
Neuropsychology Review pp628-nerv-452511 November 23, 2002 8:23 Style file version sep 03, 2002

Neuropsychology Review, Vol. 12, No. 4, December 2002 (C© 2002)

Acalculia and Dyscalculia

Alfredo Ardila 1,3 and Mónica Rosselli2

Even though it is generally recognized that calculation ability represents a most important type of
cognition, there is a significant paucity in the study of acalculia. In this paper the historical evolution
of calculation abilities in humankind and the appearance of numerical concepts in child development
are reviewed. Developmental calculation disturbances (developmental dyscalculia) are analyzed. It is
proposed that calculation ability represents a multifactor skill, including verbal, spatial, memory, body
knowledge, and executive function abilities. A general distinction between primary and secondary
acalculias is presented, and different types of acquired calculation disturbances are analyzed. The
association between acalculia and aphasia, apraxia and dementia is further considered, and special
mention to the so-called Gerstmann syndrome is made. A model for the neuropsychological assessment
of numerical abilities is proposed, and some general guidelines for the rehabilitation of calculation
disturbances are presented.
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INTRODUCTION

Calculation ability represents an extremely complex
cognitive process. It has been understood to represent a
multifactor skill, including verbal, spatial, memory, and
executive function abilities (Ardila et al., 1998). Cal-
culation ability is quite frequently impaired in cases of
focal brain pathology (Ardila and Rosselli, 1992;
Grafman, 1988; Harvey et al., 1993; H´ecaen
et al., 1961; Rosselli and Ardila, 1989) and dementia
(Deloche et al., 1995; Grafman et al., 1989; Parlatto
et al., 1992; Rosselli and Ardila 1998). The loss of
the ability to perform calculation tasks resulting from
a cerebral pathology is known asacalculia or ac-
quired dyscalculia. Acalculiahas been defined as an
acquired disturbance in computational ability (Loring,
1999). The developmental defect in the acquisition
of numerical abilities, on the other hand, is usually
referred to as developmental dyscalculia(DD) or
dyscalculia.
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Acalculia is frequently mentioned in neurological
and neuropsychological clinical reports, but research di-
rected specifically to the analysis of acalculia is rather
limited. During 1990–99, there were 83 Medline and 56
PsychInfo entries for “acalculia/dyscalculia” as key word.
The wordacalculia or dyscalculiaswas included in the
journal paper or general publication titles 31 and 13 times
respectively according to these two databases during this
10-year period (Table 1).

The same applies to testing for calculation abili-
ties. Tests for calculation abilities are always included
in the psychological or neuropsychological evaluation of
cognition. Calculation abilities are included when test-
ing for general intelligence (e.g., WAIS-III; Wechsler,
1997) and most neuropsychological assessment proce-
dures worldwide include the assessment of calculation
abilities. Moreover, they are frequently included in the
Mini-Mental State Examination (MMSE) (Folstein et al.,
1975) and other brief neuropsychological assessment pro-
cedures (e.g., Neuropsi; Ostrosky et al., 1997). But, a spe-
cific standardized test battery with norms for acalculia is
hardly found (Deloche et al., 1994).

Thus, acalculia is in a somewhat peculiar position
amid the cognitive disturbances encountered in cases of
brain pathology. Although there is a general consensus
that calculation ability represents an extremely important
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Table 1. Number of Entries of Some Neuropsychological Syndromes
Found in Medline and Psychinfo During 1990–99

Medline PsychInfo

As key In the As key In the
word title word title

Dementia 18,180 5,580 4,269 1,978
Amnesia 2,528 713 965 318
Aphasia 2,344 632 972 417
Alexia/dyslexia 1,278 409 601 317
Apraxia 665 240 222 91
Agnosia 505 104 146 61
Agraphia/dysgraphia 266 84 123 39
Acalculia/dyscalculia 88 31 54 13

type of cognition, and calculation abilities are tested in vir-
tually any psychological and neuropsychological assess-
ment procedure, research on acalculia is quite limited.

Historical Note

Henschen (1925) proposed the termacalculia
(akalkulia). He then definedacalculiaas the impairment in
computational skills resulting from brain injury. Nonethe-
less, before Henschen some mention of calculation dis-
turbances associated with brain damage is found in the
literature. In most cases, those calculation disturbances
were interpreted as sequelae of the language impairment
(aphasia).

Lewandowsky and Stadelmann published the first de-
tailed report of a patient suffering from calculation distur-
bances in 1908. Their patient presented with focal brain
damage associated with right homonymous hemianopia,
and had significant difficulties in written and mental cal-
culations. The authors further reported that the patient had
impairments in reading arithmetical signs, even though the
patient could carry out arithmetical operations. This paper
represents a landmark in the development of the concept
of acalculia, because it considers that calculation disorders
are different and dissociated from language disturbances.

Henschen (1925) reviewed 305 cases in the litera-
ture that reported calculation disturbances associated with
brain damage, and 67 of his own patients. He identified
those patients presenting calculation disturbances without
evident language impairments, and proposed an anatomi-
cal substrate for arithmetical operations, different from but
close to the anatomical substrate for language and musi-
cal ability. The third frontal convolution was suggested
to represent the center for the pronunciation of numbers.
The angular gyrus and the fissure interparietalis were pro-
posed as the brain areas participating in number reading,
and the angular gyrus was regarded as the brain structure
responsible for writing numbers.

Berger (1926) introduced the distinction between pri-
mary and secondary acalculia. Primary or “pure” acalcu-
lia corresponds to the loss of numerical concepts and to
the inability to understand or execute basic arithmetical
operations. Secondary acalculia refers to the defect in cal-
culation derived from other cognitive deficits (e.g., mem-
ory, language, etc.). This distinction became particularly
influential, and then was increasing recognition that cal-
culation disturbances could be associated with and depen-
dent upon other cognitive defects, such as aphasia, alexia,
and agraphia. The polemic, however, has revolved around
the possible existence of a primary acalculia, because
some authors have questioned the existence of acalculia as
an independent cognitive deficit (Collington et al., 1977;
Goldstein, 1948).

Gerstmann (1940) proposed that primary acalculia
is associated with agraphia, right–left disorientation, and
digital agnosia, conforming a single brain syndrome that
since then has been known as “Gerstmann syndrome.”
Neuroimaging methods have shown a correlation between
the Gerstmann syndrome and left posterior parietal in-
juries (Mazzoni et al., 1990).

Lindquist (1936) distinguished different types of
acalculia associated with lesions in different brain areas.
He conjectured that calculation disturbances are not ho-
mogeneous, and in consequence, acalculia subtypes may
be distinguished. As a result, several classifications of
acalculias have been presented (e.g., Ardila and Rosselli,
1990; Grafman, 1988; Grafman et al., 1982; H´ecaen et al.,
1961; Lindquist, 1936; Luria, 1973), and different patterns
of errors have been described in patients with right and
left hemispheric injuries (Levin et al., 1993; Rosselli and
Ardila, 1989).

Boller and Grafman (1983) claim that calculation
abilities can be impaired as a result of different types
of defects. They believe that calculation skills can be al-
tered as a result of (1) inability to appreciate the signifi-
cance of the names of numbers, (2) visual–spatial defects
that interfere with the spatial organization of the numbers
and the mechanical aspects of the operations, (3) inabil-
ity to remember mathematical facts and to appropriately
use them, and (4) defects in mathematical thought and in
the comprehension of the underlying operations. Interest-
ingly, occasionally brain damage may result in a relatively
restricted disorder in performing arithmetical operations,
for instance, a limited alexia for arithmetical signs (Ferro
and Botelho, 1980), or a specific deficit for arithmetical
procedures (Semenza, 1988), without additional calcula-
tion disturbances.

Calculation ability implies the use of numerical con-
cepts. The concept of numbers can be associated with the
presence of at least four factors: (1) immediate representa-
tion of quantity, implicit in the number; (2) understanding



Neuropsychology Review pp628-nerv-452511 November 23, 2002 8:23 Style file version sep 03, 2002

Acalculia and Dyscalculia 181

the numerical position within the system of other numer-
ical symbols (i.e., its position in the series of digits and
its place in class); (3) understanding the relationships be-
tween a number and other numbers; and (d) understand-
ing the relationships between numerical symbols and their
verbal representations (Tsvetkova, 1996).

McCloskey et al. (1985, 1986, 1991a,b) and
McCloskey and Caramazza (1987) proposed a cognitive
model regarding the processing of numbers and the rela-
tionship of arithmetical operations. This model includes
a distinction between the processing system of numbers
(an understanding mechanism and the production of num-
bers), in addition to the numerical calculation system that
includes the necessary processing components to accom-
plish mathematical operations. In the event of brain in-
jury, these components can be disassociated (Dagenbach
and McCloskey, 1992; Pesenti et al., 1994). The princi-
ples (multiplication tables), rules (N × 0 = 0), and pro-
cedures (multiplication proceeds from right to left) form
part of the numerical calculation system. Errors of calcu-
lation observed in patients with brain injury and in normal
participants can result from inappropriate recall of princi-
ples, inadequate use of rules, and/or errors in procedures.
Cognitive modeling has helped to establish similarities
between acquired acalculias and DDs (Temple, 1991).

Clark and Campbell (1991) have presented a “spe-
cific integrated theory” of calculation abilities. This theory
presumes that visuospatial, verbal, and other modality-
specific number codes are associatively connected as an
encoding complex and that different facets of number pro-
cessing generally involve common rather than indepen-
dent, processes. This point of view emphasizes the par-
ticipation of multiple components in calculation. It seems
evident that normal calculation ability requires verbal, vi-
suospatial, and other fundamental cognitive skills. Calcu-
lation impairments, as a matter of fact, can be observed
in cases of a wide diversity of brain disturbances: Left or
right hemisphere, frontal, parietal, temporal, and occipital.
Moreover, subcortical lesions can also result in some cal-
culation defects (Dehaene and Cohen, 1997). Almost any
type of brain pathology may produce difficulties on calcu-
lation tests, even though the specific pattern of difficulties
can be different (Rosselli and Ardila, 1989).

Calculation Ability: One or Several Abilities?
The Question of Modularity

Calculating has been identified as a concept and goal
formation cognitive skill (Mandell et al., 1994). Calcu-
lation ability under normal circumstances requires not
only the comprehension of numerical concepts, but also
that of conceptual abilities and other cognitive skills. In

the neuropsychological domain, however, very little re-
search indeed has been carried out to explore the rela-
tionship between mathematical test performance and per-
formance on other cognitive tests. Ardila et al. (1998)
administered a comprehensive neuropsychological test
battery to a 300-participant sample, aged 17–25 years. All
were right-handed male university students. The battery
included some basic psychological and neuropsycholog-
ical tests directed to assess language, calculation abili-
ties, spatial cognition, praxis abilities, memory, percep-
tual abilities, and executive functions. The following tests
were included: (1) Auditory Recognition (recognition of
songs and the Seashore Rhythm). (2) Verbal Fluency
(phonologic and semantic). (3) Nonverbal Fluency. (4) Se-
rial Verbal Learning (5) Finger Tapping Test (FTT) (left
hand and right hand). (6) The Rey–Osterrieth Complex
Figure (ROCF) (copy and immediate recall). (7) Ratcliff’s
Mental Rotation Test. (8) Arithmetical Abilities. Two dif-
ferent tests were used: (a) Mental Arithmetical Opera-
tions (two additions, two subtractions, two multiplica-
tions, and two divisions) and (b) arithmetical problems.
Sixteen arithmetical problems were orally presented. The
participants were allowed to use pencil and paper if so
desired. (9). Localization of cities on a map. (10) Orthog-
raphy Test. (11) Perceptual Recognition (similarities be-
tween two figures, differences between two figures and
hidden figures). (12) Reading Speed. (13) Wechsler Adult
Intelligence Scale (WAIS). (14) Wechsler Memory Scale
(WMS). And (15). Wisconsin Card Sorting Test (WSCT).
Forty-one different scores were calculated.

Four different tests were considered in the analysis of
the calculation abilities (Mental arithmetical operations,
Arithmetical problems, WAIS Arithmetic, and WAIS Dig-
its subtests). Numerical ability tests turned out to present
a notably complex correlation system. Mental arithmetic
significantly correlated with 25 (out of 41) test scores, and
Arithmetical problems with 17 test scores. WAIS Arith-
metic subtest correlated with 15 test scores, and WAIS
Digits correlated with 7 test scores. Some correlations
were quite understandable (e.g., different mathematical
test scores are highly intercorrelated), whereas other cor-
relations were rather unexpected (e.g., arithmetical ability
tests highly correlate with the Orthography test). Main cor-
relations were observed with verbal memory, visuospatial,
visuoperceptual, language, and visuoconstructive ability
tests (Table 2). It may therefore be assumed that arith-
metical ability is associated with and depends upon some
verbal, visuoperceptual, visuospatial, and memory abili-
ties. Consequently, it is not surprising that there is such a
wide variety of calculation disturbances observed in brain
pathology. Calculation ability disturbances are even as-
sociated with body knowledge disturbances (autotopag-
nosia, finger agnosia) (Gerstmann, 1940).



Neuropsychology Review pp628-nerv-452511 November 23, 2002 8:23 Style file version sep 03, 2002

182 Ardila and Rosselli

Table 2. Correlations over.15 (p < .01) Between Different Testsa

Test Correlates with r

Mental arithmetic Arithmetical problems .49
Orthography test .37
WAIS: Arithmetic .35
WMS: Associative Learning .29
Ratcliffs test .25
WMS: Logical Memory .26
Perceptual speed: Similarities .25
WAIS: Information .24
WAIS: Similarities .23
WAIS: Comprehension .23
WAIS: Digits .23
Phonologic Verbal Fluency .22
WAIS: Vocabulary .21
Localization of cities on a map .20
WAIS: Picture completion .20
WAIS: Picture arrangement .20
Perceptual speed: differences .19
Seashore Rhythm Test .18
Perceptual speed: Hidden .18
WAIS: Digit–symbol .18
WAIS: Block design .17
WAIS: Object assembly .16
Reading speed .16
WMS: Orientation .16
WMS: Mental Control .15

Solving arithmetical Mental arithmetic .49
problems WAIS: Arithmetic .46

Orthography test .32
WAIS: Block design .31
WAIS: Information .28
Ratcliffs test .26
WAIS: Digit–symbol .26
WAIS: Comprehension .24
WMS: Mental Control .24
WMS: Logical Memory .23
WAIS: Similarities .22
WAIS: Picture Arrangement .21
WAIS: Digits .20
WAIS: Vocabulary .19
Perceptual speed: Similarities .18
Perceptual speed: differences .18
WAIS: Picture completion .18

WAIS: Arithmetic Arithmetical problems .46
WAIS: Information .40
Mental Arithmetic .35
WAIS: Comprehension .32
WAIS: Vocabulary .31
WAIS: Picture completion .26
WAIS: Digits .22
WAIS: Block design .21
Phonologic Verbal Fluency .21
Localization of cities on a map .21
WAIS: Similarities .18
Semantic Verbal Fluency .17
Orthography test .17
Perceptual speed: Hidden .16
WAIS: Picture arrangement .15

WAIS: Digits Mental arithmetic .23
?>

Table 2. (Continued)

Phonologic Verbal Fluency .23
WAIS: Arithmetic .22
Arithmetical problems .20
Orthography test .17
FTT: Left hand .16
WAIS: Similarities .16

aMental Arithmetic, Arithmetical Problems, WAIS: Arithmetic, and Dig-
its Subtests (adapted from Ardila et al., 1998a).

A factor analysis with varimax rotation disclosed
five factors accounting for 63.6% of the total variance.
Interestingly, none of these factors was a “calculation” or
“numerical” factor. The first factor, accounting for over
one fourth of the variance, was clearly verbal ability.
It was best tested with the Similarities, Information,
Vocabulary, and Comprehension subtests from the WAIS.
This result reinforces the assumption that Arithmetic and
Digits subtests are not purely verbal subtests. Factor II
was a perceptual or nonverbal factor, whereas factor III
was simply a WCST factor, nonsignificantly correlated
with other test scores. Minor correlations were observed
with the WMS Information and Orientation subtests.
Factor IV was a type of fine motor factor or (motor and
verbal) fluency factor. Factor V was a memory, especially
verbal memory, factor (Table 3).

“General intelligence” (Full Scale IQ) as understood
in the WAIS was best associated with the mathematical
ability tests and the orthography test (Table 4). These cor-
relations were particularly high and significant. The asso-
ciation with some perceptual tests was somehow lower,
yet strongly significant. All of these tests (mathemati-
cal, orthographic, and perceptual tests) presented a very
complex intercorrelation system with a wide variety of
other psychological and neuropsychological tests. Con-
sequently, they may be measuring a diversity of cogni-
tive abilities. Still, mathematical abilities represented the
best predictors of the “general intelligence” according to
the psychometric concept of intelligence. Interestingly, no

Table 3. Correlations Between the Different Calculation Tests and the
Five Factors (Adapted from Ardila et al., 1998a)

Factors

I II III IV V
Tests Verbal Perceptual WCST Fluency Memory

Mental arithmetic .40 .35 .10 .03 .19
Arithmetical problems .37 .40 −.03 .07 .23
WAIS: Arithmetic .44 .28 −.05 .15 .19
WAIS: Digits .30 .02 .17 .18 .08
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Table 4. Correlations over.15 (p< .01) Between Verbal IQ, Performance
IQ, and Full Scale IQ with Different Test Scores (Adapted from Ardila

et al., 1998a)

Correlates with r

Full Scale IQ Arithmetical problems .40
Orthography test .36
Mental arithmetic .35
Perceptual speed: Similarities .32
Seashore Rhythm Test .28
Perceptual speed: Hidden .27
Phonologic verbal fluency .25
ROCF: Memory .24
Localization of cities .24
Reading speed .20
Semantic verbal fluency .19
Ratcliffs test .16

Verbal IQ WAIS: Vocabulary .81
WAIS: Comprehension .68
WAIS: Information .67
WAIS: Similarities .59
WAIS: Arithmetic .50
Arithmetical problems .32
Phonologic verbal fluency .32
Mental arithmetic .31
Orthography test .31
WAIS: Digits .28
Localization of cities .25
Semantic verbal fluency .18

Performance IQ Arithmetical problems .35
Perceptual speed: Similarities .33
Seashore Rhythm Test .28
Mental arithmetic .28
Perceptual speed: Hidden .28
ROCF: Memory .24
Orthography test .24
Reading speed .20
Ratcliffs test .17

single WAIS verbal or performance subtests, according to
current results, could be considered a good predictor of
Full Scale IQ.

In conclusion, calculation abilities are associated
with a diversity of other cognitive abilities, including ver-
bal, perceptual, spatial, memory, and executive function
abilities. In this regard, calculation ability represents a
multifactor ability. To a significant extent, it reflects the
ability to manipulate acquired knowledge (Mandell et al.,
1994). The ability to use numerical information is highly
correlated with general intellectual level. It is not sur-
prising that calculation disturbances are heterogeneous,
and can be observed in cases of brain pathology of quite
different locations. Virtually, any cognitive defect may re-
sult in impairments in calculation abilities. By the same
token, mental calculation impairments have been demon-
strated to represent an important factor in predicting cog-

nitive deficits in cases of dementia (Roudier et al., 1991).
Noteworthy, using functional magnetic resonance imaging
(fMRI) and positron emission tomography (PET) while
performing arithmetical operations, a complex pattern of
activity has been demonstrated. Most active areas include
the left prefrontal areas and the posterior superior temporal
gyrus (Burbaud et al., 1995; Sakurai et al., 1996).

HISTORICAL DEVELOPMENT
OF CALCULATION ABILITIES

Calculation abilities have followed a long process,
since initial quantification of events and elements, to mod-
ern algebra, geometry, and physics. Some rudimentary nu-
merical concepts are observed in animals and no question
prehistorical man used some quantification. However, the
ability to represent quantities, the development of a nu-
merical system, and the use of arithmetical operations, is
found only in old civilizations.

Numerical Concepts in Animals

The origin of mathematical concepts can be traced
to subhuman species. Throughout recent history differ-
ent reports have argued that animals (horses, rats, dogs,
chimpanzees, dolphins, and even birds) can use numerical
concepts and perform arithmetical operations.

There is general agreement that some rudimentary
numerical concepts are observed in animals. These basic
numerical skills can be considered as the real origin of
the calculation abilities found in contemporary man. For
instance, pigeons can be trained to pick a specific num-
ber of times on a board, and rats can be trained to press
a lever a certain amount of times to obtain food (Calpadi
and Miller, 1988; Koehler, 1951; Mechner, 1958). It could
be conjectured that pigeons and rats can count, at least up
to a certain quantity: They can recognize how many times
a motor act—to pick on a board or to press a lever—has
been repeated. If this behavior can or cannot be really in-
terpreted as counting is nonetheless questionable. But it
is observed, at least, after a long and painstaking training.
Interestingly, these animal responses (to pick or to press
the lever) are not accurate but just approximate. In other
words, when the rat is required to press the lever seven
times, the rat presses itaboutseven times (i.e., five, six,
seven, eight times) As Dehaene (1997) emphasizes, for
an animal 5+ 5 does not make 10, but only about 10.
According to him, such fuzziness in the internal repre-
sentation of numbers prevents the emergence of exact nu-
merical arithmetical knowledge in animals. Using highly
controlled and sophisticated designs, it has been pointed
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out that chimpanzees can even use and add simple nu-
merical fractions (e.g., 1/2+ 1/4= 3/4) (Woodruff and
Premack, 1981). These observations support the assump-
tion that some quantity concepts can be found in different
animals.

Counting (or rather, approximately counting) motor
responses is just a motor act as it is walking or running.
“Counting” lever pressing is not so different to estimate
the effort (e.g., number of steps or general motor activity)
required going from one point to another. Counting could
be linked to some motor and propioceptive information.

Not only chimpanzees but also rats and many other
animals can distinguish numerosity (i.e., global quantifi-
cation): they prefer the bowl containing the larger num-
ber of nutritive elements (chocolates, pellets, or whatever)
when selecting between two bowls containing different
amounts (Davis and Perusse, 1988). It may be conjec-
tured that global quantification (numerosity perception)
and counting (at least the approximate counting of mo-
tor responses) represent kind of basic calculation abilities
found at the animal level. Rats prefer the bowel contain-
ing 10 pellets to the bowel containing 20 pellets; however,
they do not prefer the bowel containing 20 pellets to the
bowel containing 21 pellets. Obviously, numerosity per-
ception is related to size and shape of the visual image
projected to the retina. It can be assumed that 20 pellets in
a bowel result in a larger and more complex retinal image
than do 10 pellets. But the visual image corresponding to
20 pellets is difficult to distinguish from the visual image
corresponding to 21 pellets.

Calculation Abilities in Prehistorical Man

Chimpanzees are capable of various forms of nu-
merical competence including some correspondence con-
structions for low quantities (Davis and Perusse, 1988;
Premack, 1976). Most likely, these numerical abilities also
existed in prehistorical man.Homo sapiensantecessors
may have been capable to use correspondence construc-
tions in some social activities such as food sharing. It
has been proposed thatHomo habilis(ancestor ofHomo
erectus, living about 2.5 million years ago) required to
use correspondence constructions when butchering large
animal carcasses (Parker and Gibson, 1979). Distribut-
ing pieces of a divided whole (e.g., a pray) into equal
parts required the ability to construct one-to-one corre-
spondences. Probably, Paleolithic man was able to match
the number of objects in different groups. And eventually,
the number of objects in a collection with the number of
items in some external cue system, for example, fingers or
pebbles (incidentally,calculusmeans pebbles).

The immediate recognition of certain small quantities
is found not only in animals but also in small children. Ani-
mals and children can readily distinguish one, two, or three
objects (Fuson, 1988; Wynn, 1990, 1992). Beyond this
point, however, errors are observed. Oneness, twoness,
and threeness seemingly are basic perceptual qualities that
our brain can distinguish and process without counting. It
can be conjectured that when the prehistoric humans be-
gan to speak, they might have been able to name only the
numbers 1, 2, and perhaps 3, corresponding to specific
perceptions. To name them was probably no more diffi-
cult than to name any other sensory attribute (Dehaene,
1997). Noteworthy, all the world languages can count up
to three, even though three may represent “many,” “sev-
eral,” or “a lot” (Hurford, 1987). “One” is obviously the
unit, the individual (the speaker may also be “one”). Two
conveys the meaning of “another” (e.g., in English and
also in Spanish, “second” is related with the verb “to sec-
ond” and the adjective “secondary”). “Three” may be a
residual form from “a lot,” “beyond the others,” “many”
(e.g., “troppo” that in Italian means “too much” is seem-
ingly related with the word “three” -tre-). In the original
European language, spoken perhaps some 15,000–20,000
years ago, apparently the only numbers were “one,” “one
and another” (two), and “a lot,” “several,” “many” (three)
(Dehaene, 1997). In some languages, two different plurals
are found: a plural for small quantities (usually 2, some-
times 3 and 4) and a second plural for large quantities.

Interestingly, in different world languages the word
onehasnot any apparent relationship with the wordfirst,
and the wordtwo is not related either with the wordsec-
ond. Threemay sometimes but not always holds some
relationship withthird. Beyond three, ordinals are clearly
associated with cardinal numbers (Table 5). The conclu-
sion is obvious: for small quantities, cardinals and ordinals
must have a different origin. For larger quantities, ordinal
numbers are derived from cardinals. As a matter of fact,
one/first and two/second correspond to different concep-
tual categories.

It may be speculated that for the prehistorical man
the first person and the second person in a line (or the first
animal and the second animal during hunting or whatever)
do not seem to be related with numbers 1 and 2. For small
children “first” has the meaning of “initial” (e.g., “I go
first”) whereas “second” is related to “later” or “after”
(“you go second”). They have a temporal and also spatial
meaning, but not an evident cardinal meaning. The associ-
ations between “one” and “first,” and between “two” and
“second” seem a relatively advanced process in the de-
velopment of numerical concepts. That is, the numerical
meaning of “first” and “second” seems to appear after its
temporal and spatial meaning. The association between
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Table 5. Cardinal and Ordinal Numbers in Different Languages

English Spanish Russian Greek Persian Arabic Hindi Aymaraa Ibob

One Uno Odin Ena Yek Wahid Ek Maya Nbu
First Primero Pervie Proto Aval Awal Pahla Nairankiri Onye-nbu
Two Dos Dva Dio Dou Ethnaim Do Phaya Ibua
Second Segundo Vtoroi Deftero Douvoum Thani Dusra Payairi Onye-ibua
Three Tres Tri Tria Seh Thalatha Tin Kimsa Ito
Third Tercero Treti Trito Sevoum Thalith Tisra Kimsairi Nke-ito
Four Cuatro Cheterie Tesera Chahaar Arrbaa Char Pusi Ano
Fourth Cuarto Chetviorti Tetarto Chaharoum Rabiek Chautha Pusiiri Nke-ano
Five Cinco Piat Pente Pang Khamsa Panch Pheschka Ise
Fifth Quinto Piati Pemto Panjoum Khamis Panchvan Pheskairi Nke-ise
Six Seis Shest Exi Shash Sitta Chha Sojjta Isi
Sixth Sexto Shestoi Ekto Shashoom Sadis Chhatha Sojjtairi Nke-isi
Seven Siete Siem Epta Haft Sabaa Sat Pakallko Isaa
Seventh Septimo Sidmoi Evthomo Haftoom Sabieh Satvan Pakallkoiri Nke-isaa
Eight Ocho Vosiem Octo Hasht Thamania Ath Kimsakallko Asato
Eighth Octavo Vosmoi Ogdoo Hashtoom Thamin Athvan Kimsakallkiri Nke-asato
Nine Nueve Dievit Enea Nouh Tisaa Nau Llatunca Itonu
Ninth Noveno Diviati Enato Houhum Tasih Nauvan Llatuncairi Mke-Itonu
Ten Diez Diesit Deka Dah Ashra Das Tunca Iri
Tenth Decimo Disiati Dekato Dahoom Asher Dasvan Tuncairi Mke-iri

aAmeridian language spoken in Bolivia.
bIbo: Eastern Nigeria.

ordinals and cardinals becomes evident only for larger
quantities (more than three) and seems to represent a later
acquisition in human evolution and complexization of nu-
merical concepts. In many contemporary languages (e.g.,
Uitoto language, spoken in South America) there are not
ordinal numbers. For “the first” Uitoto language uses “the
beginning”; to express “second” the wordanotheris used.

Arithmetical abilities are clearly related with count-
ing. Counting, not simply recording the approximate
amount of motor responses required to obtain a reinforce-
ment, but to say a series of number words that correspond
to a collection of objects, is relatively recent in human his-
tory. Counting is also relatively late in child development.
In human history as well as in child development (Hitch
et al., 1987) counting using number words begins with
sequencing the fingers (i.e., using a correspondence con-
struction). The name of the finger and the corresponding
number can be represented using the very same word (that
means, the very same word is used for naming the thumb
and the number 1; the very same word is used to name the
index finger and the number 2, etc.). The fingers [and toes;
as a matter of fact, many languages (e.g., Spanish), use a
single word (dedo) to name the fingers and toes] are usu-
ally sequenced in a particular order. This strategy repre-
sents a basic procedure found in different ancient and con-
temporary, cultures around the world (Cauty, 1984; Levy-
Bruhl, 1947). Interestingly, it has been demonstrated that
children with low arithmetical skills also present a finger

misrepresentation on Draw-a-Person Test (Pontius, 1985,
1989). This observation has been confirmed in different
cultural groups.

Taking a typical example as an illustration, the
Colombian Sikuani Amazonian jungle Indians count in
the following way: the person (a child when learning to
count or an adult when counting) places his/herleft hand
in supination to point the number 1, the right index points
to the left little finger, which is then bent (Queixalos, 1985,
1989). The order followed in counting is always from the
little finger to the index. To point to the number 5, the hand
is turned and the fingers opened; for 6, both thumbs are
joined, the left fingers are closed, and the right opened;
they are opened one after the other for 7, 8, 9, and 10.
Between 11 and 20, the head points to the feet and the
sequence is reinitiated. The lexicon used is as follows:

1. kae(the unit, one)
2. aniha-behe(a pair, both)
3. akueyabi
4. penayanatsi(accompanied; i.e., the fingers to-

gether)
5. kae-kabe(one hand)

Numbers from 6 to 9 are formed with “one hand and
(a certain number) of fingers.” Ten becomes “two hands.”

6. kae-kabe kae-kabesito-nua(one hand and one
finger)
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7. kae-kabe aniha-kabesito-behe(one hand and a
pair of finger)

10. aniha-kabe-behe(two hands)

“Two hands” is maintained between 10 and 20. Toes
(taxawusito) are added between 11 and 14, and “one foot”
(kae-taxu) is used in 15. Twenty is “two hands together
with two feet.”

11. aniha-kabe-behe kae-taxuwusito(two hands and
one toe)

12. aniha-kabe-behe aniha-tuxuwusito-behe(two
hands and two toes)

15. aniha-kabe-behe kae-taxu-behe(two hands and
one foot)

16. aniha-kae-behe kae-taxu-behe kae-taxuwusito
(two hands, one foot, and one toe)

20. aniha-kabe-behe aniha-taxu-behe(two hands
and two feet)

Fingers are named according to their order in count-
ing (as mentioned previously, counting begins always with
the little finger of the left hand). Sikuani language pos-
sesses number words only up to three (kae, aniha-behe,
and akueyabi). Four (penayanatsi= accompanied, to-
gether) represents a correspondence construction. Strictly
speaking, Sikuani language counts only up to three. From
4 to 20, they use a correspondence construction, not really
counting; and for higher quantities, they recur to a global
quantification.

Sometimes not only the fingers (and toes) but also
other body segments may be used in counting: the wrist,
the shoulders, the knees, and so on (Cauty, 1984; Levy-
Bruhl, 1947). But sequencing the fingers (and toes) rep-
resents the most universal procedure in counting. Some
languages (e.g., some Mayan dialects and Greenland
Eskimo) use the same word to denote the number 20 (i.e.,
“all the fingers and all the toes”) and “a person.”

In different Amerindian languages, for higher than
10 or 20 figures, most often “many” is used (global quan-
tification principle) (Cauty, 1984). Or, they can recur to
other people’s hands (correspondence construction) (e.g.,
35 might be something like “my two hands, my two feet,
my father’s two hands, my father’s one foot”). As men-
tioned, “20” sometimes becomes something like “one per-
son,” a sort of higher order numeral. It is interesting to
note that in some contemporary languages (like English
and Spanish) “one” means the unit, but it is also used as a
sort of indefinite personal pronoun. In English and Span-
ish we can also use “one” as synonymous of “myself.”
Twenty is found to be the base number in the Maya’s nu-
merical system (Cauty, 1984; Swadesh, 1967). In many
contemporary languages, a 10 and/or 20 base can be
evident.

“Digit” (from digitus, Latin) in English or Spanish
(dégito) means not only number but also finger. The cor-
respondence construction between numbers and fingers
is evident. Latin number notation was originally Etruscan
(Turner, 1984), and referred (as everywhere) to the fingers.
One, two, and three were written simply making vertical
strokes. In four the Latin system recurs to a simplification.
Originally, four was written IIII, but later on it became IV.
Five (V) represented the whole hand with the arm bent
(i.e., all the fingers of the hand), and 10 (X) the two arms
crossed.

From a neuropsychological perspective, the strong
relationship existing between numerical knowledge, fin-
ger gnosis, and even lateral (right–left) knowledge be-
comes understandable. Finger agnosia (and probably
right–left discrimination disturbances) could be inter-
preted as a restricted form of autotopagnosia (Ardila,
1993). It is not surprising to find that a decimal (or vigecial)
system has been most often developed. Simultaneously or
very close in time, decimal systems appeared in different
countries (Sumer, Egypt, India, and Creta). Different sym-
bols were used to represent 1, 10, 100, and 1,000 (Childe,
1936).

There is, however, an interesting and intriguing ex-
ception: Sumerian and later Babylonians (about 2,000BC)
developed not only a decimal system but also a sexagesi-
mal system: a symbol represented 60 or any 60-multiple,
and other different symbol represented the number 10 and
any 10-multiple. Thus, for example, the number 173 was
then represented: 2× 60 (the symbol for 60 repeated
twice)+ 5× 10 (the symbol for 10 repeated five times)+
3 (a symbol for units repeated three times). A base of 60
has remained for some contemporary time measures (e.g.,
hours, minutes, seconds). Twelve is also frequently main-
tained as a “second-order” unit (e.g., a dozen). Evidently,
60 results from “five times 12.” Five obviously is “one
hand,” and the question becomes where 12 comes from.
Which are the two additional units? It might be speculated
that 12 means the 10 fingers plus the 2 feet or even the
2 elbows or the 2 shoulders or the 2 knees (individual-
ity of components is easier to appreciate in the hands
than in the feet). But this is only speculation, although
feasible according to our knowledge about counting pro-
cedures used in different cultural groups (Levy-Bruhl,
1947).

It is interesting to note that the Maya Indians devel-
oped a similar system, but having 20 as a base (Le´on-
Portilla, 1986). They used different symbols to represent
20, 400 (20× 20), and 8,000 (20× 20 × 20) (Cauty,
1984).

So, reviewing the history of numerical concepts, it is
found that world languages developed a base 10 (10 fin-
gers) or 20 (10 fingers plus 10 toes) or even 5 (5 fingers)
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to group quantities. In some contemporary languages, for
example in French, a residual 20-base can be found (e.g.,
in French 80 can be “four twenties”). In many contempo-
rary languages, different words are used between 1 and
10. Between 10 and 20 the numerical systems usually be-
come irregular, unpredictable, and idiosyncratic. From 20
ahead, new numbers are formed simply with the words
“twenty plus one,” “twenty plus two,” and so on. Some
contemporary languages still use a 5-base in counting. For
instance, in the Amerindian language Tanimuca in South
America, they count up to five. Between 5 and 10, numbers
are “five one,” “five two,” and so on.

Further Developments of Arithmetical Abilities

Writing numbers appeared earlier in history than
writing language. Some cultures (e.g., Incas) devel-
oped a number-representing system, but not a language-
representing system (Swadesh, 1967). As mentioned, “cal-
culus” means pebble. Pebbles, or marks, or knots, or any
other element were used as a correspondence construction
to record the number of elements (people, cows, fishes,
houses, etc.). In summer the first number writing system
has been found (about 3,000BC) (Childe, 1936): Instead
of using pebbles, fingers, or knots it was simpler just to
make a mark (a stroke or a point) on the floor, or on a tree
branch or a on board if you wanted to keep the record. In
Egypt, India, and later in Crete, a similar system was de-
veloped: units were represented by a conventional symbol
(usually a stroke) repeated several times to mean a digit
between one and nine; a different symbol was used for 10
and 10-multiples.

Positional digit value is clearly disclosed in
Babylonians, and about 1,000BC the zero was introduced.
Positional value and zero are also disclosed in Maya
Indians (León-Portilla, 1986). Egyptians and Babyloni-
ans commonly used fractions. Small fractions (1/2, 1/3,
and 1/4) are relatively simple numerical concepts, and
even chimpanzees can be trained to use small fractions
(Woodruff and Premack, 1981).

As mentioned previously, recognition of individual
marks or elements up to 3 is easy: It represents an immedi-
ate perception readily recognizable. Beyond 3, the number
of marks (strokes or dots) has to be counted and errors can
be observed. Furthermore, it is rather time-consuming and
cumbersome to be all the time counting marks. Notewor-
thy, the different digit notational systems always represent
one, two, and three with strokes (or points, or any specific
mark). It means, the numbers 1, 2, and 3 are written mak-
ing one, two, or three strokes. But beyond that figure, digit
writing may recur to other strategies. In our Arabic digit
notation system “1” is a vertical line; whereas 2 and 3 were

originally horizontal lines that became tied together by be-
ing handwritten. This observation may be related with the
inborn ability to perceptually recognize up to three ele-
ments. Beyond three, errors become progressively more
likely. Perceptually distinguishing 8 and 9 is not so easy as
distinguishing between 2 and 3 strokes. The introduction
of a different representation for quantities over 3 was a
useful and practical simplification.

Not only the numerical system but also the measure
units were developed departing from the body dimensions
(fingers, hands, arm, steps, etc.). This tendency to use the
human body not only to count but also as measure units
is currently still observed in some contemporary measure
units (e.g., foot).

In neuropsychology, some common brain activity for
finger knowledge and calculation abilities can be sup-
posed. Finger agnosia and acalculia appear as two simul-
taneous signs of a single clinical syndrome (Gerstmann,
1940), usually known as “Gerstmann syndrome” or “an-
gular gyrus syndrome.” For prehistorical man, finger ag-
nosia and acalculia could have represented just the same
defect.

Adding, subtracting, multiplying, and dividing were
possible in the Egyptian system, but of course, following
procedures quite different than those procedures we cur-
rently use. They based multiplication and division in the
“duplication” and “halving” method (Childe, 1936). Inter-
estingly, this very same procedure (duplicating and halv-
ing quantities) is also observed in illiterate people when
performing arithmetical operations. So, in the Egyptian
system to multiply 12 by 18, the following procedure was
followed:

1 18
2 36
∗4 72
∗8 144

Total 216

(The number 18 is duplicated one or several times, and
the amounts corresponding to 12 (4+ 8 in this example)
are selected and summed up as follows: 72+ 144= 216.
To divide, the inverse procedure was used. So, to divide
19 by 8 would be as follows:

1 8∗2 16
2 4
∗4 2
∗8 1

That is, 2+ 4+ 8 (2+ 1/4+ 1/8), that is 2.375.
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In brief, arithmetical abilities and number represen-
tation have been around only for some 5,000–6,000 years.
Most likely, during the Stone Age only simple counting
up to 3 was present and of course, “bigger” and “smaller”
(magnitude judgment) concepts. Global quantification al-
ready was existing at prehuman levels. Correspondence
constructions allowed increasing the amount of numbers.
The most immediate correspondence construction is done
with the fingers. Finger knowledge and counting repre-
sent in a certain extent the same cognitive ability, as it is
still evident in some contemporary languages, as Sikuani
language.

Counting, finger gnosis, and even lateral spatial
knowledge may present a common historical origin.
Seemingly, calculation abilities were derived from finger
sequencing. Number representation and arithmetical op-
erations are observed only for some 5,000–6,000 years.
Currently, calculation abilities are rapidly evolving be-
cause of the introduction of modern technology.

Right–left discrimination (as well as the use of other
spatial concepts) most likely was present in prehistori-
cal man. Requirements of spatial abilities may have been
very high, even higher, than in contemporary man (Ardila,
1993; Ardila and Ostrosky, 1984; Hours, 1982). Right–left
discrimination and finger gnosis are strongly interdepen-
dent and even they can be interpreted as components of
the autotopagnosia syndrome. It seems, in consequence,
that there is a rationale for finding a common brain activ-
ity for finger gnosis, calculation, and right–left discrim-
ination (and, in general, spatial knowledge mediated by
language).

DEVELOPMENT OF CALCULATION
ABILITIES IN CHILDREN

During child development, different stages in the ac-
quisition of numerical knowledge are observed (Klein
and Starkey, 1987). They include global quantification,
recognition of small quantities, numeration, correspon-
dence construction, counting, and arithmetics (Table 6).
As mentioned, some fundamental numerical concepts can
be observed at the animal level and it is not surprising to
find them in small children. The initial levels of numer-
ical knowledge are found in preschool children. The de-
velopment of complex numerical concepts requires long
school training. Complex arithmetical concepts depend
upon a painstaking learning process, and they are not usu-
ally found in illiterate people. The different stages in the
acquisition of numerical concepts are associates with the
language, perceptual, and general cognitive development.
Variability is normally observed, and some children can be

Table 6. Different Levels of Numerical Knowledge (Adapted from
Klein and Starkey, 1987)

Global quantification What collection is bigger and smaller

Recognition small
quantities

Differentiate one, two, and three elements

Enumeration Sequencing the elements in a collection
Correspondence

construction
To compare collections

Counting A unique number name is paired with each
object

One–one principle Each object in a collection is to be paired
with one and only one number name

Stable order principle Each name is assigned to a permanent
ordinal position in the list

Cardinal principle The final number name used in a counting
sequence refers to the cardinal value of
the sequence

Arithmetics Number permutability (e.g., adding,
subtracting)

faster in the acquisition of numerical abilities. The differ-
ent stages appear in a sequential way, and the understand-
ing of more complex concepts requires the acquisition of
more basic levels. A percentage of otherwise normal chil-
dren can fail in using numerical concepts normally ex-
pected at their age. The termdevelopmental dyscalculia
has been used to refer to this group of underperforming
children.

Numerical Abilities in Preschool Children

Global quantificationor numerosity perceptionrep-
resents the most elementary quantification process. Global
quantification supposes the discrimination between col-
lections containing different number of objects (Davis
et al., 1985). Global quantification simply means what
set of elements is bigger and which one is smaller. Global
quantification is observed at the animal level: Many ani-
mals can select the larger collection of elements when they
have to choose. However, the ability to distinguish which
collection is larger depends upon the number of elements
in the collections. To distinguish 3 and 4 elements may be
easy (4 is 25% larger than 3). To distinguish 10 and 11 ele-
ments is obviously harder (11 is only 10% larger than 10).
By the same token, to distinguish 10 from 20 elements is
easy (the double), but to distinguish 100 from 110 is hard
(one tenth). It means, what is important is the ratio ex-
isting between the two collections of elements (so-called
psychophysics Weber’s fraction).

Global quantification is expressed in the language
with words such as “many,” “a lot,” and similar terms.
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For small quantities, the wordsseveral, a few, and similar
quantity adverbs are included in the language. Quantity
adverbs used in everyday speech represent global quan-
tifiers. Quantity adverbs appear early in language his-
tory and also in child language development than in the
numerical system. As mentioned previously, all known
world languages use global quantification and possess
words to refer to “many,” “a lot.” All languages op-
pose small quantities (one, two, a few) to “many,” “a
lot.” As a matter of fact, “many,” “much,” and simi-
lar global quantifiers represent early words in language
development.

Global quantification, however, does not represent
yet a truly numerical process, because it does not suppose
a one-to-one correspondence.Enumeration(sequencing
the elements in a collection of elements; this process sup-
poses the individualization of each element) represents
the most elementary type truly of numerical knowledge
(Klein and Starkey, 1987). Enumeration requires to dis-
tinguish the individual elements in the collection (‘this,
this, and this,” etc.). In child language development, the
most elementary distinction is between “this” and “other.”
“This” and “other” are also early words in child language
development.

Correspondence constructionconstitutes a type of
enumeration used to represent the number of objects in
a collection and to compare collections. The amount of
elements in a collection is matched with the amount of el-
ements in an external aid (fingers, pebbles, knots, strokes,
marks, dots, etc.). It implies, in consequence, a one-to-one
correspondence: Each one of the elements in the collection
corresponds to one finger or pebble, knot, stroke, mark,
dot, or whatever. An external device can be used for mak-
ing the correspondence construction. The most immediate
devices are the fingers. During enumeration usually the
fingers are used to point the objects.

Countingrepresents a sophisticated form of enumer-
ation: a unique number name is paired with each object in
a collection, and the final number name that is used stands
for the cardinal value of that collection. The initial object
corresponds to “one,” the following to “two,” and so on.
Some times, the very same finger name is used as number
name (i.e., the very same word is used for one and thumb,
two and index finger, etc.). The collection has the amount
of objects that corresponds to the last pointed object (car-
dinal principle). Arithmetics represents an advanced nu-
merical system, which comprises number permutability
(e.g., adding, subtracting).

Human infants are able to recognize numerosity for
small quantities (usually up to 3–6 items) (Antell and
Keating, 1983), but the ability to construct correspon-
dences emerges only during the child’s 2nd year (Langer,

1986). During the 2nd year the child also begins to use
some number names, and usually develops the ability
to correct counting up to 3. The child thus acquires the
knowledge of two basic principles in counting: (1) one-
to-one principle (i.e., each object in a collection is to
be paired with one and only one number name) and
(2) the stable order principle (each name is assigned to
a permanent ordinal position in the list; the sequence
of numbers is always the very same: one, two, three,
etc.). At this point, however, the child does not exhibit
yet a cardinal principle; that is, the final number name
used in a counting sequence refers to the cardinal value
of the sequence. If a collection is counted “one, two,
three,” it means that in that collection there are three ob-
jects (Klein and Starkey, 1987). Cardinal principle will
be observed in 3-year-old children (Gelman and Meck,
1983).

At this point, the child can count small quantities,
usually below 10. During this period the child is also learn-
ing how the numerical system works and memorizing the
number words. Most often, the numerical system contains
three different segments: (1) From 1 to 10 different words
are used. (2) From 10 to 20 counting becomes idiosyn-
cratic and quite frequently irregular. In English “11” has
not any apparent relationship with “1”; “12” has an ev-
ident relation with “2” but it is a unique word number;
from 13 to 19 the ending “teen” is used. In Spanish, from
11 (once) to 15 (quince) the endingce is used. From 15
to 19 the word numbers are formed as “ten and six,” “ten
and seven” and so on, 20 (veinte) has not any apparent
relation with 2 (dos). And (3) from 20 ahead the numer-
ical system becomes regular. Word numbers are formed
as “twenty and one,” “twenty and two,” and so on. Learn-
ing the whole numerical system usually is completed at
school.

Computational strategies (e.g., adding; if a new item
is included in a collection, the collection will become
larger and the next cardinal number name will be given
to that collection) are found in 3- to 5-year-old children,
initially only for small quantities.

Development of Numerical Abilities at School

Adding and subtracting numerical quantities and the
use of computational principles are observed during in
first–second-grade children, but they only become able
to manipulate the principles of multiplying and dividing
after a long and painstaking training period, usually during
third–fifth school grade.

Understanding that subtracting is the inverse oper-
ation of adding is usually acquired about 5–6 years. At
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this age the child begins to use three different procedures
for performing additions and subtractions: (1) counting
using the fingers, (2) counting aloud not using the fin-
gers, and (3) memorizing additions and subtractions for
small quantities (one plus one is two, two plus two is
four, two minus one is one, etc.). The last strategy be-
comes progressively stronger when advancing age and
schooling. Nonetheless, children continue using the fin-
ger for adding and subtracting larger quantities. From the
age of 10 until about 13 years, counting using the fin-
gers progressively disappears, but counting aloud, and
performing arithmetical operations aloud, remains. Au-
tomatic memory not only for additions and subtractions
but also for multiplications (multiplication tables) and di-
visions becomes progressively more important (Grafman,
1988; Siegler, 1987). As a matter of fact, adding and sub-
tracting one digit quantities (e.g., 7+ 5 = 12; 4+ 5 =
9; 8 – 5= 3; etc.) represents a type of numerical rote
learning, similar to the multiplication tables. Interesting
to note, the performance of arithmetical operations aloud
may remain during adulthood, even in highly educated
people.

It should be emphasized that there is a significant
variability in the specific strategies used by different chil-
dren at the same age. Furthermore, the very same child can
recur to different strategies when solving different arith-
metical problems. In some situation, for instance, the child
can recur to the fingers, whereas in a different operation,
he may not require using the fingers. Or, the child can be
able to use some multiplication tables whereas failing with
others.

About the age 8–9 usually the children learn to multi-
ply. This requires the memorization of the multiplication
tables. The errors most frequently found when learning
the multiplication tables are those answers that could be
correct for other number within the same series (e.g., 4
× 5= 16). These errors may be the result of some inter-
ference. They can be observed in children at any age, and
even they are sometimes found in normal adults (Graham,
1987).

Development of abstract reasoning and increase in
working memory span contribute to the use of mathemat-
ical algorithms (i.e., the set of rules used for solving arith-
metical problems following a minimal number of steps).
The development of algorithms begins when learning the
basic arithmetical operations. Progressively, they become
more automatic, representing basic strategies for solving
arithmetical problems. Development of abstract thinking
allows the use of magnitudes applied to different systems
(use of the numerical system in measuring time, temper-
ature, etc.) and the understanding of quantities expressed
in a symbolic way.

DEVELOPMENTAL DYSCALCULIA

The termdevelopmental dyscalculiarefers to a cog-
nitive disorder of childhood, impairing the normal ac-
quisition of arithmetical skills (American Psychiatric
Association, 1987). Frequently, dyscalculia has been used
as a general term encompassing all aspects of arithmeti-
cal difficulty (Shalev et al., 1988). The termDD has been
changed to Mathematics Disorder in theDSM-IV(Amer-
ican Psychiatric Association, 1994). However in the neu-
ropsychology literature the termDD remains. It is esti-
mated that approximately 6% of school-age children in the
United States suffer from this disorder (Grafman, 1988;
Gross-Tsur et al., 1996). The prevalence of the disorder is
difficult to establish because it is frequently found in com-
bination with other developmental disorders (American
Psychiatric Association, 1994). Gross-Tsur et al. (1996)
observed that 17% of the children with DD were diag-
nosed with dyslexia and 25% had ADHD-like symptoms.
It is estimated that 1% of the school-age children have DD
alone (American Psychiatric Association, 1994). DD is a
disorder frequently encountered in children with epilepsy
(Seidenberg et al., 1986) and in girls with sex chromosome
abnormalities such as Turner’s syndrome (Gross-Tsur
et al., 1996).

Gender distribution has been controversial. Some-
times it is assumed that it is more frequent in boys, whereas
some authors consider that DD tends to affect both sexes
equally. Equal ratios between the sexes for arithmetical
difficulties have been reported by Lewis et al. (1994) and
Gross-Tsur et al. (1996). In Gross-Tsur et al., the ratio of
girls to boys was 11:10.

The origin of DD has not been established. Some re-
searchers considered DD to be a genetically determined
brain-based disorder (Rourke, 1989). However some have
hypothesized that the child’s environment and social con-
text are causal for mathematical disorders (Fergusson
et al., 1990). In acalculia (acquired dyscalculia), contrary
to DD, the mathematical disorder is consequence of a well-
known cerebral lesion. The cognitive processes dysfunc-
tion that underlie the two defects could, however, be the
same ones, because the types of errors that people present
with either of the two-dyscalculia types, are similar.

Neuropsychological Characteristics

Children with DD can fail in a whole array of nu-
merical tasks including performing arithmetical operation,
solving arithmetical problems, and using numerical rea-
soning. According to Strang and Rourke (1985), the er-
rors found in children with dyscalculia can be classified
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Table 7. Errors Most Frequently Found in Children with DD (Adapted
from Strang and Rourke, 1985)

Error Characteristics

Spatial Difficulties in placing numbers in columns,
following appropriate directionality of the
procedure, v. gr., to subtract the substrand from
the minuend

Visual Difficulties in reading arithmetic signs, forgetting
the points of the units of thousand, etc.

Procedural Omission or addition of a step of the arithmetical
procedure, and application of a learned rule for
a procedure to a different one, v. gr., 75+ 8=
163, an operation in which the multiplication
rule is applied in the sum

Graphomotor Difficulty in forming the appropriate numbers.
Judgment Errors that imply impossible results, such as one

in which the result of subtracting is bigger than
the numbers being subtracted

Memory Problems in the recall of multiplication tables or
arithmetical procedures

Perseveration Difficulty in changing from one task to another
one, repetition of the same number

into seven categories: (1) errors in spatial organization of
quantities, (2) errors in visual attention, (3) arithmetical
procedural errors, (4) graphic motor errors when writing
quantities, (5) numerical judgment and reasoning errors,
(6) memory errors for quantities, and (7) preserveration in
solving arithmetical operations and numerical problems.
Table 7 describes the characteristics of the most frequent
types of errors found in children with DD.

Kosc (1970) described six types of difficulties ob-
served in DD: (1) problems in verbal organization of num-
bers and mathematical procedures, (2) difficulties in the
management of mathematical symbols or objects, (3) er-
rors in reading numbers, (4) errors in writing numbers, (5)
difficulties in the understanding of mathematical ideas,
and (6) in the carrying over when performing arithmetical
operations. Students with dyscalculia may present a clus-
ter of problems in their ability to perform mathematical
tasks.

It is unclear what arithmetical function is impaired in
children with DD. Shalev et al. (1988) studied the arith-
metical errors found in 11 children with dyscalculia and 10
matched control children. No differences were observed
in number comprehension (matching numbers to quanti-
ties, appreciation of relative quantity, numerical rules, and
serial order) and number production (counting, reading,
and writing numbers) scores. But significant differences
emerged in the performance of fact retrieval, addition, sub-
traction, multiplication, and division scores. The group
with DD had difficulty in fact retrieval but could show that
they knew how to calculate by using finger counting and

other appropriate strategies. Cohen (1971) has proposed
that short-memory difficulties explain the incompetence
in arithmetics of children with DD. In fact, the inability
to carry and recall number tables may be the result of
memory deficits (Shalev et al., 1988). Davis et al. (1992)
suggest a sequential processing deficit as the underlining
deficit of DD.

In addition to memory deficits, children with DD
present attentional difficulties. The association between
attentional problems and dyscalculia has been well doc-
umented. Badian (1983) described attentional–sequential
problems in 42% of the children with DD. More recently,
Shalev et al. (1995a,b) demonstrated the presence of at-
tention deficit disorder symptoms in 32% of the dyscalcu-
lia sample studied. Equally children with attention deficit
syndrome with or without hyperactivity make mathemat-
ical errors secondary to impulsiveness and inattention
(Sokol et al., 1994).

Rosenberger (1989) found that visual–perceptual and
attention disorders were evident in children who had spe-
cific difficulties in mathematics. Strang and Rourke (1985)
not only corroborated the presence of significant diffi-
culties in visual–perceptual organization in children with
dyscalculia, but also described difficulties in other neu-
ropsychological tasks. These children manifested difficul-
ties in the tactile analysis of objects, particularly with the
left hand, as well as impairments in the interpretation of
facial and emotional expressions (Rourke, 1987). Chil-
dren with dyscalculia also present an inadequate prosody
in verbal language (Rourke, 1988), and difficulties in the
interpretation of nonverbal events (Loveland et al., 1990).
These neuropsychological findings have suggested the
presence of a functional immaturity of the right hemi-
sphere as a structural fact underlying dyscalculia.

Hernadek and Rourke (1994) described the disorder
of nonverbal learning associated with a dysfunction of the
right hemisphere and characterized by visuospatial diffi-
culties, visuomotor coordination and reasoning problems,
defects in concept formation and in mathematical skills.
This disorder has also been known as developmental right-
hemisphere syndrome (Gross-Tsur et al., 1995; Weintraub
and Mesulam, 1983). The children with nonverbal learn-
ing disorder also present defects in the recognition of
faces and of emotional expressions and poor adaptation to
novel social situations. In accordance with Hernadek and
Rourke, children with dyscalculia associated with the dis-
order of nonverbal learning can be distinguished clearly
from children with dyscalculia associated with reading
disorder. In the later group, problems are manifested in
the performance of language recognition tasks whereas
performance in tactile and visual perception tasks is well
preserved. Gross-Tsur et al. (1995) describe the clinical
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characteristics of 20 children with the nonverbal learn-
ing disability disorder. Dyscalculia was the most frequent
encountered scholastic problem.

Although an evident association exists between
dyscalculia and dyslexia, different underlying cognitive
explanations have been suggested for the two disorders.
Rosenberger (1989) found that those children with dif-
ficulties in mathematics present more evident visuospa-
tial and attentional dysfunctions. These children obtained
lower scores in visuomotor tests, for example, in the
Bender Visuomotor Gestalt Test, and in the digit–symbol
subtest of Wechsler Intelligence Scale, than did a group of
children with specific difficulties in reading. The authors
postulate that visuomotor and visuospatial execution and
organization defects can distinguish children with dyscal-
culia from children with dyslexia. Not all researchers,
however, have supported this distinction between children
with DD and children with dyslexia. Rasanen and Ahonen
(1995) have suggested functional communality between
dyslexia and dyscalculia. They found that reading accu-
racy and reading speed correlate with the number of errors
in arithmetical operations, particularly in multiplication.
The authors concluded that difficulties in visuoverbal rep-
resentations might explain both reading and mathematical
disorders.

Some authors consider that DD does not appear
like an isolated manifestation of cerebral dysfunction,
but as part of a syndrome called Gerstmann syndrome.
This syndrome is composed of the tetrad of dyscalcu-
lia, digital agnosia, dysgraphia, and left–right disorien-
tation. This syndrome is found in skillful adults as a
result of lesions in the left parietal lobe, but has been
described in children with specific learning disabili-
ties, and has been given the name of developmental
Gerstmann syndrome (DGS). Children with DGS present
intact language skills, and reading is usually at the normal
grade level (PeBenito et al., 1988). However, Croxen and
Lytton (1971) found that more children who are slow read-
ers had difficulties with finger recognition and right–left
discrimination.

Gerstmann syndrome may occur in children with
brain damage or in children who are apparently normal.
Gerstmann syndrome in brain damage children is usually
associated with multiple symptoms, such as hyperactiv-
ity, short attention span, lower intellectual performance,
and poor reading. This group accounts for most of the re-
ported Gerstmann syndrome in children (Kinsbourne and
Warrington, 1963; PeBenito et al., 1988; Pirozzolo and
Payner, 1978). The nature of the neurological disorder in
these cases is usually diffuse and bilateral. DGS, on the
other hand, seems to be relatively common among individ-
uals with fragile X syndrome (Grigsby et al., 1987). Few

cases of DGS in otherwise normal children, however, have
been described (Benson and Geschwind, 1970; PeBenito,
1987), and the syndrome may represent a delayed cerebral
maturation (PeBenito et al., 1988).

Besides dyslexic children, those children with emo-
tional problems can also fail easily in tasks that demand
high attention levels such as in the case of mathematics.
Problems in the emotional domain are recurrently men-
tioned in the context of arithmetical disabilities (Shalev
et al., 1995a,b). Withdrawal and social problems have been
noted in children with DD (Rourke, 1989).

In summary, children with DD can fail in a whole
array of numerical and arithmetical tasks. Errors found in
these children are of spatial organization, visual attention,
procedural, motor, judgment, reasoning, and memory. DD
is commonly associated with reading dysfunctions, atten-
tion disorders, and emotional difficulties. The involvement
of one or both cerebral hemispheres in dyscalculia is still
controversial.

Subtypes

DD is not a uniformed disorder. Children with DD
can manifest an array of different numerical errors, and
there are variations in terms of the type of dyscalculia and
the severity of the disorder (Grafman, 1988). Different
subtypes of DD have been proposed.

Kosc (1970) describes six dyscalculia subtypes char-
acterized by difficulties in (1) the verbalization of terms
and mathematical relationships, (2) the handling of sym-
bols/mathematical objects, (3) the reading of numbers, (4)
the writing of numbers, (5) the comprehension of mathe-
matical ideas, and (6) the ability for “carry” in arithmetical
operations.

Badian (1983) finds in children with DD a high
frequency of spatial numerical difficulties, developmen-
tal anarithmetia (primary difficulties in calculating), and
attentional–sequential defects, but very few cases of
dyslexia and dysgraphia for numbers. Geary (1993) in-
tended to classify dyscalculia in three groups based in
three types of errors: (1) visuospatial, (2) semantic mem-
ory, and (3) procedural. Two types of developmental
dysacalculias have been recognized by Rourke (1993):
(1) dyscalculia associated with language problems
(dyslexia), defects in the understanding of instructions
and verbal problems, and reduction in the capacity of ver-
bal memory; and (2) dyscalculia associated to spatial–
temporal difficulties, with sequence problems and rever-
sion of numbers (Spreen et al., 1995). The dichotomy
between fundamental visuospatial dyscalculia indicative
of right hemispheric dysfunction and another fundamental



Neuropsychology Review pp628-nerv-452511 November 23, 2002 8:23 Style file version sep 03, 2002

Acalculia and Dyscalculia 193

dyslexic dyscalculia, suggestive of left hemispheric dys-
function, has not been corroborated by other authors (e.g.,
Shalev et al., 1995a,b; Sokol et al., 1994). It is frequent
to find that those children with difficulties in reading and
writing also present defects in learning arithmetics. For
the child with learning difficulties, the achievement of
a mathematical problem becomes a task more difficult
than reading, because the change of a single digit alters
the result of the operation completely. Additionally, the
achievement of any mathematical problem, even the sim-
plest, demands the pursuit of certain systematic steps that
can be a high-level difficult task for a child with dyslexia.

The prevalence of some right hemisphere dysfunc-
tion in DD has been recently reanalyzed. Shalev et al.
(1995a,b) studied a group of children with DD and neu-
ropsychological profiles suggestive of right or left hemi-
spheric dysfunction. They analyzed the types of errors in
each group, and correlated the scores of hemispheric later-
alization with the results in tests of mathematics. Contrary
to that proposed by Rourke et al., the children with suppos-
edly dysfunction of the left hemisphere presented a sig-
nificantly larger number of visuospatial errors and more
notorious difficulty for the achievement of arithmetical
operations that the group with right neuropsychological
dysfunction. The authors did not find differences in the
profile of errors of each group, neither a correlation be-
tween the hemispheric dysfunction and the type of errors
in mathematics tests. Despite the fact that Shalev et al.’s
data indicates that arithmetical impairments are more se-
vere in cases of DD associated with left hemisphere dys-
function, their conclusion is that there is a participation
of both cerebral hemispheres the arithmetical processes
(Shalve et al., 1995b).

PROCESSES INVOLVED IN ARITHMETICAL
OPERATIONS

Numerical handling represents a language that in-
volves a system of symbols. This system of symbols im-
plicated in calculations can be divided into two groups: (1)
a logographic system including Arabic numbers from 0 to
9, and (2) a phonographic system that provides the verbal
name to numbers; for example, “one,” “nine.” The perfor-
mance of a given arithmetical operation begins with the
numerical recognition, which depends on a verbal process
and perceptual recognition: number–symbol or symbol–
number. Each number provides two types of information.
On the one hand the base group to which the number
belongs (units, dozens, hundreds), and on the other, the
ordinal position of the number inside the base. Thus, the
number 5 belongs to the units and occupies the fifth place
inside them. The successful performance of an arithmeti-

cal operation demands visuospatial discrimination ability
to organize the numbers in columns, to arrange the appro-
priate spaces among numbers, and to begin the operation
from right to left. The working memory, or operative mem-
ory, associated with sustained attention, obviously plays
a central role in the performance of any arithmetical op-
eration. The algorithmic plan of action that unchains the
numerical symbol in a particular arithmetical operation
is evoked, or recovered from previous learnings whose
engrams are found in long-term memory (Boller and
Grafman, 1985). The stages of the necessary cognitive
process for the achievement of an arithmetical operation
can be observed in a simple example: 34+ 26= 60.

When this operation is presented to a person, in the
first place they have to perceive the spatial organization of
the quantities, the relationship amongst themselves, un-
derstand the meaning of the “plus” (+) symbol, recognize
the numerical symbols, and to know the steps that should
be followed to carry out adding appropriately. The sum of
the numbers 6 and 4 is automated, and the only answer that
needs attention is the number 10. If the operation is not
automated, the individual can use the controlled process
of count. The number 10 should be maintained in mem-
ory whereas the zero is placed in the right column, and the
unit 1 is taken and conserved in the short-term memory
(mentally), or written on the following column. The same
process is continued for the following column. The infor-
mation that is stored in the long-term memory seems to
correspond to two types: (1) syntactic information, that is,
the knowledge of the rules of the numerical procedures,
and (2) semantic information (i.e., the comprehension of
the meaning of the procedures implied in the solution of
particular problems). When the problems are solved using
automatic codes, semantic reasoning is not required.

In performing an arithmetical operation, two differ-
ent cognitive systems should be distinguished: the proces-
sor of numbers and the operating system of calculation.
Additionally, during the processing of numbers it is nec-
essary to distinguish between the comprehension and the
production of numbers, and in each one of these subpro-
cesses, in turn, it is necessary to consider the presence
of a double code (verbal and numerical) and of a dou-
ble analysis (lexical and syntactic). To process quantities
in Arabic numbers, for example, “823,” or numbers in
verbal codes, “eight hundred twenty-three,” demands a
lexical analysis (comprehension and production of the in-
dividual elements) and a syntactic analysis (processing of
the relationships among the elements).

McCloskey et al. (1985) and McCloskey and
Caramazza (1987) focused on a detailed analysis of the
calculation system. They proposed a cognitive model
of the numerical processing on the basis of three basic
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Fig. 1. Schematic representation of the number comprehension, number production, and calculation system (adapted fromCaramazza and
McCloskey, 1987; Levin et al., 1993).

abilities: understanding of a number, production of a
number, and processing of the mathematical procedures.
The category of understanding of the number (input)
includes the understanding of quantities, of the symbolic
character of those quantities (lexical processing), and of
the order of the digits (syntactic processing). Inside the
numerical production (output) count is found, and the
reading and the writing of numbers. The two subsystems,
number comprehension and number production, include
the verbal system (written or spoken words, e.g., “thirty”)
and the Arabic system (element of a number, e.g., 30).
These subsystems are illustrated in Fig. 1. The verbal
system is the lexical processing mechanism. Three are the
mechanisms included inside the calculation system. The
first one is the recognition of the arithmetical symbols,
the second and the third ones are the understanding,
memorization, and execution of the arithmetical facts
(i.e., table facts, such as 2× 3), and arithmetical proce-
dures (i.e., when performing an addition, start at the right
most column, sum the right most digits, write down the
ones, carry the tens, etc.) (Hittmair-Delazer et al., 1995;
Sokol et al., 1994). Arithmetical facts are retrieved from a
semantic network system independently from calculation
procedures. The calculation procedures are the sequence
of steps necessary to perform multidigit operations.
Although both components are learned, their functional
independence has been demonstrated by several authors
(McCloskey et al., 1985, 1991a,b; Sokol et al., 1994; Sokol
et al., 1991; Warrington, 1982). Hittmair-Delazer
et al. (1995) have pointed out that conceptual knowledge
plays a crucial role in arithmetical processing, frequently
neglected in the neuropsychology models of calculation.
Hittmair et al. refer to conceptual knowledge as the
understanding and use of arithmetical principles (i.e.,

principle of communality). They demonstrated, in a
case study design, that conceptual knowledge can be
dissociated from arithmetical fact and procedures. They
found impaired fact retrieval with intact processing of
arithmetical principles and problems. This selective
vulnerability of arithmetical facts had been demon-
strated before by Warrington (1982) and McCloskey
et al. (1985). Arithmetical facts represent a separate subset
of the semantic memory and may also dissociate from
other mathematical and numerical knowledge (Hittmair-
Delazer et al., 1995). Dissociations, according to the
specific arithmetical operations, have also been reported.
For example, patients with severe addition difficulties and
selective preservation of subtraction have been reported
(Dagenbach and McCloskey, 1992; McNeil and
Warrington, 1994).

Using a cognitive neuropsychology perspective,
McCloskey et al. (1985, 1986) have described different
forms of acquired acalculia. They distinguished between
disorders of number processing (reading, writing, pro-
duction, comprehension, or repetition of numbers) and
disorders of calculation (number facts, knowledge of
procedures).

Caramazza and McCloskey’s model has been applied
to the acquisition of mathematical abilities in preschool
children and to the study of DD (Sokol et al., 1994). An
specific impairment in number processing has been de-
scribed in a child with DD (Temple, 1989). This child had
a selective impairment in the lexical processes of reading
Arabic numbers with intact syntactic processes. Temple
(1991) also reports two cases of DD in which an accu-
rate number processing skill had been developed. How-
ever, one of the cases showed a selective difficulty with
the procedures of calculation, and the other one showed a
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selective disorder in mastery of those arithmetical facts
that comprised the multiplication tables. Sokol et al.
(1994) studied the range of functional dissociations pre-
dicted by McCloskey et al.’s cognitive model in 20 stu-
dents with DD. Their results supported the usefulness of
the model to understand DD.

The modules delineated by McCloskey et al. (1985,
1986) may be also separable during the normal develop-
ment of calculation abilities. Children are considered to
have considerable conceptual knowledge before they ac-
quire automaticity in number processing and calculation
processes (Hittmair-Delazer et al., 1995). For example,
children know counting principles before they count cor-
rectly (Gelman and Meck, 1983), and they can judge arith-
metical transformations correctly before they can perform
them (Starkey, 1992).

Cerebral Mechanisms

The appropriate solution of a numerical problem de-
mands verbal, spatial, and conceptual abilities that very
probably require of the active participation of numerous
cerebral structures. It has been suggested, however, that
the central neural mechanisms implied in the recogni-
tion of numbers seem to be different to those that par-
ticipate in the solution of arithmetical problems as such
mechanisms can be altered differentially in cases of cere-
bral focal damage. A patient can present difficulties in
the recognition of numbers with appropriate conserva-
tion of the ability to carry out arithmetical operations.
Additionally, the handling of numbers can be dissociated
alternating independently from the numerical production
and conserving their understanding (Benson and Denckla,
1969). McCloskey and Caramazza (1987) describe, as a
consequence of localized cerebral damage, a dissociation
between the capacity to understand and the capacity to
produce numbers. Evidence of selective alterations exists
for the processing of Arabic numbers and the processing
of lexical numbers (Ardila and Rosselli, 1990; Deloche
and Seron, 1987; Rosselli and Ardila, 1989). Similar dis-
sociations have been described between the lexical and
syntactic processing of verbal numbers and that of Arabic
numbers (Caramazza and McCloskey, 1987). An example
of a lexical mathematics error would be to represent two
hundred twenty-one as “215,” whereas the representation
of five thousand six hundred as “50006” would be an error
of mathematics syntax.

Moreover, Ferro and Botelho (1980) and Caramazza
and McCloskey (1987) have observed patients with a
defect exclusively in the analysis of mathematics signs.
Warrington (1982) describes dissociations between the
ability to develop simple arithmetical operations and arith-

metical problems. Hittmair-Delazer et al. (1995) describe
a patient that presented great difficulty in carrying out
arithmetical operations despite having the appropriate
knowledge of arithmetical principles. These dissociations
among diverse mathematical components suggest a func-
tional independence of each one of them.

The functional independence of the diverse math-
ematical components has been corroborated for the
analysis of the errors of numerical count in patients
with cerebral damage. Lesions in diverse parts of the
cerebral cortex originate different errors (Rosselli and
Ardila, 1989). Some patients can present difficulties
in “carrying” quantities, others in the placement of the
appropriate numbers, and in other patients the difficulty
to execute arithmetical operations one can observe in the
combination of the two procedures.

The studies of the alterations of number count in pa-
tient with cerebral damage have demonstrated that lesions
in either of the two cerebral hemispheres can produce acal-
culia, although of different characteristics. The lesions in
the areas of language in the left cerebral hemisphere pro-
duce alterations in the comprehension and in the produc-
tion of numbers, and therefore in carrying out the arith-
metical operations. On the contrary, the lesions in the right
cerebral hemisphere cause alterations in the spatial orga-
nization quantities and in the comprehension and achieve-
ment of abstract problems (Ardila and Rosselli, 1990;
Rosselli and Ardila, 1989). The experimental studies with
dichotic audition and the tachistoscopic presentation of
visual information support the participation of the two
cerebral hemispheres in carrying out arithmetical prob-
lems (Grafman, 1988; Holender and Peereman, 1987).

CALCULATION ABILITIES
IN NORMAL POPULATIONS

Few neuropsychological studies have approached the
question of calculation abilities in the general population.
Intuitive observation points to a significant dispersion of
arithmetical abilities in normal people. Usually, however,
it is assumed that any normal person should be able to tell
one-digit multiplication tables, to use the four basic arith-
metical operations, to solve simple arithmetical problems,
to memorize seven digits after a single presentation, and
to use diverse numerical information in the everyday life.
Nonetheless, normative studies are scarce.

Normative Studies

Deloche et al. (1994) developed a standardized test-
ing battery for the evaluation of brain-damaged adults in
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the area of calculation and number processing. With the
purpose of obtaining some norms, the battery was admin-
istered to 180 participants stratified by education (up to
9 years of formal education, 10 or 11 years, and more
than 11 years), age (20–39 years, 40–59 years, and 60–69
years) and gender. This battery, named as EC301, includes
three notational systems for numbers: Arabic digits, writ-
ten verbal forms, and spoken verbal forms.

Analysis of error rates indicated the effect of some
demographic factors, principally, education (in counting,
transcoding, written verbal numbers, magnitude compar-
isons, and arithmetical operations subtests); incidentally,
gender (in digit numbers, and total mental calculations
scores). No age effect is mentioned in the age range in-
cluded in this study (20–69 years).

In the normative study, 88% of the participants pre-
sented at least one error in the EC301 test battery. The
easiest subtest turned out to be “reading and writing arith-
metical signs”; this subtest was failed by only 1% of the
total participant sample. The hardest subtest was “writ-
ten multiplication”; in this subtest 36% of the partci-
pants presented at least one error. So, errors were com-
mon in normal participants, but level of difficulty was
variable.

The educational effect deserves some comments. The
lowest educational group was “equal or below 9 years,”
but observing the mean educational level and the stan-
dard deviation, seemingly, all the participants in this group
had 8–9 years of education (the mean education for this
groups was 8.40, and the standard deviation was 0.50).
So, as a matter of fact, the whole sample had at least 8
years of education. Nonetheless, a significant educational
effect was observed in several tasks. It can be conjectured
that if they had included participants with an even lower
educational level, the education effect would be stronger
and may have appeared in a larger amount of calculation
subtests.

The gender effect was demonstrated only in Task 6
(Mental calculation) in the Arabic digit condition and in
the total score. Males performed better than females. Sur-
prisingly, no age effect was found in any of the subtests.
It can be assumed that calculation abilities, at least for
simple tasks, remain relatively stable up to the 1960s. A
decline in calculation abilities would be evident only after
the age of 70 years.

Ardila et al. (1998) analyzed the calculation abili-
ties in a normal population sample composed exclusively
of young people with a high level of education. A com-
prehensive neuropsychological test battery was assembled
and individually administered to a 300-participant sample,
aged 17–25 years. All of them were right-handed male
university students. The battery included some basic psy-

Table 8. Performance of 300 Normal University Students in Some
Calculation Tests (Adapted from Ardila et al., 1998a)

Test M SD Range

WAIS: Arithmetic
(scaled score)

11.8 7.7 3–8

Digits (scaled score) 11.6 2.2 5–17
Mental arithmetics

(maximum score 8)
5.3 1.9 0–8

Arithmetical problems
(maximum score 16)

9.5 3.2 1–16

chological and neuropsychological tests directed to assess
not only calculation abilities, but also language, memory,
perceptual abilities, concept formation, and praxis abili-
ties. Two arithmetical tests were used: (1) mental arith-
metical operations (two additions, two subtractions, two
multiplications, and two divisions). Maximum possible
score was 8 points (1 point for each correct answer). And
(2) arithmetical problems. Sixteen arithmetical problems
were orally presented. The participants were allowed to
use pencil and paper if so wanted. Maximum possible
score was 16 points (1 point for each correct answer). In
addition, two WAIS scores were analyzed: Arithmetic and
Digits subtests. Thus, in total four calculation ability tests
were considered. Means, standard deviations, and ranges
are presented in Table 8. Noteworthy, a very significant
dispersion was observed in the scores. Some university
students were unable to solve mentally even a single ad-
dition. Other participants had a virtually perfect perfor-
mance.

Ostrosky et al. (1997) selected 800 normal popula-
tion participants in five different states of the Mexican
Republic. The obtained sample included 665 participants
(83.12%) from urban areas, and 135 participants (16.88%)
from rural areas. Ages ranged from 16 to 85 years (mean
age= 47.77;SD= 20.14). Education ranged from 0 to
24 years (mean education= 6.8; SD= 6.1). Fifty-two
percent of the sample was women. Ninety-five percent
of the sample was right-handed. Four age groups were
formed: (1) 16–30 years, (2) 31–50 years, (3) 51–65 years,
and (4) 66–85 years. In addition, each age group was di-
vided into four different educational levels: (1) illiterates
(0 years of education), (2) 1–4 years of education; (3)
5–9 years of education, and (4) 10–24 years of formal
education. The NEUROPSI neuropsychological test bat-
tery (Ostrosky et al., 1997) was individually administered.
It includes three items related with calculation abilities:
(1) Digits backward, up to six digits (maximum score=
6 points), (2) serial 3 subtraction from 20 to 5 (maxi-
mum score= 5), and (3) Calculation Abilities subtest. In
this subtest, three very simple arithmetical problems to
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Table 9. Means and Standard Deviations Found in the Different NEUROPSI Neuropsychological Tests (n 800)
(Adapted from Ostrosky et al., 1997)

Test 16–30 years 31–50 years 51–65 years 66–85 years Maximum score

Illiterates
Digits backward 2.2 (1.1) 2.8 (1.1) 2.9 (1.0) 2.7 (0.9) 6
20 minus 3 2.2 (1.6) 3.8 (1.5) 3.1 (1.8) 2.9 (1.8) 5
Calculation abilities 1.0 (1.1) 1.4 (1.1) 1.6 (1.1) 0.9 (1.1) 3

One to four years of education
Digits backward 2.6 (1.0) 2.7 (0.7) 3.0 (1.0) 2.8 (0.8) 6
20 minus 3 3.5 (1.6) 3.6 (1.4) 4.3 (1.3) 4.4 (0.9) 5
Calculation abilities 1.3 (1.1) 1.5 (1.1) 1.6 (1.1) 2.0 (0.9) 3

Five to nine years of education
Digits backward 3.4 (0.7) 3.4 (1.2) 3.6 (0.8) 3.4 (0.8) 6
20 minus 3 4.3 (1.3) 4.6 (0.6) 4.4 (0.9) 4.6 (0.2) 5
Calculation abilities 2.3 (0.8) 2.4 (0.6) 2.5 (0.6) 2.3 (0.9) 3

Ten to 24 years of education
Digits backward 4.3 (0.9) 4.4 (0.9) 4.0 (0.9) 3.9 (1.0) 6
20 minus 3 4.7 (0.8) 4.7 (0.7) 4.9 (0.4) 4.8 (0.6) 5
Calculation abilities 2.6 (0.6) 2.6 (0.7) 2.7 (0.6) 2.5 (0.8) 3

be mentally solved are presented (“How much is 13+
15”; “John had 12 pesos, received 9 and spent 4. How
much does he have”; and “How many oranges are there in
two and half dozens”) (maximum score= 3). Normative
results are presented in Table 9. It is observed that in gen-
eral scores increase with educational level and decrease
with age. It is interesting to note that the highest scores,
particularly in the illiterate group, are obtained not in the
youngest group (16–30 years) but in the second age group
(31–50 years). Despite representing a very easy calcula-
tion test, even some people with relatively high education
failed some points. This observation emphasizes the sig-
nificant dispersion in calculation abilities found in normal
populations.

Educational effect presented a very robust effect
(Table 10). In the highest educational group, scores in the
three subtests are about the double those in the illiterate
group. Age effect, however, was notoriously weaker and
was observed only in the second subtest (20 minus 3). Most
important, even though people up to 85-year-old were in-

Table 10. F Values for Education and Age Variables, and Interactions
Between Education and Agea

Test Education (E) Age (A) E× A

Attention: digits backward 108.00*** 1.85 2.09
20 minus 3 63.46*** 6.27*** 3.37***
Calculation abilities 95.57*** 3.21 2.60

aLevels of significance are pointed out (adapted from Ostrosky et al.,
1997).
*** p < .0001.

cluded in this study, the age effect in this subtest cannot
be interpreted as a score decrease associated with age. In
all the educational groups, performance in the oldest par-
ticipants was higher than that in the youngest participants.
The age effect simply means that the performance in this
subtest was associated with the participant’s age. Scores
tended to increase up to the 50s, and further remained
stable or presented a very mild decrease.

In conclusion, (1) calculation abilities present a very
significant dispersion in the general normal population.
(2) Even very simple arithmetical tasks are failed by a per-
centage of the normal population, including people with
a high educational level. (3) Educational effect represents
a robust effect in calculation tests. Lowest performance
is observed in illiterate people. Interestingly, difficulties
are observed not only in school-trained arithmetical abili-
ties (e.g., arithmetical operations), but also in nondirectly
school-trained numerical abilities, such as repeating digits
backward. (4) Age effect is notoriously weaker than edu-
cational effect. In the range 20–69 no age effect is readily
demonstrated (Deloche et al., 1994). Including people up
to 85 and illiterate people, the age effect was disclosed
only in some numerical tests, such as mentally subtract-
ing 3 from 20. But the age effect cannot be interpreted
as a score decrease associated with age, but rather as a
tendency to score increase up to the 50s. Further, scores
may remain stable or slightly decrease. And (5) there is
a gender effect in calculation abilities demonstrated in
tests such as mental calculation and solving simple nu-
merical problems. Curiously, this gender effect is stronger
in people with high educational level and weaker in
illiterates.
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Cultural and Educational Variables
in Calculation Abilities

Some studies have approached the analysis of calcu-
lation abilities in different cultural contexts and in people
with different educational backgrounds (e.g., Cauty, 1984;
Grafman and Boller, 1987; Levy-Bruhl, 1947). Rosin
(1973) analyzed the way in which illiterates perform arith-
metical tasks. It was observed that calculation was labo-
rious and strongly relied in memorizing each step. For
counting, fingers were used with large numbers requir-
ing representing the hands. Often, doubling and halving
the figures were used for arithmetical operations (as ob-
served in the initial Egyptian division and multiplication
systems). For actual trading and marketing, the operations
could be initially performed visually using physical enti-
ties, and the results retained in memory.

Posner (1982) analyzed the development of mathe-
matical concepts in West African children aged 5–10. A
mild effect of experiential factors on the ability to judge the
magnitude of numerical quantities was observed; counting
was noted in all children, usually relying on size cues for
small qualities. To perform even simple arithmetical op-
erations and to solve numerical problems was particularly
difficult.

Casual observation of illiterates discloses that they
can use simple numerical concepts and they easily han-
dle money in daily activities (at least in a country such
as Colombia, where bills of different value have different
colors, albeit, not different sizes). Illiterates readily rec-
ognize the “bigger” and “smaller” bill, and can perform
simple computations (e.g., a 5000-peso bill is equivalent
to two 2000-peso bills plus one 1000-peso bill). However,
to perform subtractions is particularly painstaking, and il-
literates easily get confused (e.g., when shopping). They
usually cannot multiply or divide, excepting by 10 (e.g.,
3, 30, 300, etc.), and two, doubling and halving figures
(e.g., 200, 100, 50, etc.). This frequent ability to multiply
and divide by 10 and 2 is used to perform simple arith-
metical operations. Illiterates also use a very important
amount of everyday numerical facts: dates (e.g., “today is
April 5, 1999”), time (e.g., “I work eight hours a day: from
8 AM to 4PM”; “I am 52 years old”), weight (e.g., “the cow
weights 350 kg”), distance measures (e.g., “from my house
to the park there are five blocks”), and so on. Illiterates
can also use simple fractions (e.g., half, quarter, tenth).
In brief, illiterates can develop some calculation abilities
(i.e., counting, magnitude estimation, simple adding and
subtracting). More complex arithmetical skills evidently
benefit and depend on schooling. Noteworthy for illiterate
people it is notoriously easier to perform concrete math-
ematical operations than abstract arithmetical operations.

In other words, for the illiterate person it is notoriously
easier to solve the operation “If you go to the market and
initially buy 12 tomatoes and place them in a bag. Later
on you decide to buy 15 additional tomatoes. How many
tomatoes will you have in the bag?” than the operation:
“How much is 12+ plus 15?”

Grafman and Boller (1987) proposed that some arith-
metical skills appear genetically linked (e.g., equivalence
or certain counting skills), and some are educational linked
(e.g., arithmetical calculation and the “tool” used to cal-
culate: fingers, abacus, calculator, computer, or the brain).
It is reasonable to expect that some basic numerical strate-
gies will be found in different cultural groups. The best
example is the use of fingers in counting.

Gender Differences in Calculation Abilities

Gender differences in calculation abilities have been
recognized since long time ago (see Halperin, 1992). It is
usually accepted that men outperform females not only in
calculation tasks, but also in those tests requiring spatial
manipulation. On the quantitative portion of the Scholas-
tic Aptitude Test (SAT-M) there is a difference of about
50 points between males and females (National Educa-
tion Association, 1989). SAT is a highly standardized test,
which is administered nationally to college-bound high
school seniors in the United States.

To account for these gender differences, however, has
been quite polemic (McGlone, 1980). As mentioned pre-
viously, gender differences may be evident even in simple
arithmetical operations and in solving arithmetical prob-
lems. Gender differences, nonetheless, are not found in all
mathematical tests. Stones et al. (1982) analyzed gender
differences at 10 different colleges. Ten different math-
ematical ability tests were administered. Gender differ-
ences were found in some individual tests. Females scored
significantly higher on tests of mathematical sentences
and mathematical reasoning, perhaps reflecting the use of
verbal strategies in solving these problems. Males scored
significantly higher than females in geometry, measure-
ment, probability, and statistics, perhaps reflecting the use
of visual–spatial strategies in these areas. Thus, the gender
effect is not a homogenous effect, but varies according to
the specific calculation tasks. Sometimes, the inverse pat-
tern (females outperforming males) can be observed.

Gender differences are observed not only in nor-
mal but also in special populations. DD may be
more frequent in boys than in girls. Gender differ-
ences are also found in mathematically gifted chil-
dren (Bensbow, 1988). There is a significantly higher
percentage of males than females in mathematically gifted
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Table 11. F Values and Level of Significance for the Gender Differences in the Four Educational Groups
Found in the Three Numerical Items of the NEUROPSI Neuropsychological Test Battery (n= 800) (Adapted

from Ostrosky et al., 1997)

Education

0 year 1–4 years 5–9 years 10–24 years

F p F p F p F p

Digits backward 2.11 .14 0.98 .32 3.98 .05 6.23 .01
20 minus 3 5.89 .02 0.07 .91 2.41 .12 8.15 .01
Calculation abilities 2.76 .09 0.27 .60 2.22 .01 7.14 .01

children. Furthermore, gender differences in mathemati-
cal abilities are progressively higher when moving to more
extreme scores: gender differences are minimal in those
children one standard deviation above the mean, but higher
in those children two standard deviations above the mean
and even higher three or four standard deviations above
the mean scores. This observation has been confirmed
in different countries and remained stable over 15 years
(Bensbow, 1988). We can assume it represents a quite ro-
bust observation.

Noteworthy, gender differences increase with age.
No significant differences are observed in elementary
school and middle school children. A moderate male su-
periority is found in high school, and a large and very
significant advantage is observed in college male students
(Hyde et al., 1990). It means, when numerical knowledge
becomes more complex, gender differences become more
significant.

It has been proposed that gender differences in nu-
merical abilities are a consequence of differences in spatial
abilities (e.g., Anderson, 1990). Indeed, a strong corre-
lation has been demonstrated between a person’s math-
ematical talent and his or her scores on spatial percep-
tion tests, almost as if they were one and the same ability
(Dehaene, 1997). Fennema and Sherman (1977) report a
correlation of .50 between scores on a spatial relations
tests and achievement in mathematics. Hills (1957) found
that score on spatial visualization and spatial orientation
were correlated with performance in college mathematics
courses in about .23. Ardila et al. (1998) found a cor-
relation of about .25 between different arithmetical abil-
ity tests (Mental Arithmetic, Arithmetic Problems, WAIS
Arithmetic subtest) and several spatial tests (Rarcliff’s
test, Perceptual speed, Block design, WAIS Picture com-
pletion). These three calculation ability tests correlated
.35, .40, and .28, respectively, with a visuoperceptual fac-
tor. It means a visuoperceptual factor can account for a
significant percentage of the variance in numerical ability
tests. Interestingly, mathematically gifted children tend to

have very high spatial abilities (Halperin, 1992). Thus,
there is ground to suppose that numerical abilities and
spatial abilities are sharing some common factor. Nonethe-
less, numerical abilities required more than spatial skills.
Correlations between spatial and numerical abilities, even
though highly significant, are usually in a moderate
range.

Ostrosky et al. (1997) analyzed in Mexico the gender
differences found in the NEUROPSI neuropsychological
test battery. Only few differences were statistically sig-
nificant. No Gender× Age interaction effect was found.
Gender partially interacted with education. In the three
NEUROPSI tests that include numerical information (Dig-
its backward, 20 minus 3, and Calculation abilities) statis-
tically significant gender differences were observed. Per-
formance was higher in men than in women. Differences
were particularly evident in the Calculation Ability subtest
(to solve three simple arithmetical problems). Noteworthy,
gender differences in calculation abilities were robust in
participants with a high level of education, and minimal
in illiterates or people with a limited education (Table 11).

Summing up, gender differences in numerical abil-
ity represents a solid observation, confirmed in different
studies across different countries. The hypothesis that dif-
ferences in calculation abilities are due to differences in
spatial abilities has been usually supported. Nonetheless,
correlations between both numerical and spatial abilities,
even though highly significant, only account for a moder-
ate percentage of the variance. It has to be assumed that
not only spatial, but also other types of abilities, are also
involved in numerical skills.

TYPES OF ACALCULIA

Several classifications have been proposed for acal-
culias (e.g., Ardila and Rosselli, 1990; Grafman, 1988;
Grafman et al., 1982; H´ecaen et al., 1961; Lindquist,
1936; Luria, 1976). The most traditional classification
distinguishes between a primary acalculia and a secondary
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acalculia (Berger, 1926). This distinction became broadly
accepted, and it is usually assumed that acalculia can re-
sult from either a primary defect in computational abilities
(primary acalculia) or a diversity of cognitive defects (lan-
guage, memory, etc.) impairing normal performance in
calculation tests. Generally, it is considered that acalculia
can be correlated with executive function defects (defects
in planning and controlling the calculation sequence, im-
pairments in understanding and solving arithmetical prob-
lems, etc.), and visuoperceptual recognition of numerical
written information (defects in reading numbers, errors
in reading arithmetical signs, etc.). In other words, acal-
culia can be observed in cases of anterior and posterior
brain damage. Luria (1976) established a distinction be-
tween optic (visuoperceptual) acalculia, frontal acalculia,
and primary acalculia, emphasizing that calculation dis-
turbances can result from quite diverse brain pathology.

The most influential classification of acalculias was
proposed by H´ecaen et al. (1961). On the basis of the
performance in different calculation tasks of 183 patients
with retrorolandic lesions, they distinguished three ma-
jor types of calculation disorders: (1) alexia and agraphia
for numbers, (2) spatial acalculia (or acalculia of a spa-
tial type), and (3) anarithmetia (primary acalculia). Alexia
and agraphia for numbers would obviously induce calcu-
lation disturbances. It may or may not be associated with
alexia and agraphia for words. Spatial acalculia represents
a disorder of spatial organization where the rules for set-
ting written digits in their proper order and position are
disrupted; spatial neglect and number inversions are fre-
quently found in this disorder. Anarithmetia (or anarith-
metria or anarithmia) corresponds to primary acalculia. It
implies a basic defect in computational ability. Anarith-
metia does not suppose an isolated defect in numerical
concepts and arithmetical operations, but excludes alexia
and agraphia for numbers and spatial acalculia. Interest-
ingly, in their analysis of acalculia H´ecaen and colleagues
only included patients with retrorolandic lesions; frontal-
type acalculia was not considered.

Ardila and Rosselli (1990) proposed a new classifica-
tion of acalculias. A basic distinction between anarithme-
tia (primary acalculia) and acalculia resulting from other
cognitive defects (secondary acalculias) was included.
Secondary acalculias can result from linguistic defects
(oral or written), spatial deficits, and executive function
(frontal) disturbances, such as attention impairments, per-
severation, and disturbances in handling complex mathe-
matical concepts (Table 12). There is, however, a certain
degree of overlap among these acalculia subtypes. Thus,
aphasic, alexic, and agraphic acalculias significantly over-
lap. Primary acalculia is frequently associated with apha-
sia, alexia, and agraphia.

Table 12. Classification of Acalculias

Primary acalculia: Anarithmetia
Secondary acalculia: Aphasic acalculia

In Broca’s aphasia
In Wernickes aphasia
In conduction aphasia
Alexic acalculia
In central alexia
In pure alexia
Agraphic acalculia
Frontal (executive dysfunction) acalculia
Spatial acalculia

It is usually assumed that calculation ability repre-
sents a rather complex type of cognition requiring the
participation of different cognitive abilities. Brain dam-
age, nonetheless, may result in relatively restricted dis-
orders in performing arithmetical operations. Benson and
Denckla (1969) observed that verbal paraphasias may rep-
resent a source of calculation disturbances in aphasic pa-
tients. Ferro and Botelho (1980) found a case of limited
alexia for arithmetical signs. Warrington (1982) reported
a dissociation between arithmetical processing and the re-
trieval of computation facts. Benson and Weir (1972) de-
scribed a patient who, following a left parietal lesion, was
able to read and write numbers and arithmetical signs and
maintained his rote arithmetical knowledge (e.g., multipli-
cation tables), but was unable to “carry over” when per-
forming arithmetical operations. Hittmair-Delazer et al.
(1994) described a patient affected by an inability to re-
call and use “arithmetical facts” of one-digit multiplication
and division. This impairment contrasted with the preser-
vation of a wide range of complex notions (cardinality
judgments, recognition of arithmetical signs, written cal-
culations, solving arithmetical problems, additions, and
subtractions). Cippotti et al. (1995) found a patient with
an arteriovenous malformation in the left parietal region,
who was able to read letters, words, and written number
names, but was unable to read aloud single Arabic numer-
als. His ability to produce the next number in a sequence
and answers to simple additions and subtractions was rel-
atively spared when the stimuli were presented as number
names but impaired when the stimuli were presented as
Arabic numerals. Semenza (1988) reported a patient with
a specific deficit for arithmetical procedures due to the
systematic application of disturbed algorithms. This pa-
tient’s difficulty stemmed from an inability to monitor the
sequence of operations that calculation procedures spec-
ify. Cipolotti et al. (1991) observed a patient with the clas-
sical signs of Gerstmann syndrome. A significant impair-
ment in number processing and number knowledge was
demonstrated. Nonetheless, the patient showed a largely
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preserved ability to deal with numbers below 4 in all tasks
and all modalities, whereas she was totally unable to deal
with numbers above 4. Lampl et al. (1994) described a
patient with a selective acalculia for addition, multipli-
cation, and division but with intact ability to subtract and
distinguish mathematical signs. Patients with frontal dam-
age may present selective impairments in using numerical
information applied to temporal facts (e.g., “How many
years ago did WWII end?”) while normally performing
arithmetical operations. Dehaene and Cohen (1997) de-
scribed two patients with pure anarithmetia, one with a left
subcortical lesion and the other with a right inferior pari-
etal lesion and Gerstmann syndrome. The subcortical case
suffered from a selective deficit of rote verbal knowledge
(e.g., arithmetical tables), whereas the semantic knowl-
edge of numerical quantities was intact. The inferior pari-
etal case suffered from a category-specific impairment of
quantitative numerical knowledge, with preserved knowl-
edge of rote arithmetical facts. The potential dissociation
of different calculation elements supports the assumption
that numerical ability represents a multifactor skill, requir-
ing the participation of different abilities and quite diverse
brain areas.

Anarithmetia

Anarithmetia corresponds to primary acalculia. It
represents a basic defect in the computational ability. The
patients with anarithmetia present with a loss of numerical
concepts, inability to understand quantities, defects in us-
ing syntactic rules in calculation (e.g., “to borrow”), and
deficits in understanding numerical signs. However, they
may be able to count aloud and to perform some other
rote numerical learning (e.g., the multiplication tables).
They may conserve some numerical knowledge but fail in
comparing numbers (magnitude estimation) and perform-
ing arithmetical operations (Rosselli and Ardila, 1995). In
primary acalculia the calculation defect must be found in
both oral and written operations. That is, anarithmetia is
a fundamental calculation defect, and is not restricted to
a specific type of output (oral or written). Anarithmetia
could be interpreted as an acquired defect in understand-
ing how the numerical system works.

The patient with anarithmetia usually presents errors
in the management of mathematical concepts and incor-
rectly uses arithmetical symbols. The patient also fails in
solving arithmetical problems. Although it is uncommon
to find cases of pure anarithmetia caused by focal lesions in
the brain, it is routine to find some anarithmetia in cases
of dementia (Ardila and Rosselli, 1986; Grafman et al.,
1989; Parlatto et al., 1992). H´ecaen et al. (1961) found

a overlap between anarithmetia and alexia and agraphia
for numbers. In a sample of 73 patients with anarithme-
tia, they found that 62% had aphasia, 61% constructional
errors, 54% visual field defects, 50% general cognitive
deficits, 39% verbal alexia, 37% somatosensory defects,
37% right–left confusion, and 33% ocumolomotor de-
fects. Their sample, however, was too heterogeneous, and
acalculia could easily be correlated with other neurologi-
cal and neuropsychological defects.

Noteworthy, half of the H´ecaen et al.’s acalculic pa-
tients also presented a general cognitive deterioration. A
significant correlation between arithmetical abilities and
general cognitive performance has been proposed (Ardila
et al., 1998). Furthermore, arithmetical ability impair-
ments have been postulated to represent an early sign of
dementia (Deloche et al., 1995).

A memory defect (amnesia for quantities) has been
conjectured in rendering acalculic patients unable to carry,
borrow, and retrieve arithmetical facts (Cohen, 1971;
Grewel, 1952). Patients with primary acalculia as a matter
of fact present a decreased digit span. Their performance
in the WAIS Digits subtest is usually abnormally low. They
frequently state that they get confused with numbers, and
quantities are difficult to understand. Blatant difficulties in
manipulating and memorizing quantities in consequence
can at least partially account for their computational de-
fects. It is not easy to find cases of primary acalculia with-
out additional aphasic, alexic, and agraphic defects. As a
matter of fact, few cases of pure anarithmetia have been
described to date. Some authors have even challenged the
existence of a primary acalculia not associated with other
cognitive deficits (e.g., Collington et al., 1977; Goldstein,
1948).

Anarithmetia is observed in cases of left angular
gyrus damage. This localization for primary acalculia has
been widely accepted since Henschen (Gerstmann, 1940;
Grafman, 1988; Henschen, 1925; Levin et al., 1993; Luria,
1973). Rosselli and Ardila (1989) analyzed the errors
made by a sample of patients with left parietal injuries.
They found that these patients exhibited defects in oral and
written calculations, most of the patients confused arith-
metical symbols, and all presented errors in transcoding
tasks, in successive operations, and in solving mathemati-
cal problems. It could be proposed that in case of primary
acalculia, global quantification ability (discriminating be-
tween collections containing different number of objects)
and probably correspondence construction (comparing el-
ements in different collections) are preserved. However,
the basic principles used in counting elements [viz., (1)
one-one principle; (2) stable order principle; and (3) car-
dinal principle] may be impaired. Counting aloud as a
numerical rote learning nonetheless can be preserved in
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Table 13. Calculation Ability Test Performance in a Patient with Pri-
mary Acalculia Associated with a Left Angular Gyrus Infarct (Adapted

from Ardila et al., 2000)

Score

Counting: forward 10/10 Normal
Backward 9/10 Abnormal
Reading number up to 3 digits 5/5 Normal
More than 3 digits 3/5 Abnormal
Writing numbers 10/10 Normal
“Greater” and “smaller” relations 5/5 Normal
Transcoding: verbal to numerical 5/5 Normal
Numerical to verbal 3/5 Abnormal
WAIS-R Digits Scaled score= 4 Abnormal
Arithmetic Scaled score= 5 Abnormal
Mental arithmetical operations

Adding small quantities 5/5 Normal
Subtracting small quantities 3/3 Normal
Adding and subtracting larger 0/4 Abnormal

quantities
Multiplications (2 digits) 0/3 Abnormal

Written arithmetical operations
Adding and subtracting (3 digits) 4/4 Normal
Multiplying and dividing (3 digits) 0/4 Abnormal
Arithmetical signs: Reading 4/4 Normal
Interpreting 3/4 Abnormal
Successive operations: adding 10/10 Normal

(1, 4, 7. . .)
Subtracting (100, 87, 74. . .) 4/5 Abnormal
Aligning numbers in columns 10/10 Normal
Solving arithmetical problems 0/5 Abnormal

primary acalculia. In aphasic patients, however, count-
ing elements can be preserved (Benson and Ardila, 1996;
Seron et al., 1992). In any event, computational strategies
required in arithmetical operations (adding, subtracting,
multiplying, and dividing) and mathematical problem-
solving ability are severely disrupted in primary acalculia.

Illustration

Table 13 presents the performance in a Calculation
Ability Test in a patient with anarithmetia. MRI images
are presented in Fig. 2. This patient was a 58-year-old,
right-handed male, with high-school-level education. Un-
til his cerebrovascular accident, he worked as a success-
ful businessman and prestigious politician. Twenty-eight
months before the current evaluation he suddenly lost
language production and understanding. Speech therapy
was initiated and his language has generally improved, al-
though he remained with significant word-finding disrup-
tions. Substantial difficulties were present in discriminat-
ing antonyms; such as right–left, up–down, open–close,
to go in – to go out, before–after, and over–below. In addi-
tion, he reported important impairments in understanding

numbers and using numerical concepts. He was aware and
critical of his deficits. Brain MRI showed a small ischemic
lesion involving the left angular gyrus.

When formally tested, a primary acalculia was ob-
served. Digit span forward and backward score was 3
for each (first percentile). Significant difficulties were ob-
served in the WAIS Arithmetic subtest. Forward count-
ing was flawless, but he made one omission (1/10) when
counting backward. Reading numbers with three or fewer
digits was normal. However he demonstrated inversions
(4908→ 4098) and omissions (10003→1003) reading
numbers with more than three digits. Writing numbers un-
der dictation was normal. Transcoding from verbal to a nu-
merical code and vice versa, was nearly normal. Only few
literal paragraphias (homophone-orthographic and non-
homophonic errors) and some decomposition errors were
observed in writing (10003→ un mil cero tres; one thou-
sand zero three). He understood “greater” and “smaller”
relations when comparing two quantities. Oral arithmeti-
cal operations were correct in adding or subtracting small
quantities, but he confused adding and subtracting signs.
Mental multiplications with two digit figures were impos-
sible. Reading arithmetical signs was correct except for
adding instead of subtracting when performing written op-
erations. Addition and subtraction of three-digit quantities
was normal, but multiplication and division were abnor-
mal. Successive operations were correct except a corrected
error when subtracting 13 from 100. Aligning of numbers
in columns during the mathematical operations was nor-
mal. He failed in solving arithmetical problems, because
he “got confused.” Interestingly, this patient strongly com-
plained of difficulties understanding antonymous words
and calculating.

Aphasic Acalculia

Calculation difficulties are generally found in apha-
sic patients, correlated with their linguistic defects. As a
result, patients with Wernicke’s aphasia exhibit their ver-
bal memory defects in the performance of numerical cal-
culations. Patients with Broca’s aphasia have difficulties
handling the syntax when applied to calculations. In con-
duction aphasia, repetition defects may affect successive
operations and counting backward, which, like repetition,
require subvocal rehearsal. This means that, ultimately,
the calculation defects could very well have originated
and been correlated with general linguistic difficulties in
aphasic patients (Grafman et al., 1982). Numerical defects
are simply a result of the linguistic deficits in aphasic pa-
tients. Aphasic patients present in consequence an acalcu-
lia resulting from the language defect (aphasic acalculia).
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Fig. 2. Brain MRI in a patient with primary acalculia. A left angular gyrus infarct is observed.

The overall error rate in various calculation tasks is clearly
correlated with the severity of the language deficit, global
aphasics being the most impaired patients. The qualita-
tive error pattern, however, may vary between different
types of language disorders, and some numerical aspects,
for example, multiplication facts, may be preferentially
mediated by verbal processing (Delazer et al., 1999).

Acalculia in Broca’s Aphasia

Dahmen et al. (1982) studied calculation deficits in
patients with Broca’s and Wernicke’s type of aphasia. Us-
ing a factor analysis, they were able to identify two differ-
ent factors: (1) numeric–symbolic and (2) visual–spatial.
The milder calculation defects found in patients with
Broca’s aphasia are derived from the linguistic alterations,
while with Wernicke’s aphasia, defects in visual–spatial
processing significantly contribute to calculation difficul-
ties. The syntax of calculation is impaired in Broca’s apha-
sics. These patients present “stack” errors (e.g., 14 is read
as 4) that could be interpreted as an agrammatism in the nu-
merical system. They also have difficulties counting back-
ward and in successive operations (e.g., 1, 4, 7, or 20, 17,
14). Counting forward represents an automatic rote learn-
ing, whereas counting backward represents a controlled

verbal sequencing activity similar to say backward the
days of the week, and would thus mirror some of calcula-
tion difficulties of the conduction aphasics.

Use of morphology and syntax represents one of
the central impairments in patients with Broca’s aphasia
(Delazer et al., 1999). This is clearly observed in transcod-
ing tasks from a verbal (e.g., three hundred and forty-two,
etc.) to a numerical code (342, etc.) and also from numeri-
cal to verbal. The patient has defects in interpreting gram-
matical elements pointing to the position of the number
within the class (e.g., when reading “three hundred thou-
sand two hundred” is difficult to understand that “hundred”
in the first and in the second case do not mean the same;
hierarchy errors are evident). Broca’s aphasia at least par-
tially be interpreted as a disorder in language sequencing
and consequently, in calculation tasks, numerical sequenc-
ing will also be altered. Reading not only Arabic numbers
but also number words, and writing number words is ab-
normal. Mental and written calculations are significantly
defective (Delazer et al., 1999).

Acalculia in Wernicke’s Aphasia

Lexical and semantic errors are most significant
in Wernicke’s aphasia. Patients with Wernicke’s aphasia
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present semantic and lexical errors in saying, reading, and
writing numbers. Luria (1973) suggests that calculation
errors in patients with acoustic–amnesic aphasia (one sub-
type of Wernicke’s aphasia according to Luria) depend on
their defects in verbal memory. This is particularly notice-
able in the solution of numerical problems, when the pa-
tient is required to remember certain conditions of a prob-
lem. The verbal memory span is limited, and the patient
loses the thread and mixes the conditions of the problem.

Lexical errors also play a significant role in the acal-
culia found in Wernicke’s aphasia. When the patient is
asked about numerical facts (i.e., “How many days are
there in a year?”), paraphasic errors become evident.
The meanings of all words (including number words) are
weakened. Lexical errors are abundant in different types
of tasks. Benson and Denckla (1969) stressed the presence
of verbal paraphasias as an important source of calculation
errors in these patients.

Wernicke’s aphasics present semantic errors in the
reading and writing of numbers (Delazer et al., 1999;
Deloche and Seron, 1982). When writing numbers by dic-
tation, patients with Wernicke’s aphasia may write com-
pletely irrelevant numbers (e.g., the patients are required
to write the number 257; they repeat 820, and finally, write
193), exhibiting a loss of the sense of the language (nu-
merical paragraphias). Lexicalization (e.g., 634 is written
600304) is frequently observed. In reading, they show nu-
merical paralexias (e.g., 37 is read as 27). Decomposition
errors are frequent (e.g., 1527 is read 15-27) in reading.

Mental operations, successive operations, and the so-
lution of numerical problems appear equally difficult for
these patients as a result of their verbal memory, lexical,
and semantic difficulties (Rosselli and Ardila, 1989). Ver-
bal memory defects are evident in mathematical problem
solving when the patient has to retain different elements
of the problem.

Illustration

A 46-year-old right-handed man, professional lawyer
sustained a vascular accident involving the temporal
branches of the left middle cerebral artery. In the Boston
Diagnostic Aphasia Examination the profile of a typi-
cal Wernicke’s aphasia was found: severe auditory com-
prehension disturbances, naming difficulties, paraphasias,
and language repetition errors. Language was fluent, abun-
dant, prosodic, and without articulatory errors. No gram-
matical omissions were found, but a significant empty
speech was evident. If testing for calculation ability, it was
observed that the patient could count forward, but when
counting backward difficulties and errors were recorded

(when counting backward from 80 to 70, the patients per-
formed “80, 77, 78, 76, 75, 70, 80. . .”). Errors in reading
(e.g., 49→ 29) and writing numbers to dictation (e.g.,
3041→ 3091) were also observed. In transcoding from
numerical to verbal code 3/8 errors (order errors and letter
omissions) were noted. In transcoding from numerical to
verbal code 3/8 errors were also found (order errors and
hierarchy errors). Aligning numbers in columns was cor-
rect. Simple mental arithmetical operations were errorless.
Written operations were difficult and the patient failed in
50% of the cases. When reading arithmetical signs, he con-
fused plus (+) and multiplication (×) signs, and stated that
he does not know what the minus (−) sign means. Solv-
ing arithmetical problems was impossible because of the
significant language understanding defect.

Acalculia in Conduction Aphasia

Patients with conduction aphasia (afferent motor
aphasia) frequently present significant calculation errors.
They may fail in performing both mental and written oper-
ations. They have serious flaws in performing successive
operations and in problem solving. In reading numbers,
errors of decomposition, order, and hierarchy can appear.
They usually fail in “carrying over,” in the general use of
calculation syntax, and even in reading arithmetical signs
(Rosselli and Ardila, 1989). Taken together all these poten-
tial errors, the calculation defect associated with conduc-
tion aphasia could be interpreted as anarithmetia. How-
ever, it should be addressed that the topography of the
damage in conduction aphasia can be close to the topogra-
phy of the damage in anarithmetia. Conduction aphasia, as
well as anarithmetia, has been correlated with left parietal
brain injury. The association between conduction aphasia
and some degree of anarithmetia is not coincidental.

Acalculia in Other Types of Aphasia

Calculation disturbances are also observed in other
types of aphasia (Benson and Ardila, 1996). In extrasyl-
vian (transcortical) motor aphasia the patient may have dif-
ficulties initiating and maintaining numerical sequences.
Problem-solving ability may be significantly impaired,
and the patient may even fail in understanding what the
problem is about. In extrasylvian (transcortical) sensory
aphasia, significant calculation defects are usually found
associated with the language-understanding difficulties
and echolalia. Temporal–parietal damage results in a va-
riety of language disturbances and significant calculation
defects. Mental and written calculation can be difficult,
and errors are observed in writing number words (Delazer
et al., 1999).
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Alexic Acalculia

Impairments in calculation may also be correlated
with general difficulties in reading. This represents an
alexic acalculia or alexia for numbers, and has been recog-
nized since Henschen (1925). Four basic types of alexia
have been described: central alexia, pure alexia, frontal
alexia, and spatial alexia. Calculation errors observed in
frontal alexia were analyzed when describing acalculia in
the Broca’s aphasia, and errors in calculation in spatial
alexia will be analyzed when describing spatial acalculia.

Acalculia in Central Alexia

Central (parietal–temporal alexia, or alexia with
agraphia) alexia includes an inability to read written num-
bers and numerical signs. Usually, the ability to perform
mental calculation may be considerably better. Quite of-
ten, central alexia is associated with anarithmetia. Reading
and writing difficulties plus computational disturbances
may result in severe acalculia. Frequently, in these pa-
tients, reading digits and numbers may be superior to
reading letters and words. Occasionally, the patient may
be unable to decide if a symbol corresponds to a letter or
a number. Written mathematical operations are seriously
impaired, and mental execution is superior.

Although the distinction between alexia with
agraphia for numbers and anarithmetia is conceptually
valid, in reality it may be difficult to establish. The pos-
terior brain topography of the two syndromes is similar
as pointed out by H´ecaen et al. (1961). Usually alexia for
numbers and arithmetical signs is associated with alexia
for letters, some agraphia, and some aphasic disorders.

Acalculia in Pure Alexia

Pure alexia (alexia without agraphia, or occipital
alexia) is mainly a verbal alexia in which letter reading is
significantly superior to word reading. As expected, these
patients present greater difficulties reading numbers com-
posed of several digits (compound numbers) than read-
ing single digits. When reading compound numbers, the
patient exhibits decomposition (27 becomes 2,7) (digit-
by-digit reading) and hierarchy errors (50 becomes 5) as a
result of the omission for the right-side information. When
reading words, letters placed on the left are generally un-
derstood better than letters placed on the right. Likewise,
in reading numbers, only the first or the first two–three
digits are read correctly, and a certain degree of right hemi-
neglect is observed (5637 becomes 563). Because of the
alexia, performing written operations is painstaking and

even impossible. As a result of the visual exploration de-
fects, aligning numbers in columns and “carrying over”
are tasks the patient usually fails. It is important to stress
that reading is performed from left to right (in Western lan-
guages, at least), but the performance of arithmetical op-
erations goes from right to left. This disparity may create
problems in those patients with visual attention problems.

Illustration

A 45-year-old right-handed man with 8 years of edu-
cation presented with severe chest pains followed by loss
of consciousness. He was hospitalized with transient car-
diac arrest. During the following days, right homonymous
hemianopsia, right hemi-body extinction, difficulties in vi-
sual exploration, optic ataxia, verbal alexia, and inability
to recognize objects and colors were observed. CT scans
showed a small hypodensity lesion in the left occipital
lobe.

When testing for reading, it was observed that the
patient could read letters and syllables. However, he was
unable to read any word composed of more than three
letters. A letter-by-letter or syllable-by-syllable reading
was observed. A very significant amount of morphologic
verbal paralexias was observed (e.g.,casa→ cascara).
No significant word-finding difficulties or language-
understanding impairments were observed in conversa-
tional language. He could write by dictation, even though
he partially overlaps words when writing. A few letter
omissions were noted when writing. He could read num-
bers (Arabic and Roman) up to three digits. With longer
numbers, he only read the initial part (e.g., 7528 was read
as 75, 2). When reading arithmetical signs, he confused
plus (+) and multiplication (×). Transcoding from numer-
ical to verbal code was normal for numbers up to three
digits. Transcoding from a verbal to a numerical code was
extremely difficult, as a result of his inability to read long
words. Performance of simple mental arithmetical opera-
tion was normal. Performance of written operations was
slow and abnormal, because of the significant visual scan-
ning difficulties. Counting forward and backward was nor-
mal. Solving simple arithmetical problems was errorless.
Aligning numbers in columns was painstaking, slow, and
poorly performed because of the visual scanning defects.

Agraphic Acalculia

Calculation errors may appear as a result of an in-
ability to write quantities. The calculation deficit may be
a function of the type of agraphia. In the agraphia asso-
ciated with Broca’s aphasia, the writing of numbers will
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Fig. 3. Apractic agraphia illustration.

be nonfluent, with some perseveration and omissions. In
transcoding tasks, from the numerical code to the verbal
code, grammatical and letter omissions appear. The patient
presents difficulties in the production of written numerical
sequences (e.g., 1, 2, 3), particularly backward (e.g., 10,
9, 8) (Ardila and Rosselli, 1990).

In Wernicke’s aphasia, there is a fluent agraphia
for numbers. Because of verbal comprehension defects,
the patient produces errors in writing numbers to dic-
tation and even writes totally irrelevant numbers (428
becomes 2530). Lexical errors (numerical verbal para-
graphias) and fragmentation (25 becomes 20. . .5) are ob-
served. Language-understanding defects impair the ability
to write quantities to dictation. Solving arithmetical prob-
lems is impossible because of the language-understanding
defects and verbal memory defects.

In conduction aphasia, there may be a very signif-
icant agraphic defect in the writing of numbers by dic-
tation. The patients may be unable to convert the num-
ber that they have heard and even repeated to themselves
in graphic form. Order, hierarchy, and inversion errors
are observed (Rosselli and Ardila, 1989). Some degree of
apractic agraphia is frequently found in conduction apha-
sia, and some degree of apractic speech is frequently found
in certain conduction aphasics.

Writing number defects are observed not only in
aphasic but also in nonaphasic forms of agraphia. Aprac-
tic agraphia becomes evident in writing not only word but
also quantities. Self-corrections and approximations are
found, and frequently the patients fail to convert the num-
bers they hear in a correct graphic form. Apractic agraphia
impairs the performance of motor sequences required to

write letters. Writing numbers becomes slow and difficult,
and permanent self-corrections appear.

In cases of motor agraphia, the difficulties observed
in writing letters and words will be also found when
writing numbers. In paretic agraphia, numbers are large
and clumsily formed. In hypokinetic agraphia, difficul-
ties in starting the motor activity are evident, as microg-
raphy and progressive narrowing of numbers appear. In
hyperkinetic agraphia, numbers are usually large, hard
to read, and distorted; frequently the patient is unable to
write.

Illustration

A 33-year-old right-handed man with a high school
level of education suddenly during the morning developed
right hemiparesis and impossibility to speak. CT scans
demonstrated a parietal–insular infarct. Aphasia and hemi-
paresis rapidly improved during the following days. After
a formal language evaluation, a diagnosis of a conduction
aphasia associated apractic agraphia was proposed. Count-
ing forward and backward was intact. Reading numbers
and magnitude estimation (what number is larger) was also
correct. Transcoding from verbal to numerical code was
correct even though the patient had significant difficul-
ties writing some numbers. Transcoding from numerical
to verbal was notoriously difficult because of the writ-
ing impairments (Fig. 3). Mental successive adding and
subtracting was errorless. Finding the number or arith-
metical sign lacking in an arithmetical operation (e.g., 12
+ . . .= 19; 35. . .12= 23) was appropriate. Solving sim-
ple arithmetical problems was normal. Written operations
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and aligning numbers in columns were difficult because
of the defects in writing the numbers.

Frontal (Executive Dysfunction) Acalculia

Patients with prefrontal injuries frequently develop
calculation difficulties that are not easily detected. Patients
with damage in the prefrontal areas of the brain may dis-
play serious difficulties in mental operations, successive
operations (particularly backward operations; e.g., 100–
7), and solving multistep numerical problems. Written
arithmetical operations are notoriously easier than men-
tal operations. Difficulties in calculation tasks in these
patients correspond to different types: (1) attention diffi-
culties, (2) perseveration, and (3) impairment of complex
mathematical concepts. Attention deficits are reflected in
the patient’s difficulty in maintaining concentration on the
problem. Attention difficulties result in defects in main-
taining the conditions of the tasks and impulsiveness in
answers. Perseveration is observed in the tendency to con-
tinue presenting the very same response to different con-
ditions. Perseveration also appears in writing and reading
numbers. Perseveration results in incorrect answer (e.g.,
when subtracting 7 from 100: 93, 83, 73, etc.). Impair-
ment in the use of complex mathematical concepts re-
sults in inability to analyze the conditions of numerical
problems and developing an algorithm for its solution.
When trying to solve mathematical problems, the patient
may have difficulties simultaneously handling diverse in-
formation from the same problem and may even be un-
able to understand the nature of the problem. Instead of
solving the mathematical problem, the patient with frontal
acalculia may simply repeat it. The above defects are re-
flected in the abnormal handling of complex mathematical
concepts.

The most profound defects are found in solving nu-
merical problems, whereas elementary arithmetic is usu-
ally much better preserved. Mental arithmetic is sig-
nificantly more abnormal than written operations, as in
general, mental tasks are harder than tasks using external
support, and using pen and pencil helps keep track of the
material in operating memory.

Interestingly, patients with frontal lobe pathology
may present notorious disturbances in the use of tempo-
ral measures. Time is measured using quantities (2 hr,
34 years, etc.). This specific type of numerical knowledge
is significantly disturbed in this group of patients. They
may be unsure if the discovery of America was carried
out about 50 years ago, or about 100 years ago, or about
500 years ago. Patients may not know if their accident

occurred 1 or 10 years ago. Of course, this deficit is re-
lated to the severe defects in temporal memory and in time
concepts observed in this group of patients (Fuster, 1993).

Illustration

After a seizure, an anterior left hemisphere tumor
was disclosed in a 52-year-old right-handed woman with
a college-level education. No language abnormalities were
found in the Boston Diagnostic Aphasia Examination. In
testing for reading, she could read letters, words, sen-
tences, and texts. Understanding of written language was
normal. However, she read 4/10 pseudowords as real
words, and 4/4 times she could not decide which of two
words was correctly written. Spontaneous writing and
writing by dictation was normal. Writing numbers with
one or several digits was normal. Only one error was
recorded when reading numbers (10003 was read “One
million and three). Transcoding (verbal to numerical; and
numerical to verbal) was also normal, except for one er-
ror (twelve thousand three hundred sixty-nine was written
“2369”). Magnitude estimation (to decide which number
is bigger, e.g., 189 and 201), reading of arithmetical signs,
counting forward and backward, and simple arithmetical
operations were performed without difficulty. Successive
additions (1, 4, 7,. . .etc.) were errorless but successive
subtractions (100, 87, 74. . .etc.) were impossible. Writ-
ten arithmetical operations with three digits (adding, sub-
tracting, multiplying, and dividing) were normal. The pa-
tient could successfully find 5/10 times what was lacking
in some arithmetical operations written on a card (e.g.,
12 + . . .= 15; 93. . .13 = 80), and in 5/10 times she
simply answered, “I cannot figure it out,” or “For me, it
looks OK.” She failed 3/5 very simple arithmetical prob-
lems: “How many centimeters are there in two and half
meters?”; “Paul receives 8 pesos per working hour. How
much will he get working four hours?”; “Mary and John
get 150 in a day. Mary receives twice as much as John.
How much does each one receive?” Aligning numbers in
columns was normal.

Spatial Acalculia

Spatial acalculia is observed in patients with right
hemispheric damage, particularly parietal lobe pathology.
It frequently coexists with hemi-spatial neglect, spatial
alexia and agraphia, constructional difficulties, and other
spatial disorders (Ardila and Rosselli, 1994; H´ecaen et al.,
1961).
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In cases of spatial acalculia, mental calculation is
superior to written calculation. No difficulties in count-
ing or in performing successive operations are observed.
A certain degree of fragmentation appears in the reading
of numbers (523 becomes 23) resulting from left hemi-
spatial neglect. In large quantities, the patient reads the last
or two last digits, with a notorious tendency to omit left-
sided information. Reading complex numbers, in which
the spatial position is critical, is affected, particularly when
the number includes several digits that are repeated (e.g.,
1003 becomes 103). Inversions can be noted (32 becomes
23, or 734 becomes 43) (Ardila and Rosselli, 1990, 1994).

The difficulties observed in writing numbers are com-
mon across all written tasks. Such difficulties include ex-
clusive use or simply overuse of the right half of the page;
digit iterations (227 becomes 22277) and feature itera-
tions (particularly when writing the number 3 extra loops
are written); inability to maintain the horizontal direction
in writing; spatial disorganization; and writing over seg-
ments of the page already used. When performing written
arithmetical operations, the patient understands how much
should be “carried over” (or “borrowed”) but cannot find
where to place the carried-over quantity. Also, the inabil-
ity to align numbers in columns prevents such patients
from performing written arithmetical operations. When
performing multiplication, the difficulty in remembering
multiplication tables becomes obvious, a defect correlated
with the general difficulty in making use of automatic lev-
els of language. These patients frequently mix procedures
up (e.g., when they should subtract, they add). This is re-
lated to another frequently found defect: they do not seem
surprised by impossible results (reasoning errors). For in-
stance, the result of subtraction is larger than the original
number being subtracted. This type of error in arithmetical
reasoning has also been noted in children with DD.

Ardila and Rosselli (1994) studied calculation errors
in a sample of 21 patients. Spatial defects that interfered
with the reading and writing of numbers and with the loss
of arithmetical automatisms (e.g., multiplication tables)
were found. The processing system seems abnormal in
these patients while the numerical calculation system is
partially preserved. Difficulties in calculation procedures
and problems in the recall of arithmetical principles were
observed; however, arithmetical rules were intact. The
authors concluded that the numerical changes observed
in patients with right hemisphere injury are due to (1)
visual–spatial defects that interfere with the spatial orga-
nization of numbers and mechanical aspects of the math-
ematical operations, (2) inability to evoke mathematical
facts and remember their appropriate uses, and (3) inabil-
ity to normally conceptualize quantities and to process
numbers.

Spatial acalculia is most frequently observed in right
hemisphere pathology (Ardila and Rosselli, 1994). Hemi-
neglect, topographic agnosia, constructional apraxia, and
general spatial defects are usually correlated with spatial
acalculia. Patients with spatial acalculia perform much
better in orally presented arithmetical tasks than in written
ones.

Illustration

A 68-year-old right-handed woman with high school
education was hospitalized because of a sudden loss
of sensitivity in her left hemi-body. At the incoming
neurological exam, left hypoesthesia in face and arm,
left homonymous hemianopia, disorientation in time and
place, and left hemi-neglect were found. CT scans revealed
an ischemic lesion involving the temporal and parietal
branches of the right middle cerebral artery.

Neuropsychological testing indicated a significant
left spatial hemi-neglect. Neglect was observed in draw-
ing, reading, writing, and performing spontaneous activ-
ities. Severe spatial and constructional defects were also
found. A severe spatial acalculia was noted. The patient
could not align numbers in columns (Fig. 4). Adding and
multiplying were impossible because the patient could not
find where to place the “carried” or “borrowed” quantities.
She confused “plus” (+) and “multiplication” (×) signs
and could not read numbers on the left (e.g., 9,231 was
read as 31). Because of these defects, the patient failed
in performing all the written numerical operations that
were presented. Nonetheless, her ability to perform arith-
metical operations orally and to solve numerical problems
was nearly normal. A diagnosis of spatial acalculia asso-
ciated with spatial alexia, spatial agraphia, hemi-spatial
neglect, and general spatial defects was presented. Dur-
ing the following weeks neglect mildly improved. Still,
she continues unable to perform any written arithmeti-
cal operation. Defects in spatial orientation continued to
be significant. One year later she began to attend a re-
habilitation program that lasted for about 1 year. Im-
provement was significant. At the end of this program,
the patient could perform simple written arithmetical
operations.

In summary, it is possible to find very different types
of acquired disorders in calculation skills. Some of them
represent disability derived from defects (oral and writ-
ten, production and comprehension) in language. Others
are closely correlated with either spatial defects (spatial
acalculia), executive function deficits (frontal acalculia),
or primary defects in the performance of arithmetical tasks
(anarithmetia).
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Fig. 4. Spatial agraphia illustration.

Commentary

Calculation ability might be interpreted as a type
of cognition involving in their origins at least, some
type of body knowledge (autotopognosis) (Gerstmann,
1940), spatial concepts, language, and executive func-
tion abilities. Finger agnosia (as a restricted form of auto-
topagnosia) supports the association between calculation
abilities and body knowledge. The association between
spatial knowledge mediated through language and calcu-
lation abilities have been emphasized by different authors
(e.g., Ardila et al., 1989a,b; Hartje, 1987; Luria, 1966,
1976). Luria emphasizes that an inability to use verbally
mediated spatial concepts (semantic aphasia) is always
associated with acalculia.

The role of parietal lobe in body knowledge and
the disorders of the body scheme in cases of parietal
pathology have often been emphasized in the literature
(e.g., Botez, 1985; Critchley, 1953). Parietal damages
have been associated with asomatognosia in general,
and hemiasomatognosia, alloesthesia, finger agnosia, au-
totopagnosia, asymbolia for pain, apraxia, and the so-
called Verger–Dejerine syndrome (H´ecaen and Albert,
1978).

Asymmetry in cerebral organization of cognition rep-
resents the most outstanding characteristic of the human
brain. LeDoux (1982, 1984) proposed that the primary
functional distinction between human hemispheres in-
volves the differential representation of linguistic and spa-
tial mechanisms. The right posterior parietal lobe is in-
volved in spatial processing, whereas the left posterior

parietal lobe is involved in linguistic processing. Spatial
mechanisms are represented in both the right and the left
parietal lobes in nonhuman primates. In humans, how-
ever, language is represented in a region (posterior pari-
etal lobe) of the left hemisphere that, in the right hemi-
sphere, is involved in spatial functions, and was involved
in spatial functions in both hemispheres in human an-
cestors (Lynch, 1980). In consequence, the evolution of
language involved adaptations in the neural substrate of
spatial behavior (LeDoux, 1984). It is understandable that
the left parietal lobe can play a significant role in un-
derstanding spatial concepts mediated through language.
Boles (1991), presenting different tasks (recognition of
words, products, locations, dichotic digits, etc.) and using
a factor analysis, was able to identify different lateralized
parietal functions: lexical functions (e.g., word numbers)
were associated with left hemisphere, whereas primary
spatial functions (e.g., locations of dots) were correlated
with right hemisphere activity.

Luria (1966) emphasized that defects in spatial con-
ceptualization underlying the acalculia observed in left-
parietal-damaged patients. He proposed that left parietal–
temporal–occipital damage could produce components of
spatial apraxia, agnosia, semantic aphasia, and acalculia.
Luria considered that the same cognitive defects were
present in semantic aphasia and acalculia. In both syn-
dromes, defects in understanding verbally mediated spa-
tial concepts are evident. Therefore, acalculia is always
associated with semantic aphasia. Spatial knowledge is
crucial in understanding the numerical system. Cardinality
requires the understanding of “after,” “larger,” and other
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spatially tinged relationships. Quantities and arithmetical
operations are intrinsically spatial concepts. The numeri-
cal system, furthermore, assumes an spatial organization
(units, tens, hundreds, etc.)

In brief, normal performance of calculation tasks re-
quires different types of cognition. Language, spatial abil-
ities, body knowledge, and executive (frontal lobe) func-
tion are necessarily included. Calculation abilities can be
impaired as a result of language (oral and written), spatial,
and executive function disturbances. General consensus
in this regard can be found. The crucial unsettled point is
whether acalculia can be found in isolation as a pure pri-
mary disorder with no other cognitive deficit. Or, is acalcu-
lia always associated with body knowledge disturbances
(right–left disorientation, finger agnosia, and in general
autotopagnosia), and disturbances in the linguistic use of
spatial concepts (semantic aphasia)? The historical analy-
sis of the evolution of numerical concepts and the clinical
observation seems to provide some support to the second
point of view.

ASSOCIATED DISORDERS

Calculation ability can be regarded as a multifacto-
rial skill. An important association between calculation
abilities and performance in different cognitive areas, in-
cluding language, memory, constructional abilities, spa-
tial skills, attention, and executive functions, has been
found. Acalculia is quite often correlated with diverse dis-
turbances in different cognitive domains.

Acalculia and Aphasia

Acalculia quite often overlaps with aphasia. Some au-
thors have even stated that primary acalculia is always as-
sociated with a particular type of aphasia known as seman-
tic aphasia (e.g., Luria, 1976). Frequently, acalculia is also
associated with diverse types of language disturbances
very specially, with conduction and Wernicke’s aphasia
(Rosselli and Ardila, 1989). According to H´ecaen et al.
(1961), 62% of the patients with anarithmetia (primary
acalculia) also presented aphasia. Aphasia was demon-
strated in 84% of the patients with alexic acalculia. The
associated aphasia in H´ecaen et al.’s study was a fluent
type of aphasia.

Anomia, word-finding difficulties, language-
understanding defects, and paraphasias are quite
frequently correlated with primary acalculia. Aphasia is
obviously not expected in spatial acalculia observed in
cases of right hemisphere pathology. Frontal acalculia

can be often correlated with an extrasylvian (transcortical
or dynamic) motor aphasia.

However, the association between language distur-
bances and acalculia is not simple. Numbers are coded
verbally (e.g., three, two hundred twelve) and in such re-
gard, calculation requires language. But quantities are also
coded numerically as Arabic digits (e.g., 3, 212). Further,
language can be coded in two modalities (oral and writ-
ten; i.e., phonologic and orthographic). Numbers in con-
sequence can be coded in three different symbolic sys-
tems (the two language symbolic systems plus the Arabic
numerical system). For small quantities, a second numer-
ical system is sometimes used (Roman numerals). Perfor-
mance of arithmetical operations using Roman numerals,
however, is not evident.

Grewel (1952, 1969) considers that the three semi-
otic systems used for representing quantities (verbal–
oral, verbal–written, and Arabic digits) are independent
and possess their own distinctive features. Each numer-
ical system includes several components: (1) the set of
symbols used (lexicon), (2) the semantic representation
of the numbers (semantics), and (3) the syntactic rules
used for combining and manipulating numbers (syntax).
Grewel proposes that the three semiotic systems may be
independently affected in cases of brain pathology be-
cause they represent different symbolic systems with a
different syntax. Clinical observation demonstrates that
sometimes acalculic patients may fail in transcoding tasks
(transcoding from the numerical to the verbal system
and vice versa) (Deloche and Seron, 1982, 1984, 1987).
At least the verbal and numerical system may become
dissociated. Further, it seems to exist a general relation-
ship between lexical/syntactical language processing pre-
served/impaired abilities in Broca’s or Wernicke’s apha-
sics, and their types of transcoding impairment (Deloche,
1993). In Broca’s aphasia, lexical processing is better
preserved, whereas syntactical processing is impaired.
In Wernicke’s aphasia the opposite situation is usually
found.

Deficits in very specific linguistic elements have
been often demonstrated in acalculia. Benson and Denckla
(1969) observed that verbal paraphasias may represent a
source of calculation disturbances in aphasic patients. A
selective disturbance in the oral–verbal system was re-
sponsible for the calculation defect in this case. As men-
tioned previously, it has been also observed that the ver-
bal processing system of number can become dissociated
from the numerical calculation system (e.g., Dagenbach
and McCloskey, 1992; Pesenti et al., 1994). Dehaene and
Cohen (1997) described a patient with a selective deficit of
rote verbal knowledge (e.g., arithmetical tables), whereas
the semantic knowledge of numerical quantities was
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intact. They also described a second patient with preserved
knowledge of verbal rote arithmetical facts and distur-
bances at the semantic level of quantities. No question,
the semantic knowledge of numerical quantities depends
on different brain areas than the knowledge of verbal rote
arithmetical facts (multiplication tables, simple additions
and subtractions, etc.).

Rossor et al. (1995) described a patient with severe
language problems and good calculation abilities. The
patient answered correctly simple subtraction, additions,
multiplications, and multidigit operation without signif-
icant difficulty. This patient seemingly did not rely on
verbal abilities in any of the operations, or compensated
impaired verbal abilities with nonverbal skills. This report
supports the assumption that, even though verbal abilities
are involved in numerical tasks, at least in some numerical
tasks, there is a functional independence between numer-
ical and verbal abilities. The opposite pattern has been
also observed: intact language function and impaired cal-
culation ability (e.g., Warrington, 1982). All these dis-
sociations support the assumption that different elements
participate in normal calculation ability.

At the semantic level, it may be argued that the dif-
ferent number representation systems (oral, orthographic,
numerical) share a single semantic representation. It may
be conjectured that indeed all the three representation
systems have in common a single semantics. Quantity
conceptualization may be proposed to be the semantic
core of the different numerical system representations.
Deloche (1993), however, has argued that the assumption
of a unique semantic representation for each number
seems unrealistic, considering the constellations of us-
ages and meaning of numbers (e.g., items of cardinality,
prices, private bank account number, room numbers
in a hotel, bus line numbers in a city, nursery rhymes,
idiomatic expressions, etc.). Accordingly, there is not
a single semantics for numbers, but semantics depends
upon the specific usage of the numbers. Alternatively, it
might be conjectured that numbers contain two different
semantic aspects: (1) the cardinality of the number and
(2) the “bigger” and “smaller” relationships (magnitude
comparison). Cardinality is invariant, but “bigger” and
“smaller” relations are relative and depend upon the
objects that are counted, or they are related with. Two
pages is “smaller” than one book. Five dollars is “big”
money for a candy, but it is “small” money for a shirt. Bus
line numbers has not any “big”–“small” semantic for the
passenger, but may have some technical (“big”–“small”
or “before”–“after” or whatever) semantic for the city
traffic organization. We are proposing that cardinality
may represent the invariant semantics of all notational
numerical systems. Cardinality simply means “before”–

“after.” The specific semantic of the cardinal depends
upon the particular object it is applied to.

The syntactic rules used for combining and manipu-
lating numbers suppose the understanding about the orga-
nization of the numerical system (Grewel, 1952, 1969).
The syntactic rules are required for the mathematical
thought and the comprehension of the underlying oper-
ations (Boller and Grafman, 1983). In primary acalculia,
disturbances in using syntactic rules and impairments in
understanding how the numerical system is organized are
assumed.

Delazer et al. (1999) analyzed the pattern of errors
in a large sample of aphasic patients. They found as ex-
pected that most severe calculation impairments are ob-
served in global aphasics. Broca’s and Wernicke’s apha-
sics scored similarly at the quantitative level, and amnesic
aphasics showed only mild calculation difficulties (unfor-
tunately, conduction aphasia patients were not included
in this study). Calculation procedures were mainly im-
paired in Wernicke’s aphasia. Syntactic errors were more
frequent in Broca’s aphasia whereas lexical errors were
mainly observed in Wernicke’s aphasia. The authors pro-
pose that the retrieval of multiplication facts is preferen-
tially mediated by verbal processing. In cases of aphasia,
it will be most impaired.

Because of its left parietal topography, primary acal-
culia may be associated not only with aphasia but also with
alexia and agraphia. The association with parietotemporal
alexia (central alexia or alexia with agraphia) is evident.
The association with apractic agraphia is also evident (see
the next section Acalculia and Apraxia). However, unusual
cases of acalculia with unexpected localizations have been
sometimes reported. For example, Tohgi et al. (1995) de-
scribed a patient with agraphia and acalculia associated
with a left frontal (F1, F2) infarction. Although the patient
could add and subtract numbers, he could neither multiply
nor divide because of a difficulty in retrieving the multipli-
cation tables and calculation procedures. Lucchelim and
De Renzi (1993) report the case of a 22-year-old man who
had an infarct in the left anterior cerebral artery that de-
stroyed the medial cortex of the frontal lobe. The patient
manifested primary acalculia. Accounting for these un-
usual acalculia localizations is not easy. Disturbances in
some brain circuitry required for normal numerical oper-
ations may be conjectured.

Acalculia and Apraxia

The association between acalculia and apraxia is
not frequently mentioned excepting in the dementia
syndrome (e.g., Cummings and Benson, 1992) and in
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traumatic brain injury cases. In those instances, apraxia
and acalculia appear together as a result of an extended
brain involvement and wide disturbances in cognition.
This association is not particularly informative in un-
derstanding brain organization of calculation abilities,
because acalculia and apraxia appear amid a whole array
of diverse cognitive disturbances.

However, there is a twofold association between acal-
culia and apraxia: (1) primary acalculia quite often is as-
sociated with ideomotor apraxia, and (2) spatial acalculia
significantly correlates with constructional apraxia. The
frequent association between ideomotor apraxia and acal-
culia can be easily overlooked. As a matter of fact, many
patients with primary acalculia also present ideomotor
apraxia (Rosselli and Ardila, 1989). This is not a coin-
cidental association. Ideomotor and ideational apraxia are
observed in cases of left parietal damage, and primary
acalculia too. Nonetheless, it is difficult to know how fre-
quent ideomotor apraxia is associated with acalculia be-
cause of the lack of large samples of acalculic patients.
Hécaen et al. (1961), however, reported that ideational
or ideomotor apraxia was observed in 36.5% of the acal-
culic patients. Interesting to note, agraphia observed in
the Gerstmann syndrome is an apractic agraphia apraxia,
not an aphasic agraphia (Benson and Cummings, 1985;
Strub and Geschwind, 1983), and hence, it represents a
segmentary ideomotor apraxia. In consequence, ideomo-
tor apraxia should be regarded as a frequently associated
impairment in cases of acalculia. Unfortunately, ideomo-
tor and ideational apraxia can be easily overlooked in a
routine neurological or neuropsychological exam.

The association between spatial acalculia and con-
structional apraxia is quite evident. Patients with right
hemisphere pathology, particularly right parietal damage,
present general spatial and visuoconstructive defects. Spa-
tial acalculia is just a single manifestation of the general
spatial defects observed in these patients. H´ecaen et al.
(1961) observed visuoconstructive impairments in 95%
of the patients presenting spatial acalculia. Spatial agnosia
and general visuospatial defects were recorded in 62.5%
of their patients. Ardila and Rosselli (1994) found a signif-
icant correlation between spatial acalculia, spatial alexia,
spatial agraphia, and constructional apraxia.

Acalculia and Dementia

There is a significant correlation between calcula-
tion abilities and general intellectual performance (Ardila
et al., 1998). Consequently, it is understandable that cal-
culation deficits have been reported as an early sign of
Alzheimer’s Disease (AD) (Grafman et al., 1989; Deloche
et al., 1995; Mantovan et al., 1999; Parlatto et al., 1992).

Interestingly, mental calculation impairments represent an
important factor in predicting cognitive deficits in these
dementia patients (Roudier et al., 1991).

Nonetheless, acalculia in dementia has not been a sig-
nificant research topic, and usually acalculia is not men-
tioned as a diagnostic criterion of dementia. The most
frequently used clinical criteria in the diagnosis of AD
(e.g., NINCDS; American Psychiatric Association, 1994;
McKhann et al., 1984) do not list the numerical ability
defects as a clinical symptom of dementia. Clinical crite-
ria of dementia usually emphasize memory disturbances,
language deficits, attention defects, and visuoperceptual
impairments. As a matter of fact, very little research con-
cerning the functions of the mathematical abilities in AD
is found. Considering, however, the significant frequency
of calculation disturbances in case of brain pathology, it
may be assumed a high frequency of acalculia in cases of
dementia.

Recently, a few papers have been published point-
ing out that calculation abilities represent indeed a very
important defect in AD. Marterer et al. (1996) found a sig-
nificant correlation between arithmetical impairment and
the degree of dementia. Deloche et al. (1995) reported that
calculation and number processing scores significantly
correlate with the MMSE (Folstein et al., 1975) scores and
language performance tests. However, their case analyses
indicated heterogeneous patterns of preserved/impaired
abilities with regard to other cognitive areas. Heteroge-
neous patterns of calculation deficits in brain-damaged pa-
tients have been also reported by different authors (Ardila
and Rosselli, 1990; Boller and Grafman, 1985; Delazer
et al., 1999; Grafman et al., 1982; Rosselli and Ardila,
1989).

Rosselli et al. (1990) analyzed the calculation abil-
ities in AD. Twenty right-handed patients meeting the
DSM-IV (American Psychiatric Association, 1994) cri-
teria for AD were studied. Age ranged from 64 to
88 years. A neuropsychological test battery including lan-
guage, memory, constructional abilities, attention, mathe-
matics, and abstraction tests was administered. In addition,
the MMSE was also used. Mathematical subtests corre-
lated higher than the MMSE with the scores in the different
neuropsychological tests (Table 14). Highest correlations
of the mathematical subtests were observed with language
repetition, nonverbal memory, and attention tasks. It was
proposed that mathematical ability tests represent an ex-
cellent predictor of general intellectual performance in
AD. It was further proposed that disturbances in arith-
metical ability should be included as a diagnostic crite-
rion for AD. These results support the hypothesis that a
significant association exists between arithmetical impair-
ments and the severity of dementia (Deloche et al., 1995;
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Table 14. Correlations Among the Different Neuropsychological Tests,
the MMSE, and Two Arithmetic Tests in the Dementia Group (Adapted
from Rosselli et al., 1998)

Test MMSE Arithmetic Additions

General cognitive functioning
MMSE .715 .751

Mathematics
WAIS-R: Arithmetic .715 .520
Mental Additions .751 .520

Executive functioning
Similarities .167 .197 .307
Trail Form B −.492 −.315 −.148
Phonological fluency .287 .113 .451

Attention
Trail Form A −.805 −.566 to.557
Digits .548 .580 .585

Language
Boston Naming Test .361 .413 .150
Reading Comprehension .273 .009 .368
Sentence Repetition .768 .600 .731
Semantic Fluency .280 .342 .462

Visuoconstructive
Rey–Osterrieth Figure: Copy .354 .279 .307
WAIS-R: Block Design .623 .431 .405
MEMORY
WAIS-R: Information .351 .486 .395
WMS: Logical Memory .423 .393 .149

WMS: Visual Reproduction .751 .727 .546

Marterer et al., 1996). Calculation abilities in Rosselli
et al.’s research were assessed using a problem-solving
test (Arithmetic subtest of the WAIS-R) and an arithmeti-
cal mental task (Consecutive Additions by 3s). Both tests
presented strong correlations (.715 and .751, respectively;
p < .001) with the MMSE scores. These very robust cor-
relations with the MMSE may suggest that arithmetical
abilities represent very good predictors of general cog-
nitive performance in AD. Besides, correlations between
arithmetical abilities and neuropsychological test perfor-
mance were in general higher than correlation between the
MMSE and neuropsychological test performance. Arith-
metical ability tests may in consequence be considered to
be even better predictors of general cognitive performance
than the MMSE.

Deloche et al. (1995) found in patients with mild AD
a correlation of .74 between total calculation and num-
ber processing scores, and the MMSE score. They ob-
served that patients with calculation and number process-
ing deficits also showed impaired language performance.
By the same token, in the Rosselli et al. study, AD pa-
tients who performed significantly lower on arithmetical
tests also did poorly on attention tests, sentence repeti-
tion, semantic verbal fluency, information, visual repro-

duction, block design, and line orientation tests. It is note-
worthy that repetition is one of the language skills well
preserved in patients with AD, and in consequence, repe-
tition impairments are considered significantly abnormal
(Benson and Ardila, 1996; Cummings and Benson, 1992).
Repetition of sentences involves preserved verbal mem-
ory span. An important relationship between mathemat-
ical scores and short-term memory such as visual repro-
duction and immediate memory measured with the digit
span subtest was also observed. Short-term visual mem-
ory (Visual Reproduction subtest from the Wechsler Mem-
ory Scale—Revised) had a stronger correlation than did
short-term memory (Logical Memory from the Wechsler
Memory Scale—Revised) with arithmetical ability tests
and MMSE.

Mantovan et al. (1999) observed that patients with
AD present significant difficulties in complex written cal-
culation, but not so severe in the retrieval of arithmeti-
cal facts. Low consistency and high variability in the er-
ror types suggest that difficulties of patients with AD in
complex calculation arise from a monitoring deficit and
not from incomplete or distorted calculation algorithms.
Deficits in monitoring procedures may be an early and
common symptom of AD.

In summary, arithmetical ability tests seem to be ex-
cellent predictors of general cognitive performance. It may
be even proposed that arithmetical ability disturbances
should be included as an additional criterion of AD.

Gerstmann Syndrome

In 1940 Gerstmann described a syndrome associated
to lesions in the left angular gyrus that characteristically
included deficits of finger agnosia, right–left disorien-
tation, agraphia, and acalculia (Gerstmann, 1940). Ever
since, the existence of a Gerstmann syndrome has not been
free of debate and questioning in the literature (Benton,
1977; Botez, 1985; Poeck and Orgass, 1966; Strub and
Geschwind, 1983). In part this debate emerges because
this syndrome usually unfolds either as an “incomplete”
tetrad or in association to other cognitive deficits, particu-
larly, aphasia, alexia, and perceptual disorders (Frederiks,
1985). The presence of Gerstmann syndrome, complete
or incomplete, suggests a left posterior parietal damage
and more specifically, a damage to the left angular gyrus.
Even earlier the name “angular syndrome” was proposed
in lieu of the more widely recognized “Gerstmann syn-
drome” (Strub and Geschwind, 1983). The appearance of
a Gerstmann syndrome with electrical stimulation of the
cerebral cortex in the posterior parietal area supports its
angular localization (Morris et al., 1984). Mazzoni et al.
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(1990) described a case of a “pure” Gerstmann syndrome
associated with an angular gyrus traumatic damage.

According to Strub and Geschwind (1983), the angu-
lar localization in Gerstmann syndrome lesion would not
have an extension toward the occipital lobe, as Gerstmann
proposed, but rather toward the supramarginal gyrus and
the inferior parietal gyrus. In this case the agraphia would
correspond, then, to an apractic agraphia and not to an
aphasic one, and consequently the agraphia is not neces-
sarily be associated with alexia (Benson and Cummings,
1985). In fact, in cases of “incomplete” Gerstmann syn-
drome agraphia is usually the missing element, a possible
reflection of the fact that apractic agraphia is not exactly
angular, but inferior parietal instead. Furthermore, some-
times agraphia without alexia is observed, again as a result
of an inferior parietal lesion.

Right–Left Orientation

All known languages distinguish different words to
refer to right and left; all of them also include some
other spatial relationship words, such as up and down
(Greenberg, 1978; Hag´ege, 1982). Defects in understand-
ing and using these words with a spatial meaning are ob-
served in cases of left angular gyrus damage. Usually,
right–left disorientation is mentioned in cases of Gerst-
mann syndrome. Nonetheless, these patients do not only
present difficulties in recognizing right–left, but also other
spatial relationships (e.g., up–down, over–below). Right–
left disorientation is usually more evident, because it rep-
resents a relatively hard distinction. Even normal people
sometimes confuse right and left. Right–left discrimina-
tion is also relatively late acquired during child language
development. As a matter of fact, the difficulty observed
in children during language development, as well as in
Gerstmann syndrome, is not limited to discriminating right
and left, but also other spatial relationships. Spatial con-
cepts are strongly reflected in some language elements
(e.g., place adverbs, prepositions). In contemporary lan-
guages the underlying spatial content of prepositions is
evident (e.g., to, from, for). These spatial concepts medi-
ated through language may be disrupted in cases of brain
damage.

Pathogenesis of right–left disorientation is not com-
pletely understood. Patients with left posterior damage
present more evident difficulties than do right posterior
damaged patients (Ratcliff, 1979). Right–left disorienta-
tion implies difficulties in the application of spatial con-
cepts in the body’s lateral orientation.

Gold et al. (1995) observed a patient with Gerstmann
syndrome whose ability to name or point to lateralized

body parts using verbal labels “right” and “left” was not
defective, but whose performance was always poor when
mental rotation to a command was required. The authors
suggested that a defect in horizontal translation, that is,
mental rotation, accounted for the right–left disorienta-
tion in their patient. Furthermore, that acalculia and other
signs associated with Gerstmann syndrome could also
evolve from a deficit in the performance of these mental
rotations. Similarly, this deficit in mental rotations could
potentially be reflected in the impaired understanding of
comparisons, for example, time and place adverbs, found
in semantic aphasia. One could infer that a single under-
lying deficit, defective mental rotations, may account for
right–left disorientation, finger agnosia, acalculia, and se-
mantic aphasia. Their simultaneous appearance in a single
clinical syndrome is not coincidental. Notwithstanding,
agraphia would still remain unexplained by this unifying
underlying mechanism. It is of interest and perhaps not
surprising that it is precisely agraphia the missing sign in
the Gerstmann syndrome.

Finger Agnosia

Finger agnosia, as initially described by Gerstmann
in 1924 (Gerstmann, 1940), includes the inability to dis-
tinguish, name, or recognize the fingers not only in the
own hands but also in examiner’s hand or in a drawing
of a hand. The patient presents difficulties to selectively
move the fingers, both by verbal command and by imita-
tion. Most evident errors are observed in the index, middle,
and ring fingers. Usually the patient has difficulties rec-
ognizing his/her errors and consequently does not try to
correct them. Later on, Gerstmann (1940) included finger
agnosia, plus right–left disorientation, agraphia, and acal-
culia into a single syndrome. Interestingly, finger agnosia
is associated with toe agnosia (Tucha et al., 1997).

Some authors have proposed that finger agnosia rep-
resents a mild form of autotopagnosia (e.g., H´ecaen and
Albert, 1978). However, it has been reported that auto-
topagnosia and finger agnosia can appear dissociated, and
consequently would represent different defects (De Renzi
and Scotti, 1970). Finger agnosia is a relatively frequent
defect, whereas autotopagnosia represents a quite unusual
syndrome. It has been proposed that finger agnosia might
be a polymorphic phenomenon that includes apraxic, ag-
nostic, and aphasic aspects. In consequence, different sub-
types of finger agnosia can be distinguished: visual finger
agnosia, finger constructional apraxia, apractic defects in
finger selection, and finger aphasia (anomia) (Schilder and
Stengel, 1931). The role of parietal lobe in body knowl-
edge and the disorders of the body scheme in cases of
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parietal pathology have been particularly emphasized in
the literature (e.g., Botez, 1985; Critchley, 1953). Pari-
etal damage has been associated with asomatognosia in
general, hemiasomatognosia, alloesthesia, finger agnosia,
autotopagnosia, asymbolia for pain, apraxia, and the so-
called Verger–Dejerine syndrome (H´ecaen and Albert,
1978).

Historically, calculation abilities seem to develop
from counting, and in child development this begins with
the sequencing of fingers (correspondence construction)
(Hitch et al., 1987). Finger nomination is usually se-
quenced in a particular order and this represents a basic
procedure found in different cultures worldwide, both an-
cient and contemporary (Ardila, 1993; Cauty, 1984; Levy-
Bruhl, 1947). In fact, in many contemporary languages a
10- or 20-based system is evident. From the Latindigi-
tus, digitcan mean both number and finger. Accordingly,
a strong relationship between numerical knowledge and
finger gnosis begins to become evident and some com-
monality in brain activity or anatomy can be expected.
Right–left discrimination and finger gnosis are strongly
interdependent and can even be interpreted as components
of the autotopagnosia syndrome.

Semantic Aphasia

Commonly, investigators have reported the presence
of Gerstmann syndrome without aphasia as one of its
components (Roeltgen et al., 1983; Strub and Geschwind,
1983; Varney, 1984). However, the existence of a possible
semantic aphasia has not been specifically explored nor
ruled out (Ardila et al., 1989a). In 1926, Head described
a language alteration whereby he defined an inability to
recognize simultaneously the elements within a sentence,
and he called it semantic aphasia. In the following years
only a small group of researchers referred to this type
of aphasia (e.g., Conrad, 1932; Goldstein, 1948; Zucker,
1934). Nearly 40 years later, Luria (1966, 1973, 1976) re-
took this concept and extensively analyzed it. Since then,
however, only a few more authors have shown special in-
terest in studying semantic aphasia, and just a handful of
references have appeared in the literature over the last two
decades (Ardila et al., 1989a; Benson and Ardila, 1996;
Brown, 1972; Hier et al., 1980; Kertesz, 1979).

Luria (1973, 1976) considered that language defi-
ciencies observed in semantic aphasia included the fol-
lowing: (1) sentences with a complex system of successive
subordinate clauses; (2) reversible constructions, particu-
larly of the temporal and spatial type; (3) constructions
with double negative; (4) comparative sentences; (5) pas-
sive constructions; (6) constructions with transitive verbs;

and (7) constructions with attributive relations. He also
stated that these spatial disorders not only incidentally
accompany semantic aphasia, but that semantic aphasia
itself was a defect in the perception of simultaneous struc-
tures transferred to a higher symbolic level (Luria, 1976).
In other words, patients with semantic aphasia have dif-
ficulty understanding the meaning of words tinged with
spatial or quasi-spatial meaning.

There seems to exist a rationale for finding a com-
mon brain area and activity for acalculia, finger agnosia,
right–left disorientation, and semantic aphasia. Ardila
et al. (1989a, 2000) proposed to replace agraphia for se-
mantic aphasia as a part of the angular gyrus syndrome;
or simply to consider semantic aphasia as a fifth sign of
the Gerstmann syndrome. Thus, Gerstmann (or angular)
syndrome would include acalculia, finger agnosia (or a
more extended autotopagnosia), right–left disorientation
(and also difficulties with other spatial words), and se-
mantic aphasia. Sometimes, agraphia without alexia will
be observed, but agraphia would result from an inferior
parietal lesion, not exactly from an angular pathology.

TESTING FOR ACALCULIA

Testing for calculation abilities in brain-damaged pa-
tients has four main purposes:

1. To find out abnormal difficulties in calculation
tasks. If difficulties are severe enough, the diag-
nosis of acalculia may be proposed.

2. To distinguish the specific pattern of difficulties
the patient presents, and the particular type of
acalculia it corresponds to. Disturbances in dif-
ferent elements of the calculation system can be
proposed.

3. To find out associated deficits. Acalculia is usually
associated with diverse cognitive disturbances.

4. To describe the types of errors observed in the pa-
tient. This information will be particularly useful
in developing rehabilitation procedures.

Despite the general agreement that a comprehensive
cognitive evaluation should include testing for calcula-
tion abilities, there is a significant limitation in the avail-
able testing instruments. Lezak (1995) overtly states that
“An assessment of cognitive functions that does not in-
clude an examination of calculation skills is incomplete”
(p. 647). The WAIS-III Arithmetic subtest (Wechsler,
1997) is probably the most widely used instrument when
testing for calculation abilities in neuropsychology. This
subtest, however, has two significant limitations: (1) it is
assessing just a single aspect in numerical processing (to
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mentally solve arithmetical problems) and (2) it is very dif-
ficult to administer to patients with language and memory
defects.

A few models of testing for calculation abilities
have been developed (Ardila and Rosselli, 1994; Deloche
et al., 1994; Grafman et al., 1982; Harvey et al., 1993;
Luria, 1966; Rosselli and Ardila, 1989; Warrington, 1982).
However, norms regarding the effects of age, gender, and
very special education are not easily available. Even the
WAIS-III Arithmetic subtest does not control educational
level.

There is, however, a kind of general agreement about
how to test for calculation abilities. Testing for acalcu-
lia is rather similar everywhere. There are certain tasks
that are supposed to be most important for targeting cal-
culation abilities: reading and writing numbers, perform-
ing arithmetical operations, aligning numbers in columns,
solving arithmetical problems, and so on. That is the
way calculation abilities are tested in neuropsychology
worldwide.

Lezak (1995) considers the following calculation
ability tests as most frequently used in assessing numerical
skills:

1. WAIS Arithmetic subtest.
2. Arithmetical problems. For example, those prob-

lems used by Luria (1976) in assessing frontal
lobe pathology. A typical example is as follows:
“There are 18 books in two shelves. In one shelf
there is the double of books than in the other. How
many books are there in each one?” There are
different arithmetical problems included in psy-
chological test batteries, such as the Stanford-
Binet Intelligence Scale (Terman and Merril,
1973).

3. Wide Range Achievement Test (WRAT) Arith-
metic subtest (Jastak and Wilkinson, 1984).

4. Woodcock–Johnson Psycho-Educational Bat-
tery—Revised (WJ-R) (Woodcock and Johnson,
1989).

The best-designed and almost only acalculia stan-
dardized neuropsychological test battery was developed
by a group of European neuropsychologists headed by
Deloche (Deloche et al., 1989). Preliminary normative re-
sults in 180 participants stratified by education, age, and
gender were further available (Deloche et al., 1994). This
battery was named as EC301.

In this chapter, a general description of the EC301
test battery will presented. Later, a model for testing cal-
culation abilities in clinical neuropsychology will be pro-
posed. In the final part of this paper, an analysis of the
errors found in calculation abilities disturbances will be
introduced.

EC301

Deloche et al. (1989, 1994) attempted to develop
a calculation ability testing instruments, with norms by
age, educational level, and gender. This instrument, the
EC301 calculation ability test battery, is composed of
31 subtests that cover 8 compound arithmetical functions
and 5 single functions. Up-to-dately, the EC301 can be
considered as the best instrument in testing for calcula-
tion abilities. The following sections are included in the
EC301:

1. Counting(three subtests).
1.1. Spoken verbal counting (four items): by

ones from 1 to 31, by tens from 10 to 90, by
threes from 3 to 33, and counting backward
by ones from 22 to 1.

1.2. Digit counting requires counting by ones
from one to 31 (1,2,3,. . .31).

1.3. Written verbal counting has two items:
counting by ones from 1 to 16 (one,
two, three. . . sixteen), and counting by tens
from 10 to 90 (ten, twenty. . .ninety).

2. Dot enumeration(five subtests). In all subtests,
responses have to be produced in Arabic digit
form. In Subtests 1 and 2, items contain some
dots and are either canonical (dominoes) or non-
canonical patterns, organized in subgroups with
no more than five dots. In Subtests 3, 4, and 5,
participants have to point to the dots while count-
ing. The arrangement of the dos varies according
to spatial organization.

3. Transcoding (seven tasks). Considering that
numbers can be represented in three different
codes (spoken verbal, written verbal, and Ara-
bic) the six possible transcoding plus repetition
are included. Each subtest contains six items, and
the structure of the items is similar (thousands,
hundreds, tens, units).

4. Arithmetical signs(2 subtests).
4.1. Reading aloud arithmetical signs.
4.2. Writing from dictation.

5. Magnitude comparison(two subtests). Eight
pairs of numbers are included in each subtest
asking the participant to indicate which number
is larger.
5.1. Arabic digit form.
5.2. Written verbal form.

6. Mental calculation(two subtests). The four ba-
sic operations are presented with two items of
medium difficulty.
6.1. Spoken verbal.
6.2. Arabic digit condition.
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7. Calculation approximations(1 subtest). The par-
ticipant is required to estimate the result of dif-
ferent arithmetical operations. The response has
to be selected from a multiple choice of four-
number array.

8. Placing numbers on an analogue line(two sub-
tests). Participants have to point to the place of
a number among four alternatives (correct and
three distractors) indicated by ticks on a verti-
cal scale with 0–100 as marked end points. Five
items are included in each subtest.
8.1. Arabic digit form.
8.2. Spoken verbal numbers.

9. Writing down an operation(one subtest). The
ability to organize two numbers (two-digit and
three-digit) spatially is tested. The participant
is required to organize on a sheet of paper the
numbers to perform the four basic arithmetical
operations, but without the operation is actually
done.

10. Written calculation(three subtests). There are
two items in each subtest. The three subtests in-
clude addition, subtraction, and multiplication.

11. Perceptual quantity estimation(one subtest).
Participants are shown six photographs of real
objects or sets of elements. They have to estimate
either weights, lengths, or number of elements.

12. Contextual magnitude judgment(one subtest).
The task contains five items. Participants have
to indicate of a number of objects or per-
sons represent a small, medium, or large quan-
tity, according to some context (e.g., 35 per-
sons in a bus is a medium number of persons,
whereas 20 pages in a letter has to be rated as
a large letter, despite the fact that 35 is larger
than 20).

13. Numerical knowledge(one subtest). There are
six questions for each of which there is only one
correct answer (such as the numbers of days of
the week).

The EC301 is currently in normalization process in
different countries.

A Proposed Model for Testing Calculation Abilities

We are proposing a model for testing calculation abil-
ities, that is just and extension of the EC301 (Deloche
et al., 1989, 1994). Global quantification (or numerosity
perception) represents the most elementary quantification
process. However, global quantification does not represent
yet a truly numerical process, because it does not suppose

a one-to-one correspondence. As a matter of fact, it is a
purely visuoperceptual process, usually not included in
testing for calculation abilities. Enumeration represents
the most elementary type of truly numerical knowledge.
Counting is a sophisticated form of enumeration: a unique
number name is paired with each object in a collection, and
the final number name that is used stands for the cardinal
value of that collection. Testing for calculation abilities
can begin at the counting level.

1. Counting.
1.1. Counting real objects. A card with 10 ran-

domly distributed dots can be used. The par-
ticipant is required to count aloud the dots.

1.2. Counting forward. To count from 11 to
20 can be used because this is usually the
most irregular segment in different numer-
ical systems.

1.3. Counting backward. Even though count-
ing forward is clearly verbal rote learning,
counting backward does not represent a rote
learning. Attention plays a significant role
to count backward from 30 to 20.

2. Cardinality estimation corresponds to the task
named as “Placing numbers on an analogue line”
by Deloche et al. (1994). The participant has to
point to the place of a number among four alter-
natives (correct and three distractors) indicated
by ticks on a vertical scale with 0–100 as marked
end points. Some five items can be included in
each subtest.
2.1. Arabic digit form (10, 75, 40, 9, 87).
2.2. Spoken verbal numbers (eleven, ninety,

twenty-five, sixty, thirty-five).
3. Reading numbers.

3.1. Arabic digits. To read numbers with differ-
ent levels of complexity: 3, 27, 298, 7,327,
10003.

3.2. Roman numerals. Usually general popula-
tion people can read Roman numeral up to
12, because they are frequently included in
clocks. Roman numerals heavily rely on the
spatial position III, IV, VI, XI, IX.

4. Writing numbers.Different levels of complexity
can be used (7, 31, 106, 1,639, 50,002,). Quanti-
ties are dictated to the patient: one-digit numbers,
two-digit numbers, numbers requiring the use of
a positional value, and so on.

5. Transcoding.
5.1. From a numerical to a verbal code. Num-

bers using a numerical code are written
(e.g., 7, 23, 109, 9,231, 1,000,027), and
the patient is asked to write them with
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letters (e.g., seven, twenty-three, one hun-
dred nine, etc.).

5.2. From a verbal to a numerical code. Num-
bers using a verbal code are written (e.g.,
three, forty-nine, three hundred seventy-
six, nine thousand two hundred seventeen,
seven millions seven hundred nine), and the
patient is asked to write these quantities
with numbers (e.g., 3, 49, 376, etc.).

6. Reading and writing arithmetical signs.
6.1. Reading arithmetical signs written on a card

(+, –, : , ×, =). If the patient answers
correctly, the question “And what does it
mean?” can be presented.

6.2. Writing arithmetical signs by dictation
(plus, minus, divided, by, equal).

7. Numerical rote learning. Usually it is accepted
that multiplication tables represent a numeri-
cal rote learning, required for multiplications.
Nonetheless, numerical rote learning includes
as well adding and subtracting one-digit quanti-
ties, required in adding and subtracting. Numer-
ical rote learning can be preserved in cases of
parietal acalculia, but may be impaired in cases
of subcortical damage and right hemisphere
pathology.
7.1. Multiplication tables (3, 7, and 9).
7.2. Adding one-digit quantities (3+ 2, 5+ 3,

7+ 6, 9+ 4, 8+ 6).
7.3. Subtracting one-digit quantities (7− 5, 5
− 2, 9− 6, 8− 5, 9− 5).

8. To complete an arithmetical operation.This is
a very traditional test in evaluating calculation
abilities in patients with brain pathology. Differ-
ent arithmetical operations are written on a card,
but one number or arithmetical sign is missing.
The patient must say what number or arithmeti-
cal sign is missing.
8.1. Numbers (15+ . . . = 37; 15× . . . = 45;

12− . . . = 4 . . . /5= 3).
8.2. Arithmetical signs (12. . .18= 30; 17. . .6
= 11; 60. . .4= 15; 9. . .6= 54).

9. Magnitude comparisons.The patient is asked
to judge which number is larger and which is
smaller. An error in this task does not mean that
the patient does not understand what number is
larger. Numbers due to flaws in differentiating
between tens, hundreds, and so on. Errors may
also be due to the difficulties understanding the
words “larger” and “smaller” (e.g., 24− 42, 29
− 61, 103− 97, 1,003− 795, 428− 294).

10. Successive arithmetical operations.Successive
operations can be failed as a result of calculation

difficulties, but also because of attention defects
and perseveration. These successive arithmetical
operations should be performed aloud.
10.1. Adding (e.g., 1, 4, 7. . .37).
10.2. Subtracting (100, 93, 86. . .16).

11. Mental calculation.Adding, subtracting, multi-
plying, and dividing two-digit quantities.
11.1. Adding: 12+ 25, 31+ 84, 27+ 16, 76+

40, 89+ 36.
11.2. Subtracting: 35− 14, 74− 65, 44− 29,

91− 59, 70− 39.
11.3. Multiplying: 14× 3, 17× 8, 29× 3, 14

× 13, 27× 12.
11.4. Dividing: 15/3, 75/5, 60/15, 89/16.

12. Written calculation.Adding, subtracting, multi-
plying, and dividing two- and three-digit quanti-
ties.
12.1. Adding: 398+ 724.
12.2. Subtracting: 721 – 536.
12.3. Multiplying: 127× 89.
12.4. Dividing: 465/27.

13. Aligning numbers in columns.A series of num-
bers (e.g., 27, 2, 2,407, 12,057, 1,421,967) are
dictated to the patient. The patient is required to
place them in a column, as for adding.

14. Arithmetical operations using a different numer-
ical base.Arithmetical operations generally use a
decimal base. There is, however, a type of every-
day numerical knowledge that does not use the
decimal system, namely, time measures. Hours
use a 12-base and minutes and seconds a 60-base.
Potentially, this is an excellent calculation ability
test. Sometimes, however, this task may appear
hard for normal people (“How long time is there
between 8:30 and 11:15?” “How long time is
there between 10:45AM and 2:10PM?” “How
long time is there between 3:55 and 7:10?”).

15. Fractions.The use of fractions represents a rela-
tively difficult numerical ability. The numerical
value of fraction is inverse to the absolute number
value (i.e., one sixth is larger than one seventh).
Adding and subtracting fractions may be difficult
even for normal people.
15.1. To compare fractions. (“What is larger be-

tween one-half and one-third?”; “one-third
and one-fourth?”; “one-seventh and one-
eighth?”).

15.2. Adding and subtracting (“How much is
one-half plus one-half?”; “How much
is one-half plus one-third?”; “How much
is one-fifth plus one-third?”).

16. Digit span. It has been demonstrated that pa-
tients with acalculia have significant difficulties
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memorizing digits. In cases of brain pathology,
some specific types of amnesia are observed:
patients with aphasia have difficulties memoriz-
ing words, patients with apraxia have difficulties
memorizing sequences of movements, and pa-
tients with acalculia have difficulties memorizing
numbers. For the acalculic patient, numbers are
confusing and the meaning of digits is weak. In
consequence, digit repetition represents a good
task to test for numerical representation.
16.1. Digits forward. (Series of digits are pre-

sented at 1-s interval. The initial series has
three digits –4, 2, 7. If the patient fails, a
different 3-digit series is presented –9, 3,
6. If the patient repeats it errorless, a 4-
digit series is presented. When the patient
fails two consecutive times in repeating a
list with certain number of digits, the test
is stopped.)

16.2. Digits backward. (Beginning with a 2-digit
series, the patient is required to repeat it
backward. Two opportunities are allowed
for each series. When the patient fails two
consecutive times a list with a certain num-
ber of digits, the test is stopped.)

17. General numerical knowledge. (e.g., “How many
days are there in one week?”; “How many
weeks are there in one year?”; “At what tem-
perature the water boils?”; “How many conti-
nents are there?”; “What is the population in this
country?”)

18. Personal numerical knowledge.Everybody uses
a diversity of personal numerical knowledge that
can include the own phone number, address, per-
sonal identification, car tag, social security num-
ber, and so on. Ask about three items (e.g., phone
number, address, social security number).

19. Quantity estimation.To estimate the weights,
lengths, or number of elements. Interestingly,
this is a task that presents a significant disper-
sion in scores when administered to normal pop-
ulation people. (“How much an egg weights?”;
“How long an average car is?”; “How many peo-
ple can normally travel in a bus?”).

20. Time estimation.Time estimation is an abil-
ity not usually including in testing for acal-
culia. Some brain-damaged patients, particu-
larly patients with frontal lobe pathology, may
present very significant difficulties estimating
time. [“How long time ago did the WWII end?”;
“How long time ago was the discovery of Amer-
ica?”; “How long time ago the current presi-
dent was elected?”; “How long a regular movie

lasts?”; “How long time does it take to walk one
block (100 m) at a regular walking speed?”].

21. Magnitude estimation.The relative value of
numbers depends upon the context. Ask the pa-
tient to state if an object or a person represents a
“too much” or “too little” quantity according to
a specific semantic context. (e.g., “A book with
20 pages, is it too much or too little?”; “The
weight of an adult person is 70 pounds, is it too
much or too little?”; “One hundred people in a
bus, is it too much or too little?”; “To spend two
hours brushing the teeth, is it too much or too
little?”).

22. Numerical problems.Problems requiring the use
of one or several numerical operations are pre-
sented to the patient (e.g., “How many oranges
are there in two and half dozens?”; “John had
12 dollars, received 9 and spent 14. How much
money does he have now?”; “Mary and John get
150 in a day. Mary receives the double than John.
How much each one receives?”; “The sum of the
ages of a father and a son is 48. If the father has
the triple of age of the son, how old are each one
of them?”; “There are 18 books in two shelves;
in one of them there is double number than in the
other. How many books are there in each one?”).

23. Using money.Performing arithmetical opera-
tions with money represents one of the most im-
portant everyday uses of arithmetical operations.
Low-educated people and elderly people with
mild dementia can do better performing arith-
metical operations with money than in abstract.
Hence, the use of money may represent a poten-
tially useful calculation test. Different bills and
coins can be provided to the participant (e.g., five
$1 bills, two $5 bills, one $10 bill, and one $20
bill; five pennies, five nickels, three dimes, and
three quarters). The patient can be required to se-
lect certain quantity (“Give me 17 dollars and 77
cents,” “give me 23 dollars and 18 cents,” “give
me 39 dollars and 94 cents”).

Table 15 summarizes the different tests and subtests
that can be used when testing for calculation abilities.

Analysis of Errors

A diversity of errors potentially can be observed in
performing calculation tasks (Table 16). Nonetheless, six
major errors groups can be separated: (1) errors in digits,
(2) errors in “carrying over,” (3) borrowing errors, (4)
errors in basic principles, (5) errors in algorithms, and (6)
errors in arithmetical symbols.
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Table 15. Summary of the Areas that Potentially Can Be Included in a
Test for Calculation Abilities

1. Counting
1.1. Counting real objects
1.2. Counting forward
1.3. Counting backward

2. Cardinality estimation
2.1. Arabic digit form
2.2. Spoken verbal numbers

3. Reading numbers
3.1. Arabic digits
3.2. Roman numerals

4. Writing numbers
5. Transcoding

5.1. From a numerical to a verbal code
5.2. From a verbal to a numerical code

6. Reading and writing arithmetical signs
6.1. Reading arithmetical signs
6.2. Writing arithmetical signs

7. Numerical rote learning
7.1. Multiplication tables
7.2. Adding one-digit quantities
7.3. Subtracting one-digit quantities

8. To complete an arithmetical operation
8.1. Numbers
8.2. Arithmetical signs

9. Magnitude comparisons
10. Successive arithmetical operations

10.1. Adding
10.2. Subtracting

11. Mental calculation
11.1. Adding
11.2. Subtracting
11.3. Multiplying
11.4. Dividing

12. Written calculation
12.1. Adding
12.2. Subtracting
12.3. Multiplying
12.4. Dividing

13. Aligning numbers in columns
14. Arithmetical operations using a different numerical base
15. Fractions

15.1. To compare fractions
15.2. Adding and subtracting

16. Digit span
16.1. Digits forward
16.2. Digits backward

17. General numerical knowledge
18. Personal numerical knowledge
19. Quantity estimation
20. Time estimation
21. Magnitude estimation
22. Numerical problems
23. Using money

Errors in Digits

Errors in digits represent a fundamental type of error
in cases of acalculia. The patient may have difficulties de-

ciding the larger of two numbers (magnitude comparison).
This type of error may result in impairments in appreci-
ating the tens, hundreds, and so on, or difficulties under-
standing and confusions between “larger” and “smaller.”
This defect in magnitude comparison is observed in cases
of primary acalculia.

Patients with Wernicke’s aphasia frequently present
lexicalization errors: Two hundred fifty is written 20050.
This type of errors is observed in writing. In reading, a
frequent type of errors observed in these patients, but also
in patients with pure (occipital) alexia is decomposition.
The number 15 is read as “one five” and the number 537
is read “fifty-three seven.” In pure alexia this situation can
result in a digit-by-digit reading. Inversion errors (12 is
read or written as 21) is observed in spatial acalculias, but
also can be found in fluent aphasia.

Substitution errors in oral language, writing, or read-
ing simply mean that a number is substituted by a different
one. The errors refer to the number hierarchy (e.g., 30 be-
comes 3), order (5 becomes 6), or the so-called “stack”
errors (e.g., 15 becomes 50).

Omissions and additions are not unusual types of
errors in cases of brain pathology. Omissions can be ob-
served right-sided (most frequently in pure alexia) or at
the left (most frequently in left hemi-spatial neglect). Ad-
ditions are found in digits (23 becomes 233) but also in
strokes when writing a digit, most typically, the number 3
is written with extra loops.

In transcoding tasks (from numerical to verbal or
from verbal to numerical) different types of errors may
be found, including decomposition, additions, omissions,
and substitutions. Transcoding is a relatively difficult cal-
culation task.

Errors in “Carrying Over”

Primary difficulties in “carrying over,” that is, inabil-
ity to understand the calculation principle for “carrying
over” is observed in anarithmetia. Nonetheless, most pa-
tients with calculation defects may fail in carrying because
of language difficulties, spatial difficulties, and so on. In
spatial acalculia, difficulties in correctly placing the car-
ried over quantity represent the most important difficulty.
The patient knows what should be carried over but does
not know where to place it.

Borrowing Errors

Correctly borrowing supposes an understanding of
the arithmetical rules of permutability. Evidently, in
anarithmetia, not only carrying over, but also borrowing
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Table 16. Classification of the Types of Errors in Calculation Tests (Adapted from Ardila and Rosselli, 1994; Levin et al., 1993; Rosselli and Ardila,
1989, 1997 Spiers, 1987)

Type of error Description Type of acalculia

Errors in digits
Number value Inability to distinguish the larger of two numbers because of

flaws in differentiating between tens, hundreds, etc. or defects in
understanding “larger,” “smaller”

Anarithmetia

Lexicalization
(Wernickes)

Numbers are written as they sound without integrating tens, hundreds, etc. Aphasic

Decomposition Numbers are read without considering the number as a whole Anarithmetia; aphasic (Wernickes);
alexic (pure)

Inversions Numbers are copied, written, and repeated in the reverse order. This
rotation can be partial

Spatial posterior aphasias

Substitutions A number is substituted by another due to paralexia, paraphasia, or
paragraphia, affecting the result of an operation

1. Hierarchy errors: The number is substituted by another from a different
position of series (e.g., 5→ 50)

Posterior aphasics

2. Order errors: The substitution is by another from the same series
(e.g., 5→ 6)

Aphasia (posterior and anterior);
anarithmetia

3. Stack errors (e.g., 14→ 40) Aphasic; anarithmetia
Omission One or several digits are omitted (can be on the left or right side) Spatial; pure alexia
Additions A digit is inappropriately repeated upon writing it. Addition of traits

to a digit (usually 3)
Spatial

Addition of numbers previously presented can be a perseveration Frontal
Errors in Transcoding When numbers are passed from one code to another code (numerical

to verbal or vice versa), decomposition, order, omission, or addition
errors are noted

Aphasic; anarithmetia

Errors in “carrying
over”

Omission The patient does not “carry over” Anarithmetia
Incorrect “carrying

over”
Any “carrying-over” error with acalculia All acalculias

Incorrect placement “Carries over” correctly but adds in the wrong column Spatial
Borrowing errors
Borrowing zero Difficulties or confusion if the arithmetical operation has a zero Anarithmetia
Borrowing The last digit on the left is not reduced despite verbalizing the loan Frontal acalculia
Defective borrowing Adding the borrowed quantity incorrectly; borrowing unnecessarily Anarithmetia
Errors in basic

principles
Multiplication tables Incorrect recall; usually the patient tries to correct it with additions

in series
Spatial

Zero Fundamental errors are observed when a zero is present Anarithmetia
Errors in Algorithms
Incomplete Initiates operation correctly but is not capable of finishing Frontal
Spatial 1. Inappropriate use of space on the paper limiting the correct response Spatial

2. Inappropriate use of columns in arithmetical operations Spatial
Incorrect sequence Initiates the operation from left to right Anarithmetia
Inappropriate

algorithms
Numbers are organized spatially on the page for a different operation than

the desired one (e.g., in multiplication, the numbers are placed
to be divided)

Anarithmetia; Spatial

Mixed procedures Different operations are used in the same problem (e.g., Adds in one column
not multiplies in another)

Spatial

Reasoning errors The subject does not realize that the result is impossible (e.g., The result is
larger than what was subtracted)

Spatial

Errors in symbols
Forgetting The patient cannot remember nor write the four arithmetical signs Anarithmetia
Substitution The sign is substituted by another that is different from what was asked Spatial Acalculia
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is defective. It is not infrequent that patients with frontal
lobe pathology omit to borrow. To borrow and to carry
over, suppose a normal working memory, an internal pro-
cessing of the numerical information, and an appropriate
level of attention.

Errors in Basic Principles

There are certain basic principles that have to be used
all the time to successfully perform an arithmetical task.
Patients with right-hemisphere damage associated with
spatial acalculia quite frequently have defects in recalling
the multiplication tables. This defect is also observed in
some cases of subcortical pathology. Using the zero repre-
sents a relatively complex numerical concept. Abnormali-
ties in using the zero are found in primary acalculia. Some
other patients can also fail when the zero is present. For
example, in spatial acalculia the patient can get confused
in that there are several zeros (e.g., 100003), but they also
have difficulties when any digit is repeated several times
(e.g., 122225).

Errors in Algorithms

Patients with frontal damage typically have difficul-
ties finishing an arithmetical operation or solving a prob-
lem, even though they can begin to perform the arithmeti-
cal operation or solving the arithmetical problem. This
difficulty in ending a task, as a matter of fact, is observed
in different areas. For instance, when writing, the patient
can begin to write, but does not end the writing.

In cases of spatial defects, an inappropriate use of
the space on the paper limits the possibility of obtaining a
correct response in solving an arithmetical task. Patients
with right-hemisphere pathology and spatial acalculia can
present as well difficulties in spatially organizing the num-
bers for performing a particular operation. The distribution
of the numbers is different, for example, when multiply-
ing and dividing. An abnormal spatial distribution of the
quantities impedes a successful performance.

Arithmetical operations follow a sequence from right
to left, that is the opposite sequence to that used in writ-
ing and reading. This is a fundamental principle when
performing an arithmetical operation. Errors in the di-
rectionality are associated with misunderstanding of the
positional value of units, tens, hundreds, and inability to
understand the whole numerical system. This type of di-
rectionality error is found in primary acalculia.

There is a very interesting type of error sometimes
found in cases of right hemisphere pathology. When sub-
tracting, for example, the result is larger than the minuend.

This is simply impossible and absurd, and this type of er-
ror is known as “reasoning error.” The reason for this type
of error is unclear.

Errors in Arithmetical Signs

Errors in reading and using arithmetical signs are as-
sociated with anarithmetia. For even some types it may be
the major manifestation of primary acalculia. Patients with
a spatial type of acalculia may confuse the directionality
of the “plus” (+) and “times” (×) arithmetical signs. This
confusion will obviously result in a failure in performing
the correct arithmetical operation.

REHABILITATION OF CALCULATION
DISORDERS

The majority of brain-injured patients (especially in
vascular and traumatic injury cases) present some sponta-
neous cognitive recovery during the first months after the
injury. Afterwards, the spontaneous recovery curve be-
comes slower and requires the implementation of rehabil-
itation programs to achieve some additional improvement
(Lomas and Kertesz, 1978).

Two strategies have been proposed to explain the re-
habilitation of cognitive difficulties: the reactivation of
the lost cognitive function and the development of an al-
ternative strategy that achieves the same result through
an alternativecognitive procedure. The majority of the
rehabilitation models developed for aphasias, alexias, and
agraphias have emphasized the second strategy, which im-
plies a cognitive reorganization (Seron et al., 1992) or a
“functional system” reorganization (Luria, 1973). A solid
model applicable to calculation rehabilitation still does
not exist. The rehabilitation of calculation abilities is fre-
quently neglected in the neuropsychology literature and
ignored in most rehabilitation programs. Acalculia is usu-
ally evaluated and rehabilitated as a language-dependent
function. There are few investigative efforts directed at
studying the rehabilitation of calculation deficits.

The remediation of arithmetical facts has been re-
ported using a case study design (McCloskey et al.,
1991b; Girelli et al., 1996). The patients in both stud-
ies presented a selective multiplication deficit. McCloskey
et al. (1991b) reported a selective training effect for re-
peated multiplication problems that extended to the prob-
lems’ complements but did not improve performance in
general (e.g., the training of 3× 6 would improve 6× 3
but not 3× 8). Girelli et al. (1996) described two acalculic
patients who totally lost multiplication facts. After the re-
mediation procedure both patients presented a decrease
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in the error rate of trained and untrained multiplication
problems. The performance in the trained set, however,
improved more than the performance in the untrained one.
In the course of the training the error types changed dras-
tically from unsystematic errors to errors clearly related
to the correct answer.

The cognitive model of number processing has also
been used in the development of a training program in a
13-year-old with a severe difficulty in number-transcoding
tasks (Sullivan, 1996). The transcoding of numbers from
written verbal to Arabic and from spoken verbal to Ara-
bic was impaired whereas numeral comprehension was
preserved. After the training program the participant dis-
played significant gains in the Arabic transcoding tasks.
The lack of consistency in the type of syntactic errors
made by the patient and the control participants made the
authors unable to interpret the generalization of their re-
sults in terms of the cognitive model used.

A good neuropsychological assessment is the first
step in the rehabilitation of acalculia. A test battery devel-
oped specifically to evaluate acalculia should be used to
analyze the disturbances of calculation in a patient with
brain injury. Variables such as the patient’s educational
level and occupational activity should be carefully con-
sidered. Once the presence of acalculia is determined, a
quantitative and qualitative analysis of the patient’s er-
rors in different sections of the test battery should be per-
formed. The justification of the rehabilitation plan should
be based on the limitation that acalculia has in the patient’s
occupational and social life. The patient should preserve
sufficient cognitive capability that will allow the develop-
ment of a new compensatory behavior or an alternative
strategy (De Partz, 1986; Seron, 1984).

In the following sections, techniques that have been
developed to rehabilitate patients with primary and sec-
ondary acalculias are presented. The majority of the meth-
ods described have been implemented in individual cases.
Until now, no study exists that evaluates the effectiveness
of these techniques in large samples of patients.

Primary Acalculia Rehabilitation

Primary acalculia or anarithmetia is associated with
parietal or parietal–occipital injuries (Ardila and Rosselli,
1992). Tsvetkova (1996) considers that underlying pri-
mary acalculia is an alteration in the spatial perception
and representation of numbers along with defects in verbal
organization of spatial perception. The alteration in spa-
tial coordination systems constitutes a central underlying
defect in this type of acalculia (Luria, 1973; Tsvetkova,
1996). These patients present defects in numerical con-
cepts, in understanding number positions, and in the per-

formance of arithmetical procedural sequences and often
make mistakes in recognizing arithmetical symbols.

Patients who have primary acalculia combined with
semantic aphasia (and, according to some authors, this
combination is constant) (Ardila, 1993; Ardila et al.,
1989a; Luria, 1973), the comprehension defects extend
themselves to logic–grammar relationships in language.
In cases of semantic aphasia, numbers lose their relation-
ship with the conceptual system and are perceived in a
concrete and isolated manner (Tsvetkova, 1996). These
patients present numerous errors in the “larger than” and
“smaller than” tests, perceiving the number 86 as larger
than 112, because they consider the independent value of
each number. Although the concrete denomination of dig-
its (reading digits) is preserved, it is impossible for them
to use abstract numerical concepts. They are unable to
recognize the number of tens and hundreds included in
the number (e.g., in 800) or of understanding the content
of relationships such as 30= 10 + 10 + 10. Accord-
ingly, Tsvetkova proposes a structured rehabilitation plan
for anarithmetia aimed at recovering the understanding
of the composition of numbers and their positional value.
Initially, the patient relearns the concept of numbers by
performing tasks consisting of putting together real ob-
jects (tokens or sticks) and illustrations that contain the
corresponding number. The tasks consist of dividing the
objects into groups (initially, alike, and afterwards, differ-
ent), counting the number of objects in each group, finding
the illustration that represents the corresponding number,
placing it in each group, deciding how many of these num-
bers are found in the given amount, and finally, writing the
number on a sheet of paper.

Once the patient has reacquired the concept of digits
and tens, he/she moves on to developing the concept of nu-
merical composition, interrelationships between numbers,
and the possibility of operating with them. Then, numer-
ical denomination exercises (beginning with the second
tenth) and comprehension exercises between the name of
the number and its position are initiated. The patient be-
gins to understand that the name of the number indicates
its positional value and the left-to-right reading indicates
to him/her a decreasing positional value (e.g., 154: one
hundred and fifty-four). During this time, the positional
composition of the numbers and their quantitative signif-
icance depending on their place in the series is worked
on. Tsvetkova emphasizes the importance of using con-
crete mediators like tokens. When the patient also presents
anomia for numbers, one should work on the reestablish-
ment of the naming of numbers.

The understanding of numbers constitutes a recur-
ring learning process to relearn the arithmetical opera-
tions. This relearning should always be initiated in the
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most explicit and concrete way possible, using external
aides such as outlines, drawings, and so on. Verbalizing
aloud the steps that should be followed is generally useful.
As patients improve, they go from speaking aloud to mur-
muring, then to “speaking to themselves.” Training for
particular problems (i.e., 9× 0) can lead to the recupera-
tion of arithmetical rules (n× 0= 0) (McCloskey et al.,
1991a). The training for particular problems or operations
within the rehabilitation sessions leads then to the com-
prehension of arithmetical principles and rules (Girelli et
al., 1996).

Understanding calculation direction should be
worked on simultaneously with the relearning of arith-
metical operations. If the patient with anarithmetia also
presents aphasic problems, language should be rehabili-
tated first. Calculation rehabilitation can be implemented
once an appropriate level of linguistic comprehension and
production is achieved (Tsvetkova, 1996).

In conclusion, the patient with anarithmetia should
relearn the basic concepts that underlie the numerical sys-
tem. These basic concepts range from knowing numbers
to handling them within the system of operations.

Rehabilitation of Secondary Acalculias

In patients with difficulties in recognizing numbers
as a result of a perceptual deficit, the rehabilitation
process is directed at the recovery of steadfastness and
the generalization of visual perception. These patients
frequently present low scores on reading numbers tests
and on transcoding numbers from one code to another,
with numerous rotation errors. (Rosselli and Ardila,
1989). The visual–perceptual difficulties affect the
execution of written numbers tasks, in contrast to an
adequate performance of mental arithmetical operations.
When writing is preserved in these patients (as is the case
of alexia without agraphia), writing numbers in the air
helps their recognition.

Tsvetkova (1996) proposes using the “number recon-
struction” technique with these patients. The technique
includes number reconstruction by starting from certain
visual elements (e.g., completing eight, starting from the
number 3), looking for certain elements within a number
(e.g., looking for the number 1 in the number 4), and fi-
nally, performing a verbal analysis of the similarities and
differences that can be observed between numbers. At the
same time that the “number reconstruction” technique is
used, spatial orientation exercises, comprehension of the
right-to-left relationship, and visual analysis of geometri-
cal objects and forms should be developed.

Patients with alexia without agraphia generally
present spatial integration difficulties (simultanagnosia)

and inaccuracy in visual motor coordination (optic ataxia).
Treatment should then include exercises that permit spa-
tial analysis and visual motor ability training. Rehabil-
itation tasks are implemented following a program that
progressively increases difficulty, beginning with simple
movements designed for reaching for or indicating objects
followed by copying figures in two dimensions, and con-
cluding with the construction of three-dimensional figures
(Sohlberg and Mateer, 1989). The training in the repro-
duction of designs of different forms, colors, and sizes
can be initiated with aides. For instance, the patient is
asked to finish a design already started until he/she can
finally perform the task completely and independently
(Ben-Yishay, 1983). Sohlberg and Mateer (1989) pro-
pose, as a procedure to evaluate the generalization of
the task, obtaining a base line over the performance of
10 designs, noting the accuracy, time of execution, and
the number of aides required. The therapist can choose
5 out of 10 designs for training. When the execution
desired from these five designs is achieved, the perfor-
mance in the five unused designs during training is eval-
uated with the goal of observing the effects of training.
This generalization should be looked for in untrained vi-
sual motor tasks that require the same underlying skill
(Gouvier and Warner, 1987). When a visual search defect
(ocular apraxia) exists, visual pursuit tasks may help to
compensate.

Rosselli and Ardila (1996) describe the writing and
reading rehabilitation of a patient with Balint’s syndrome,
with severe ocular apraxia. They used visual movement
exercises such as (1) demonstrating the visual pursuit
of objects; (2) placing the index fingers at a distance of
15 cm from the sides of the face and requiring the patient
to look toward the left and right index fingers 10 times con-
secutively, and practicing convergence exercises; and (3)
from a central point at a distance of 30 cm, the patient must
bring the right or left index finger toward his/her nose, per-
manently maintaining visual contact. In addition, visual–
kinesthetic exercises were included in the rehabilitation
plan; the patient was shown letters he had to reproduce in
the air, and, later, he had to say the name of the letters.
Likewise, when following words, the patient should simul-
taneously perform the movements of writing these words.
In place of letters, numbers may be used. Within the vi-
sual searching exercises described by Rosselli and Ardila
(1996), looking for words and letters in letter groups that
progressively become more complex was included. Time
and precision were recorded.

Patients with aphasic acalculia that receive therapy
for their oral disorder usually improve significantly and
in parallel fashion with the improvement of the calcula-
tion disturbance (Basso, 1987). Acalculia rehabilitation
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in these patients parallels language rehabilitation using
denomination techniques, auditory verbal memory tech-
niques, and semantic conceptual classification techniques.
When acalculia is fundamentally derived from defects in
phonological discrimination, prominent errors in oral nu-
merical tasks are found. Therefore, within the rehabil-
itation program, visual stimuli should be used initially
(Tsvetkova, 1996).

Patients with frontal lesions generally present perse-
verations and attention difficulties that prevent an adequate
performance on calculation tests. These patients usually
do not present errors in naming or recognizing numbers.
Tsvetkova (1996) proposes the idea of providing control
strategies to patients that will allow them to direct their at-
tention and reduce perseveration. These control strategies
refer to descriptions of the steps that the patient should fol-
low to satisfactorily complete the task. When faced with
the problem of forming the number 12, by starting from
other numbers, the following steps can be described to the
patient: (1) forming the number 12 by starting from other
numbers with the help of addition, the patient is asked to
use the maximum number of combinations; (2) achieving
the same number by starting from other numbers with the
help of subtraction, the patient is asked to use the maxi-
mum number of combinations; and (3) achieving the same
number starting from other numbers with the help of mul-
tiplication. The maximum number of combinations should
be used. The patient is trained to verbalize and follow the
necessary steps. Because these patients do not generally
present defects in mathematical procedures, it is not nec-
essary to provide them with special instructions for the
execution of each operation.

The use of permanent verbalization is a useful tech-
nique with patients with visual–perceptual difficulties.
Spatial acalculia is associated with hemi-inattention (uni-
lateral spatial neglect), which can be observed in right as
well as left injuries (Rosselli et al., 1986). Although it
is notoriously more frequent and severe in cases of right
brain injury, unilateral spatial neglect or hemi-inattention
refers to the inability to respond (attend to stimuli) pre-
sented in the contralateral visual field to the brain injury.
These patients tend to present number omissions on the
opposite side of the brain lesion. The hemi-spatial neglect
constitutes one of the factors that interferes most with an
adequate cognitive recovery. Although hemi-spatial ne-
glect is frequently associated with hemianopsia (visual
loss in the contralateral field to the lesion), it should be
evaluated independently. Frequently, cancellation tasks,
copies of drawings, visual search tasks, bisection of a line,
and a drawing of clock are used, as well as tasks that help
to overcome the neglect. On the basis of the hypothesis
that patients with unilateral spatial neglect present diffi-

culties in adequately exploring their environment, several
rehabilitation programs have been directed to develop this
ability (Weinberg et al., 1977). Within the rehabilitation
techniques for hemi-inattention during reading, the fol-
lowing is discussed: (1) placing a vertical line on the left
margin of the paragraph to be read, and (2) numbering
the beginning and end of each line. As the treatment ad-
vances, the clues are eliminated until the patient is finally
capable of reading without help. Upon diminishing the
hemi-spatial neglect in general, spatial defects in reading
diminish simultaneously (Ardila and Rosselli, 1992). In
the recovery of spatial agraphia, it has been suggested us-
ing sheets of lined paper, which limit the writing space. It
is also suggested to draw vertical lines that mark spaces
between letters and words.

Rosselli and Ardila (1996) describe the rehabilitation
of a 58-year-old woman with spatial alexia, agraphia, and
acalculia associated to a vascular injury in the right hemi-
sphere. The rehabilitation process was based in the reha-
bilitation of unilateral spatial neglect and associated spa-
tial difficulties. The patient could adequately perform oral
calculations but was completely incapable of performing
written arithmetical operations with numbers composed of
two or more digits. In a special test of written arithmetical
operations (additions, subtractions, multiplications, and
divisions), an initial score of 0/20 was obtained. Left hemi-
inattention, a mixing up of procedures and the impossi-
bility of adequately orienting the columns were observed.
The rehabilitation techniques implemented included the
following:

1. Using short paragraphs with a red vertical line
placed on the left margin and with the lines num-
bered on the left and right sides, the patient, using
her index finger, had to look for the numbers cor-
responding to each line. The clues (vertical line
and numbers) were progressively eliminated.

2. In a text with no more than 12 lines, the patient
had to complete the missing letters (i.e., perform
sequential and ordered spatial exploration).

3. Letter cancellation exercises were repeated con-
stantly, and clues to facilitate their execution were
included. Time and precision were recorded.

4. In spontaneous writing exercises using lined pa-
per with a thick colored line in the left margin,
the patient had to look for the vertical line when
finishing each line. Later, the line was eliminated,
but the patient had to verbalize (initially aloud
and later to herself) and explore to the extreme
left before beginning to read the next line.

5. To facilitate the relearning of numbers through
dictation, squares were used to place the
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numbers in space, and the concepts of hierar-
chy were practiced permanently (units, tens, hun-
dreds, etc.).

6. To provide training in arithmetical operations, she
was given in writing additions, subtractions, mul-
tiplications, and divisions with digits separated in
columns by thick colored lines and the tops of
the columns were numbered (from right to left).
The patient had to verbalize the arithmetical pro-
cedures and, with her right index finger, look for
the left margin before she could pass to the next
column. Later, the patient herself would write the
operations she was dictated.

The techniques described previously were proven
useful 8 months after the treatment was started. The pa-
tient presented significant improvement but in no way a
complete recovery.

Rehabilitation of Developmental Dyscalculia

Strang and Rourke (1985) recommend that the reme-
dial programs for children with dyscalculia include, when
possible, systematic and concrete verbalizations of the op-
erations and arithmetical procedures. The operations that
involve mechanical arithmetic should be converted into
verbal tasks that permit the child to take apart the oper-
ations, and, in this way, facilitate his/her learning. The
teaching method should be clear, concrete, precise, and
systematic.

Once the child has developed an adequate recognition
of the numbers, one should begin to work with calculation
difficulties. Initially, one should choose an arithmetical op-
eration that presents a problem, and describe it verbally
in such a way that the child can repeat the description
independently of whether or not he/she understands the
underlying mathematical concept. Later, the child should
verbalize the steps that should be followed to perform
the operation in question (e.g., Step 1, name the mathe-
matical sign; Step 2, direct eyes toward the right, etc.).
Once the different steps have been verbalized, the child
should write them and repeat them orally as many times
as needed. Then, the instructor should use concrete aides
(table, equipment, and places) to explain the mathematical
concept.

Squared sheets of paper should always be used.
At times, the use of colors helps the discrimination of
the right–left. Each time the child is presented with an
arithmetical problem, it should be read out to mini-
mize the possibility of his/her forgetting visual details.
It is useful to have a pocked calculator at hand so that
the child can revise the results of the operations. It is

very important that the instructor record all errors com-
mitted by the child, with the purpose of analyzing the
cognitive processing steps that have problems (Rosselli,
1992).

Counting by tens starting at a number other than 10
is the first step in developing a technique that utilizes the
basic structure of the decimal system in teaching addition
(Neibart, 1985). In children with dyscalculia, the train-
ing to count by tens should start at 10 (10, 20, 30. . . )
and after several repetitions move to another number (3,
13, 23). According to Neibart, the use of block is im-
portant for the child to “discover” the concept that is
then internalized. Once the student has mastered count-
ing by 10 at any number, the addition of 10 (23+ 10) is
developed.

Sullivan (1996) developed a training program for a
child with transcoding number difficulties. He was unable
to transcribe a number given in written verbal or in spo-
ken verbal (six hundred forty thousand sixty-four) into an
Arabic code (640, 064). The training program consisted of
introducing a syntactic frame (H= hundreds; T= tens, O
= ones) for Arabic numeral production. It was shown how
to use the syntactic frame. For example, for the numeral six
hundred eighty-seven, he was told that because the num-
ber contains a hundred quantity the frame must have three
slot. He was then shown how to fill the frame with the Ara-
bic number (6/H, 8/T, 7/0). After he had understood how
to fill a syntactic frame successfully, he was able to gener-
ate the syntactic frames on his own. After the training he
showed a significant improvement in transcoding number
tasks.

The child’s parents should be taught about the learn-
ing strategy that is being used so that in family activities
(e.g., shopping), they practice the same arithmetical activi-
ties, and the generalization of the remedial program can be
promoted. Because these children with DD present atten-
tion and visual–perceptual discrimination difficulties, it is
convenient to involve the child in tasks that require a de-
tailed description of visual stimuli. In addition, one should
work on the parts in an organized manner. The difficulties
in the interpretation of social situations can be improved
by creating artificial situations (e.g., movies, photographs,
etc.) so that the child can interpret the images and the con-
text. The instructor can give clues to perceive the fictional
circumstances and the meanings of the gestures (Ozols
and Rourke, 1985).

The prognosis of DD depends on variables such
as the severity of the disorder, the degree of the
child’s deficiency in the execution of neuropsycholog-
ical tests, the promptness of the initiation treatment,
and the collaboration of the parents in the remedial
program.
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CONCLUSION

Calculation ability represents a very complex type of
cognition, including linguistic (oral and written), spatial,
memory, body knowledge, and executive function abili-
ties. Considering its complexity, it is not surprising to find
how frequent it is impaired in cases of focal brain pathol-
ogy and dementia. Neuropsychology has usually recog-
nized the importance of developmental and acquired cal-
culation disturbances. However, there is some paucity in
the research devoted to the neuropsychological analysis
of calculation disturbances. The difficulty in finding cases
of isolated acalculia may have played some role in the
relative paucity of research in this area.
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occipitale de l’hemisphere majeur.Enćephale60: 1–14.
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