if the existence of the limit is taken as a hypothesis, it is shown 
“that the limit is unique”. 

19 In French in the original: “La raison d’être ainsi identifiée est générique: étant donné un système d’objets mathé-
matiques, il est très utile de se doter, chaque fois que la chose est possible, d’un système d’écriture canonique de ces ob-
jets, et cela afin de pouvoir comparer sans ambiguïté deux tels objets. ” (Chevallard, 1999, 244). 
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supposes obtaining an approximation “sufficiently good”, that is, with a pre-established margin of error that 
fixes an admissible interval for the number. The type of compared entities also sets the characteristic proce-
dures in each of the contexts: in the numerical context the principal action consists of the construction of a 
logical sequence of sentences that obtains, for a range of pre-established entrance values, a dichotomized an-
swer (true or false, yes or no, 1 or 0, etc.) to the question “given a, b ∈ R, a = b for an admissible margin of 
error?”; in the analytic context, the comparison is carried out by the controlled loss of information, that al-
lows sufficient conditions to be set, so that the question “given a, b ∈ R, a = b for every margin of error ?” 
can be answered.  

In the topological context, the fundamental problem is establishing the equality or difference between num-
bers, that is, it is not about “measuring the difference”, but about setting a characteristic function ∆ such that, 
given a, b ∈ R: ∆(a, b)=1, if a ≠ b; ∆(a, b)=0, if a = b. This determines one of the differences between the 
topological and analytic contexts. According to Induráin (2001, 96) one of the basic processes of analysis is 

separating or calculating distances which rests on the notion of distance or metric20. Hence, in an analytic 
context, the interest lies in determining the equality of or difference between two numbers and, in case they 
are different, how much. 

Then, for example, let (an / an–1) and (bn) be sequences, defined in a recursive way by:: 
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And let a y b be the limits of these sequences. Then, the topological assertion ∆(a, b) = 1 supposes only the 
assertion that a and b are different; whereas the metric declaration d(a; b) = 1 establishes the magnitude of 
the difference between both limits ( 2/)51( +=a y 2/)51( +−=b ). Indeed, to justify that ∆(a, b) = 1 it is suf-
ficient to justify that a > 1 > b.  

In the next section we will show how to structure the subsystems of practices associated to the different con-
texts of use the emergent objects of these subsystems (including the definitions). We will propose a diagram 
of the different objects associated with the notion of equality and the correspondences that exist between 
them. By means of “levels”, we will identify the contexts of use of the notion of equality, the systems of 
practices associated with the notion, the emergent objects of such systems, the language (voice “equality”, 
sign “=”) and, finally, the formal structure to which all mathematical work (operative and discursive) explic-
itly or implicitly refers in relation to the notion of equality. 

  

 OBJEcTS, Meanings and models ASsOCIAted with the notion of equality 

The interpretation of the meaning of the mathematical objects in terms of “operative and discursive systems 
of practices”, relative to a determined institution, leads to the postulation of a socio-epistemic relativism with 
relation to mathematical objects, a consequence of adopting the anthropological point of view of mathemat-
ics (Godino, 2003). This socio-epistemic relativism contradicts the apparent absolute and universal character 
that the professional mathematician attributes to mathematical objects. However, as we understand, this di-
lemma can be resolved by accepting that the mathematician identifies the same formal structure in the vari-
ety of objects and practices (operative and discursive); a structure that he considers as “the mathematical ob-
ject” that represents the reference implicit in the variety of systems of practices and emergent objects in the 
different contexts of use. In the case of equality, the formal structure can be described briefly as:  

a = b ⇔ a y b represent the same number 

                                                           
20 According to this author, the other four fundamental analytic processes and the notions on which they rest are: 

counting with respect to the notion of number; comparing and ordering with respect to the notion of order; approxima-
tion or calculating the tendency of a magnitude with respect to the notion of limit, of convergence or of the more ad-
vanced idea of continuity; measuring with respect to the notion of measure or integral. 
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Thus, the formal structure represents a description of the notion of equality without an explicit reference to 
concrete practices or contexts. 

Figure 1 shows, schematically, the diversity of objects associated with the notion of equality. Each definition 
represents an emergent object of the system of practices in a determined context of use. Each pair “definition 
- system of practices” (and, in general, “emergent object- system of practices”) determine a model of the no-
tion of equality; that is, an effective or potential relation with the notion of equality (understood as a system) 
that a subject (or an institution) establishes, starting with knowledge a priori of the notion. The model is a 
coherent form of structuring the different contexts of use, the mathematical practices relative to those con-
texts of use, and to the emergent objects of such practices.  

According to the different contexts of use, mathematical practice is structured around certain privileged 
mathematical notions and techniques. Furthermore, mathematical practice establishes basic criteria of proof 
(about how the deductive processes evolve according to the nature of the conditions) and determines guide-
lines on how to finish a proof (obtaining a semantic tautology or accepting a logical tautology). In fact, the 
stability of the models in the educational institutions is based on a process of “objectifying the models” that 
consists in the establishment of a set of discursive entities (notions, arguments, properties), another of prax-
emic entities (problems, procedures) and a language (graphical, symbolic, oral, etc.) specific to the mathe-
matical notion that is to be introduced or developed. The structuring of the praxemic and discursive entities 
and the integrations of the language form a local epistemic network or configuration (associated with a spe-
cific context of use). Each local epistemic configuration “synthesizes” a partial aspect of the meaning of the 
corresponding notion; that which is associated with the modelling system.  

 

 

Figure 1. Structuring of the models and meanings associated to equality. 

 

However, figure 1 shows a static structuring of the models and meanings associated with the notion of equal-
ity, where only the relations of level are indicated (by arrows) between the different objects involved: with 
relation to the notion of equality, in each concrete context of use, a model is associated (system of practices – 
emergent objects), that determine a meaning (partial) of the notion. The mathematical activity, however, 
flows between the different levels. From the systems of practices the praxemic, discursive and linguistic enti-
ties emerge and, gradually, they are integrated in the practices as operational rules (know-how), as instru-
ments of argumentation or regulation (knowledge) or as means of expression and communication. The eco-
logical metaphor (Godino, 1993) represents a relevant focus for the description of the dynamics of the 
proposed structure. 



“Quaderni di Ricerca in Didattica (Mathematics)”, n.21, 2011 
G.R.I.M. (Department of Mathematics, University of Palermo, Italy) 

 

71 
 

The notion of holistic-meaning that we will introduce in section 5 will allow us to interpret “equality” as a 
network of models associated with it (global configuration). Furthermore, the notion of holistic-meaning al-
lows us to establish what we express when we assert that a person understands the notion of equality. 

 

HOLISTIC-MEANING OF THE NOTION OF EQUALITY 

Mathematical practice has assumed the phenomenon of homonymy in relation to the notion of equality; to 
avoid designating “each” equality with a different term, the name is maintained (equality) and the sign (=) is 
common in all the contexts of use, accepting the specific meaning that is attributed to the notion of equality 

in each one of them21. In fact, from the strictly formal point of view, it is accepted that the definition of a 
mathematical object makes up its meaning. Hence, the problem of homonymy is solved by selecting one of 
the definitions and proving, afterwards, the equivalence of the rest of them in a theorem. For example, if one 
is working in an eminently analytic context, it will be accepted that two numbers a and b are equal if, for 

every ε > 0, |a – b| < ε (def.7) and the objective is to prove the following22: 

Theorem 1 (Equality) Given two real numbers a and b, the following propositions are equivalent:  

1. a = b. 

2. d(a; b) = 0. 

3. { a} ≡ {b}. 

4. { a; b} is connected. 

5. a ≤ b ∧ b ≤ a. 

6. For every equation E, [δ (E(a)) = 1 ⇔ δ (E(b)) = 1]. 

7. Let Fi(D) be the set of injective functions over a domain D, then ∃ f ∈ Fi(D), {a, b} ⊆ D, such 
that f(a) = f(b). 

Proving theorem 1 supposes declaring that the given definitions designate the same object (equality); even 
more, the definition of equality as a limit process is considered the “definition”, while the rest of the defini-
tions are unmistakable “characterizations” of the original definition. The difference between a definition and 
a characterization obeys mathematical conventions, of more or less explicit cultural use. Hence, a characteri-
zation of a mathematical object is a definition of it that competes with a previous definition that has been 
deemed natural within certain institutional practices. Because of this, the consciousness of the agreement 
upon which it is based has been lost. In the academic institution the arithmetic definition of equality as 
equivalence has been privileged and, for that reason, the rest of the definitions are considered characteriza-
tions. This supposes, when the first notions of analysis are introduced, the need to reconstruct the forms of 
reasoning in relation to the notion of equality that, in particular, help the evolution from the technique of 
proof by successive equivalences to the technique of proof by the controlled loss of information and suffi-
cient conditions. 

“Work in Mathematical Analysis is clearly based on algebraic competencies that require, as soon as 
the work does not limit itself to algebraic analysis, a reconstruction of the relationship with equality. 
This reconstruction is accompanied by an oscillation in forms of reasoning: passing from successive 

                                                           
21 This fact shows the impossibility of avoiding obstacles in the learning process : the discourse constantly must de-

cide among the phenomena of synonymy and (antagonically) homonymy. The case of equality is not pathological; for 
example, Wilhelmi (2003) has observed the same phenomenon with respect to the notions of continuous function and 
absolute value. 

22 In theorem 1 the definition of numerical equality is excluded, which is of an essentially different nature. In section 
2.2 we have commented the relation between the numerical definition and the analytic definition as the process of tak-
ing the limit. 
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equivalences based on the preservation of equalities, to reasoning by sufficient conditions, based on 
the controlled loss of information in the treatment of inequalities, as the equality is converted to an 

inequality that is satisfied for any strictly positive ε .” (Artigue, 1998, 239)23. 

The equivalence of definitions is confirmed in the mathematical realm not in the cognitive sense (given that, 
in particular, the definitions do not generate the same procedures and strategies) nor in the instructional 
sense (given that they do not come motivated by an equivalent introduction to the topic) and also not in the 
didactical sense (given that the social meaning differs and provokes different affiliations between the subject 
and the equality object, generating clauses that cannot be compared within the didactical contract). Hence, 
theorem 1 does not represent a suitable instrument to structure the models associated with the notion of 
equality. The study of models of equality (together with the associated definitions), and of their application 

for the proof of the proposition 
2

2
2 =  , shows, in relation to the meaning, the need of a flexible transition 

between the different models. Wilhelmi (2003) defines flexible mathematical thinking as the action carried 
by a subject that allows the routine transition among the different models associated with a mathematical ob-
ject, recognizing the specific limitations of each one of them; furthermore, flexible mathematical thinking 
lets the subject establish solid links between the models and one or more mathematical contexts, allowing 
him to establish an efficient control of the activity and capacitating the subject to assume mathematical re-
sponsibility of the results he produces. The holistic-meaning incorporates the relations between the models 
and the tension, relationships and contradictions that are also established (and that flexible mathematical 
thinking allows to identify, describe and control). 

Now, how is the holistic-meaning of the notion of equality described? This notion is determined (theoreti-
cally) by the relations that are established between the models associated to it. Figure 2 represents a scheme 
of this notion. 

 
Figure 2. Representation of the holistic-meaning of the notion of equality. 

 

In figure 2, the lengths of the arrows that describe the relations are not anecdotic; neither is the fact that some 
are single, others double and one is discontinuous. The length determines the distance of the models; dis-
tance measured as a time interval (two models are close if their introduction can be carried out in a reason-
able way within the same unit of time in the study process) or as place interval (two models are close in the 
measure in which they are used simultaneously in a broad class of situations). The double arrows refer to a 
dialectic interaction between the models: one model is understood essentially by opposition to another 
                                                           

23 In French in the original: “Le travail en analyse s’appuie à l’évidence sur des compétences algébriques mais il im-
pose, dès que l’on ne se limite pas bien sûr à une analyse algébrisée, une reconstruction du rapport à l’égalité. Cette re-
construction s’accompagne d’un basculement des modes de raisonnement : on passe de raisonnements par équivalences 
successives basés sur la conservation d’égalités à des raisonnements par conditions suffisantes basés sur la perte contrô-
lée d’informations dans le traitement d’inégalités, l’égalité devenant une inégalité satisfaite à ε près pour tout ε stricte-
ment positif. ” (Artigue, 1998, 239). 
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model. The interaction, then, is not circumstantial to some naturalized practices or a culturally structured 
form of knowledge, but it has an undividable relationship with the actual models. The discontinuous arrow 
determines not an essentially epistemological relation but a material one (the instruments of calculation used) 
or practical (specific uses in contemporary educational institutions). Finally, the circle that surrounds the 
models establishes a system of models that can only be differentiated by carrying them out, that is, by the use 
of the models, by the contexts in which they appear and by the meaning attributed to them. 

Thus, the distance between the arithmetic model as equivalence (E) and the analytic model of taking the limit 
(L) can be comprehended by the weakness of their mutual attraction: the lack of ostensive instruments and 
the almost total absence of an explicit discourse that would contribute to an approximation of the two mod-
els. In other words, the weak attraction is a manifestation of the evident imbalance that exists between the 

arithmetic and analytic models.24.  

When the L model “erupts”, a constant interaction with model E is produced. Indeed, for example, just the 
writing of lim(an) = a implies the acceptance ipso facto of both models. In this context, the models E and L 
remain close, given that they are utilized simultaneously in a broad class of situation (adjacency); however, 
they are very far apart in the curriculum of contemporary academic institutions (and in the texts) as it is not 
feasible to promote their emergence in the same time interval in the study process (distance in time). What 
are the implications derived from looking at the place where the notions are introduced (related to the prac-
tices) and the distance in terms of time of their introduction (related to the curriculum)? This difference 
seems to create a necessary condition for the appearance of an obstacle, that is, of knowledge that is useful 
and relevant (equality as an equivalence) within a block of situations (proof of the equality of algebraic num-
bers), but that is not useful any more when confronted with a different context (analytic) or another class of 
situations (proof of the equality of transcendental numbers) and the sole presentation of new knowledge that 
generalizes, restructures or substitutes the original knowledge (analytic definition ε-δ), is not sufficient for 
the stability of the future operational and discursive practices (analytic). The nature of this obstacle is essen-

tially didactical25, that is, it is the result of a didactical transposition that the teacher cannot re-negotiate, at 
least in the classroom environment. 

From what has been said, it can be deduced that the academic practices privilege model E and tend, in many 
cases, to reinforce and perpetuate it, including in applications where it should be prohibited. In fact, model L 
is understood, in many cases, only as a sub-product of the notion of limit; in the practice, the designation of 
equality is restricted to the notion of arithmetic equality as equivalence, “as the possibility of obtaining a lit-
eral or semantic tautology”. This presupposition conditions the types of practices that are naturalized within 
contemporary academic institutions in relation to the notion of equality; concretely, the notion of equality is 
considered as a notion paradidactical (Chevallard, 1985). This phenomenon has a cultural origin, related to 
the didactical and epistemological knowledge existing in the noosphere (and is made concrete in the didactic 
transpositions that are elaborated). 

Model L can only be explained by dialectic opposition to Model E, as it is not possible to reduce the interac-
tion between these models to naturalized practices or a cultural structuring of knowledge: the relation is in-
herent to the models themselves. This does not happen when comparing the order, metric, topological, and 
equivalence (algebraic and functional) models, which can be understood by themselves and do not need an 
explicit reference to another model. Furthermore, the distance between these models is minimal, being possi-
ble to differentiate one model from another only by the practical context in which it appears and by the ef-
fects that it has on the system. 

                                                           
24 In reality, from the cognitive point of view, it is not evident that both are models of the same notion. In fact, it is 

necessary to do a detailed analysis of how the idea of de “adjacency” influences the notion of equality as equivalence 
(in particular, at the moment of the emergence of decimal numbers in the school setting). 

25 In asserting that “the nature of the obstacle is essentially didactical” we are implicitly accepting another interpreta-
tion: in particular, epistemological. Indeed, we think that it would be necessary to study “the composition” of the ob-
stacle, but this study is out of the realm of this article. 
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The numerical model, as we have shown, plays the role of a linking element between the algebraic and ana-
lytic models, and is situated in the middle of those two; this does not imply that the relationship between the 
algebraic and analytic models is always carried out through the intermediation of the numerical model. How-
ever, the relationship between the numerical and arithmetic models is carried out in function of the material 
means used (the equal sign in the calculators represent a numerical approximation with an order of approxi-
mation fixed by its technical characteristics) and the naturalized practices in contemporary institutions (π = 
3.1416 is said to be “approximately equal” or a “sufficient approximation”, but doesn’t this imply, in itself, 
the acceptance of an admissible error?). 

Finally, what does it mean to say that a person understands the notion of equality? In a few words, it means 
that he/she can interpret figure 2 in a suitable way, that is, that he/she is capable of differentiating the differ-
ent models of equality, of structuring these models in a complex and coherent whole, and of confronting the 
operative and discursive needs with relation to the notion of equality in the different contexts of use (see sec-
tion 3). 

 

CURRICULAR IMPLICATIONES OF HOLISTIC-MEANING 

The analysis of the notion of equality that was carried out is neither circumstantial nor isolated. Wilhelmi 
(2003) makes an implicit use of the holistic-meaning as an interaction of mathematical models for the sys-
temic description of the notions of “continuous function” and “absolute value”, interpreting these notions as 
epistemic configurations where the different models, in levels of abstraction and generality (continuous func-
tion), or in levels of formalization and syntactic expression (absolute value), are given a hierarchy. Further-
more, the analysis fixes a framework for these notions within the didactic system, that is, a global perspec-
tive of which techniques are to be taught in a global teaching project. The description of the reference 
meaning of a statistical object, “median” that is presented in Godino (2002) as a list of objects classified in 
six categories (problems, procedures, language, notions, properties and arguments), can be understood as the 
“basic foundation” of the holistic-meaning of the notion of median (although it is necessary to carry out an 

analysis of relationships that are only pointed to in that work)26.  

Vinner (1991) suggests that one of the goals of the teaching of mathematics should be that of early channel-
ling of daily thinking habits towards the technical-scientific way of thinking, and concludes that, when ac-
quiring knowledge, the definition is the best representation of the conflict between the structure of mathe-
matics and the cognitive process. However, in a teaching program based on the pedagogical theory of the 

curriculum27 the definition is sub-valued. From the theoretical perspective of this author, the important 
question is the timing and sequence of content: a “sufficient” set of notions, techniques and propositions are 
introduced so that, progressively, new notions can be defined, new procedures discovered and new theorems 
stated. Frequently, the introduction of the notions is done in an ostensive manner, resulting almost irreme-

                                                           
26 Up until now, the notion of holistic-meaning has been used to structure and describe mathematical notions; how-

ever, it can be asked if the notion of holistic-meaning can be relevant to the description of other primary entities that are 
not notions (arguments, procedures, problems or propositions). A priori, it is admissible to accept that the notion of ho-
listic-meaning could be used, in particular, to observe in which contexts and in what forms a specific type of argument 
(in particular, a technique of mathematical proof) is used, so that the problems and propositions to introduce and devel-
op the argument could be selected. For example, the proof by mathematical induction is used in different contexts (ana-
lytic, combinatoric, etc.) and it would be advisable to describe and structure the operative and discursive practices in re-
lation to this method of definition and proof, and classify in relation to mathematical induction the following: (i) the 
problems, according to their specificities (could they be solved with alternative methods ?), (ii) the procedures, accord-
ing to their effectiveness (with what cost do they allow a solution, or justification to a specific class of problems ?), (iii) 
the notions, with respect to the frequency of their use (the notion of sequence is inherent to the method of mathematical 
induction; then what other notions are also inherent to this method ?). 

27 Gimeno and Pérez (1983, 189–250) describe the Curriculum Theory from their original pedagogical perspective 
which determined, in particular, the elaboration of the “basic curricular designs” (MEC, 1989). Chevallard, Bosch and 
Gascón (1997, 141–147) give their critical vision of that theory from the perspective of mathematical didactics. 
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diably in knowledge that is inefficient when confronting complex situations. Then, the educational system 
proceeds to define the notions, once again ostensively and formally. At this moment it is generally accepted, 
albeit implicitly, that the notions are acquired by means of their definitions, and that the students are capable 
of using them to solve problems and prove theorems. It is undeniable that a transparency between the 
mathematical object and its definition is assumed.  

In the Epistemological Program (Gascón, 1998) mathematical knowledge is explicitly problematized and it 
is not assumed that the definition of a mathematical object is its “measure”. Indeed, looking at the teaching 
and learning of a mathematical topic, it is necessary to explicitly model the object. These models condition 
the structuring of the curriculum in an institution, given that they represent transpositions of mathematical 
work. In these transpositional processes it is important to determine the techniques that one wishes to teach 
(and the justification of these techniques), that condition the systems of practices when confronted with a 
certain class of problems. This way, the holistic-meaning of a mathematical object thus described, as the in-
teraction of mathematical models associated to such an object, makes up the macro and micro didactical 
tools.  

The determination of the techniques to be taught allows the establishment of orientations in terms of the 
ecology of knowledge, and the elaboration of a relevant didactical transposition, that is made concrete in the 
construction of curriculum or in the determination of general guidelines for the creation of textbooks in an 
institution (macro-didactic level). On the other hand, it is possible to establish criteria of the description and 
comprehension of students’ conceptions in the construction and communication of specific mathematical 
knowledge (that constitute the nucleus of the operative and discursive systems of practices in relation to the 
notion of equality, see section 3). Potential forms of negotiation of constructivist learning can be developed 
as well, where the teacher must anticipate, in “real time” the students’ procedures and create mechanisms to 
collect and interpret information, as well as possessing action and decision strategies, adapted to concrete 
situations (micro-didactic level). In the next section we highlight some macro and micro-didactical consid-
eration with respect to the notion of equality. 

 

7. SYNTHESIS AND CONCLUSIONS 

The evolution of mathematical didactics has brought about a progressive extension of its principal object of 
study: from the search for mechanisms of direct action in the processes of teaching and learning (normative 
or technical didactics), to the analysis of events and phenomena of teaching and learning (didactics as a sci-
entific discipline). Strong epistemological studies have contributed in a definite way to this extension, studies 
whose goal is to fix an objective reference that works for the analysis of actual or potential projects. 

The epistemological study that we have carried out fixes a framework which can be used to evaluate the “ef-

fectiveness” of possible didactical interventions28, which result from the representative adaptations of the 
institutional reference meaning in relation to the notion of equality. Hence, the conclusions that we will make 
are theoretical, and do not look for immediate and “effective” academic changes, but to regulate possible di-
dactical procedures in the introduction or development of the notion of equality. 

 

7.1. Macrodidactics 

The analysis of the notion of equality presented in this paper highlights, in particular, the need to elaborate 
instruments that are better adapted to an integrated teaching approach in terms of arithmetic, algebra and 
analysis; concretely means are needed to avoid the phenomena of linearity and reductionism. Linearity can 
be described by asserting “arithmetic precedes algebra, which precedes analysis”. It is understood with this 
that they are “chains” and that the learning of each one establishes previous necessary conditions for the 
learning of the “next”. The teaching scheme is:  

                                                           
28 “Didactic interventions are regulations whose purpose is to maintain a balance, more than to produce direct ef-

fects, and these regulations are specific to the mathematical notion. ” (Brousseau, 2000, 25). 
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Arithmetic → Algebra → Analysis 

Reductionism can be described in the following way: algebra is understood as generalized arithmetic (with 
letters) and analysis as an algebra of functions. Hence, the teaching of algebra is centered on symbolic ma-
nipulation and on generalizing concrete arithmetic methods (implemented on concrete numbers); according 
to Gascón (1994), this has led to a real disarticulation in the class of problems of generalized arithmetic. Ad-
ditionally, the teaching of analysis has tried to show the power of the formal manipulations outlined in the 
teaching of algebra. In the practice, these two reductionisms invert the previous scheme: 

Arithmetic ← Algebra ← Analysis 

The notion of equality cannot be restricted to a unique mathematical context. In effect, the sign “=” is deter-
mined by the set of relations that are established between the models associated to it, and that emerge from 
the usual practices in contemporary educational institutions. These practices have privileged the arithmetic 
model, emphasizing the importance of transformations “by equivalences” and the simplification of arithmetic 
and algebraic expressions to obtain “canonical” representations of mathematical objects. 

This focalization on the type of tasks has caused the fundamental relations between the systems made up of 
the arithmetic, order metric and topological models, and the analytic and numerical models to be dialectic; 
hence it is not possible, for example, to comprehend the analytic notion of equality as a limit process if not 

by opposition to the arithmetical notion of equivalence relation between two objects29.  

The analysis of the notion of equality is a sample of how the atomized and linear teaching of arithmetic, al-
gebra and analysis (in this order) does not contribute to learning; a triangular conception, which allows, in 
each concrete problem, the interaction of numerical, algebraic and analytic approximations to obtain a solu-
tion is necessary. 

For example, given the Fibonacci sequence (an), for the determination of the limit of the sequence (an+1/an), 
numerical analysis allows the calculation of a “tentative” approximate value (interval of plausible solutions); 
the algebraic approach allows the formalization of the calculation of the limit (exact value); the analytic 
method allows the argument of the existence and uniqueness of the limit. The assessment of the procedures 
and arguments used in each case is fixed by its efficiency in the solution or justification of each one of the 
tasks. There is no moment (Chevallard, 1997) “more important” than another: the determination of an ap-
proximate value (exploratory moment) allows the establishment of an interval of acceptance or rejection of 
the exact value obtained (technological moment), and the justification of the existence and uniqueness of that 
value (theoretical moment), all confirm the relevance of the calculations that were carried out.  

This study suggests the displacement of the focus of interest in the teaching of mathematical analysis: from 
the formal analysis (for example, literal manipulations of algebraic functions) to the communication and con-
struction of knowledge in a more intuitive way, for example, graphical and numerical (where comparison 
and approximation represent fundamental processes). In this context, the new technologies (graphing and 
programmable calculators, and specialized software) should play a central role in the introduction of the no-
tions, processes and meanings of analytic objects. In fact, “research in mathematics education in the calculus 

context cannot be deployed in isolation from the technological dimension”. (Artigue, 1998, 258)30.  

Thus, a supposed functional necessity in the teaching of numerical calculus is what postpones the introduc-
tion and development of the fundamental notions of mathematical analysis. The numerical study of the rela-
tions between objects constitutes a way of accessing the notion of equality, making possible a flexible transi-
tion between the different models that are proposed. There is no opposition between the analytic and 
numerical justifications, nor is there a pragmatic gradation of them (this can only establish itself in relation to 
a theory and some pre-established criteria about the mathematical discourse) 
                                                           

29 Indeed, our epistemological study confirms the empirical and theoretical analysis carried out by other authors. 
(Bloch, 1995; Artigue,1998; Wilhelmi, 2003). 

30 In French in the original: “la recherche en didactique de l’analyse ne peut se déployer en faisant abstraction de la 
dimension technologique” (Artigue, 1998, 258). 
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7.2 Microdidactics 

It is necessary formulate strategies of didactical engineering for the development of the object “equality”, as 
has been shown in this article. Within the Theory of Didactical Situations (TSD) (Brousseau, 1998) this 
would suppose the search for a fundamental situation, capable of generating (in the majority of the students) 
stable tensions with the majority of models linked to the notion of equality, as well as useful associations to 
the contexts of use in which these notions are registered.  

The determination of a fundamental situation of the notion of equality is complex. We have reasoned how 
the analytic model of equality is understood, in many circumstances, as a sub-product of the notion of limit; 
for instance:  

a = b ⇔ an = a, ∀ n ∈ N, lim an = b 

This fact, together with the dialectical relation between the arithmetical models, as equivalence, and the ana-
lytic models, as a limit process, represents an epistemological support for the conjecture that the search for a 
fundamental situation of the notion of equality is equivalent to the search for the fundamental situation of se-
quential limit. The idea of relating the search for a fundamental situation for the notion of equality with an-
other has been widely debated: (limitations of the oil tanker, Di Martino, 1992); the possibility of obtaining 
situations with an essentially adidactic component (Bloch, 1999); the use of graphing and programmable cal-
culators TI-81 for the introduction of the sequential limit (Wilhelmi 2003); etc.). Similarly, the conjecture of 
the equivalence of the two research problems is sustained in other didactical research. For example, Cornu 
(1991) distinguishes different models of the notion of limit, in which the notion of equality is implicitly 
problematized when there is an infinite process by means of characterizations such as “approximation”, 
“tends to” or “distance”. Tall & Vinner (1981) introduce the notion of cognitive conflict to highlight situa-
tions in which the “intuition” and the “formal calculations” are not compatible; for example, the justification 

that0.9 1=  by means of the general formula of the infinite sum of a geometric progression of ratio less than 

one31 is “opposed” to the intuition (incorrect) that “0.9  has more and more nines and, then, gets closers and 
closer to 1, but never reaches it”. Finally, Artigue (1998, 239) is much more explicit in establishing a relation 
between the notion of limit (sequence) and equality: 

“First one tries to find meaning in pre-constructed objects, using a system of practices; at a second 
stage, the objects are not seen as objects constructed according to definitions. Contemporary teaching 
of the limit concept, essential in Mathematical Analysis, is an evident examples of this, and of the 
necessity of invoking previous mathematical reconstructions [see previous quote, Artigue, section 5] 
to help understand, it seems to us, the separation between the capacity to give a concept an intuitive 
meaning, illustrating with examples and counterexamples, and the capacity to operationally manipu-
late those concepts, giving it the status of a constructed object, subject to formal proofs.” (Artigue, 

1998, 239)32. 

The complexity referred to does not imply the rejection of the search for a fundamental situation for the no-
tion of sequential limit or for the notion of equality. Legrand (1996) has defended the paradoxical thesis ac-
cording to which the search for fundamental situations is consistent both for research in mathematical didac-
tics as well as for teaching, whether it is found or not. Grosso modo, Legrand justifies the search for 
fundamental situations because they constitute a fruitful instrument in the analysis of knowledge, of formu-

                                                           
31 The expression0.9can be interpreted as a geometric progression of ration 1/10 and first term 9/10. 

32 In French in the original: “On travaille d’abord sur des objets préconstruits auxquels on essaie de donner sens par un 
ensemble de pratiques; ce n’est que dans un second temps que ces objets sont censés prendre le statut d’objets construits 
assujettis à des définitions. L’enseignement actuel du concept de limite, central en analyse, en est un exemple évident et 
les besoins mathématiques des reconstructions ci-dessus évoquées [see previous quote, Artigue, section 5] aident bien à 
comprendre, nous semble-t-il, ce qui peut séparer la capacité à donner un sens intuitif au concept, à l’illustrer par des 
exemples et contre-exemples, de la capacité à manipuler opérationnellement le concept avec son statut d’objet construit, 
assujetti à des preuves formelles.” (Artigue, 1998, 239). 
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lating teaching projects, and of the selection of didactical interventions. Furthermore, “researching funda-
mental situations is a prerequisite for the teacher who wants to manage and embark on a real ‘scientific de-

bate’ with precise knowledge” (Legrand, 1996, 223)33.  

The Onto-Semiotic Approach (OSA) (Godino, 2003) determines a solution for the elaboration of “quality 
teaching”, that is, teaching that combines know how (technical) and meaning (the realm of applications of the 
techniques), and that articulates the epistemological analysis typical of the search for a fundamental situation 
(whether or not it is obtained) with the methodological and time restrictions within a concrete institution. In 
particular, in relation to the notion of equality, the objective consists in establishing a system of institutional 
practices that make possible the explicit interaction of the arithmetic model of equality with the rest of the 
models and, especially, with the analytic model, in such a way that the notion of equality, understood as a 
system, brings a balance in relation to the personal meaning that students attribute to them. 

 

7.3. Theoretical 

The Theory of Didactical Situations (TSD) postulates that all “knowledge” can be modelled by one or vari-
ous adidactical situations that preserve the meaning attributed to such knowledge. The notion of knowledge, 
within TSD refers explicitly to knowledge which is an object of study (that can be made explicit, that can be 
communicated, and that can be validated or invalidated) in a determined culture and society. The notion of 
holistic-meaning (network of models) represents the structuring of objectivated knowledge, and creates a 
reference for the modelling process. Furthermore, the notion of holistic-meaning can be used in the a priori 
analysis of the search for a fundamental situation for the introduction of development of a specific mathe-
matical notion; concretely, to determine the degree of representativity of the situation in relation to the in-
tended institutional meaning.  

In the same way, the notions of model and holistic-meaning of a mathematical object are theoretical tools for 
the epistemological analysis of the discursive mathematical objects, that is, the cultural products that result 
from mathematical activity. The notions of model and holistic-meaning propose an answer to the questions: 
what is a mathematical notion?; what does it mean to know that notion?; in particular, what is the notion of 
equality?; what does it mean to know the notion of equality? 

On the other hand, as we have mentioned, the operative and discursive systems of practices are to OSA what 
the mathematical praxeologies are to the Anthropological Theory of Didactics (TAD). Furthermore, the no-
tion of praxeology represents a component of the general scheme of mathematical activity (and of the prod-
ucts that are obtained from this activity) proposed within OSA. OSA considers that each mathematical notion 
is the antecedent (expression) of a semiotic function (Godino, 2002) whose consequent (meaning) is the con-
figuration formed by the system of practices, contexts of use of the expression, and the network of emergent 
objects of such a system of practices (figure 3). 

 

 

Figura 3. Tools for epistemological analysis in OSA 

                                                           
33 In French in the original: “la recherche des situations fondamentales est un passage obligé pour le professeur qui 

veut engager et gérer un réel ‘débat scientifique’ sur un savoir précis.” (Legrand, 1996, 223) 
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Hence, the essential difference between TAD and OSA is determined by the form in which both describe and 
analyze mathematical activity. OSA is focused on the determination of a specific mathematical ontology in 
the description of the possible semiotic functions involved in mathematical activity and in the characteriza-
tion of the nature of this activity. TAD is centered on the determination of praxeologies (the mathematical 
objects can be described only as constituents of the praxeologies) and in the analysis of the ecological issues 
within the institutions (the mathematical objects represent the product of an institutional activity).  

“TAD situates mathematical activity and, accordingly, the study of mathematics as an activity, in the 
collection of human activities and that of social institutions […] It is admitted that, in effect, every 
regularly carried out human activity can be subsumed under a unique, model that is summarized here 

with the word praxeology.” (Chevallard, 1999, 223)34. 

Finally, the notions of praxeology and epistemic configuration are powerful tools for didactical and curricu-
lar analysis. The theories of curriculum structure the subject that will be the object of study, in terms of con-
ceptual, procedural and attitudinal contents, ignoring the specificities of each discipline. The application of 
the model of description and analysis of mathematical activity proposed by TAD, when structuring the cur-
riculum, would suppose the identification of techniques that are necessary to carry out the types of tasks that 
students would need to confront, highlighting the tensions that force the use of a specific technique and the 
justification of the necessity of its “life” in the academic context (underlying technologies and theories). 
However, in the study process the quadruple (task, technique, technology, theory) is not always made ex-
plicit.  

“We can imagine an institutional world in which all human activities would be governed by well 
adapted praxeologies, in order to deal with every task in an efficient, reliable and intelligible manner. 
However, a world with these characteristics does not exist […] Generally, this praxeological poverty 

is translated to the absence of techniques.” (Chevallard, 1999, 230−232)35. 

OSA, on the other hand, distinguishes six categories of primary objects that form a system of practices: prob-
lems, procedures, language, notions, properties and arguments. An epistemic configuration is a system of ob-
jects (and of semiotic functions that are established between these objects) in relation to the communication, 
assessment, formulation and resolution of a mathematical situation. Furthermore, OSA describes the analysis 

of the proofs of the proposition 
2

2
2 =  in terms of the notion of operative and discursive system, without 

needing to explain the general techniques of the proofs or the procedures to justify these techniques. In ef-
fect, the nucleus of the discourse is made up of definitions, that do not represent elements of a praxeology 
(understood as the quadruple) but in ostensive objects of an epistemic configuration in relation to the proof 

of the proposition 
2

2
2 =  (problem); in fact, the argumentation of the proofs is carried out by means of a 

formalized language, based on certain notions (real line, order relation, distance, connection, equation, injec-
tive function, neighborhood-limit, error-approximation), supported by the properties of the notions involved 
and in logical laws (the excluded third, for example), and it is carried out by means of specific procedures 

                                                           
34 In French in the original: “La TAD situe l’activité mathématique, et donc l’activité d’étude en mathématiques, dans 
l’ensemble des activités humaines et des institutions sociales […] On y admet en effet que toute activité humaine régu-
lièrement accomplie peut être subsumée sous un modèle unique, que résume ici le mot de praxéologie.” (Chevallard, 
1999, 223). 

35 In French in the original: “On peut imaginer un monde institutionnel dans lequel les activités humaines seraient ré-
gies par des praxéologies bien adaptées permettant d’accomplir toutes les tâches voulues d’une manière à la fois effi-
cace, sûre et intelligible. Mais un tel monde n’existe pas […] Ordinairement, la pénurie praxéologique se traduit 
d’abord par un manque de techniques.” (Chevallard, 1999, 230−232). 
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(the selection of the representatives of a mathematical object, the definition of intervals or function, the edit-
ing of a program, etc.) 

 

Recognition 

Reference Projects: Resolución UPNA nº 1.109/2003, de 13 octubre, y MCYT-FEDER BSO2002-02452. 
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