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Abstract 
This study focuses on the representations and translations of mathematical relationships 
that are emphasized and taught at school, and discusses two theoretical models that may 
explain the pattern and difficulties in translating from one form of representations to 
another. Data were obtained from 79 students of grade 6. Analyses using structural 
equation modeling were performed to evaluate the two theoretical models. Results 
provided support for the hypothesis that multiple representations of mathematical 
relationships constitute different entities, and thus multiple representations do not by 
themselves help sixth grade students develop mathematical understanding. 
 
INTRODUCTION  
There is strong support in the mathematics education community that students can grasp 
the meaning of mathematical concepts by experiencing multiple mathematical 
representations (e.g., Janvier, 1987; Sierpinska, 1992). In this context, NCTM (2000) 
refers to a new “process standard” that addresses representations. The term 
“representations” is interpreted as the tools used for representing mathematical ideas 
such as tables, graphs, and equations (Confrey & Smith, 1991). By a translation process, 
we mean the psychological processes involving the moving from one mode of 
representations to another (Janvier, 1987). 

During the last two decades, the critical problem of translation between and within 
representations, and the importance of moving among multiple representations and 
connecting them are addressed in several studies (Sfard, 1992; Yerushalmy, 1997; 
Goldin, 1998; Reading, 1999). Most of them are based on the assumption that students´ 
ability to understand mathematical concepts depends on their ability to make translations 
among several modes of representations. Others examine the construction and 
transformation of representations through the process of mathematical problem solving 
(Yamada, 2000). The present study purports to throw some light about the nature and the 
contribution of multiple representations to mathematical learning and problem-solving. 
It is investigated how the translations among and within the several modes of 
representations contribute in the development of students’ understanding of various 

                                                 
1 A poster on the same subject has been presented by Athanasios Gagatsis and Iliada Elia. Another larger form of this text 
has been published by Athanasios Gagatsis, Iliada  Elia and Antigoni Mougi in a special issue on representations of  Scientia 
Pedagogica Experimentalis (2002). 
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mathematical relationships. For this reason it discusses two models that may explain the 
pattern and difficulties in translating from one form of representation to another. More 
specifically, the nature of translations among multiple representations is examined by 
attempting to provide answers to two questions:  

a) Do multiple representations and translations from one mode of representation 
to another relate to each other in such a way as to help students abstract the 
underlined concepts, and apply these representations to problem solving? 
b) Do different representations of mathematical relationships constitute different 
entities that may not convey the expected mathematical concepts, and need to be 
taught explicitly to students in order to deepen their understanding in 
mathematical concepts?    

Both of these questions are interrelated and are motivated by practical and theoretical 
concerns. These questions are focused on the way of using multiple representations in 
teaching mathematical functions and on the organization of didactical approaches to 
promote students’ understanding. As for the theoretical needs, these emerge from the 
lack of a theoretical framework of representations capable of supporting the kinds of 
understandings necessary to translate form one representation mode to another. Both 
practical and theoretical concerns are interwoven in understanding the relations and 
connections between the multiple representations of mathematical relationships.  

METHOD 

To examine students’ understandings in mathematical relationships, we generated 
questions presenting an idea in one representational mode and students were asked to 
represent the same idea in another mode. Each question focused on students’ abilities to 
perform translations from one representational system to another. A test was 
administered to 79 Cypriot students in grade 6 ranging in age from 120 to 132 months 
(Average age=123 months, SD=2.1 months). Each of the four factors of the study (i.e., 
graphical, tabular, verbal, and symbolic) involved three problems that represented 
relations of the following type: y=ax, y=ax+b, and y=x/a.  

The assessment of the proposed models was based on investigating the fit of the relevant 
confirmatory factor models. Model fitting was tested by computing three fit indices; the 
chi-square to its degree of freedom ratio (?2/df), the comparative fit index (CFI), and the 
root mean square residual (RMR). These three indices recognized that observed values 
for ?2/df <2, values for CFI>.9, and RMR values close to 0 are needed to support model 
fit (Marcoulides & Schumacker, 2001).  

A content analysis of pupils’ responses to the test items was conducted, in order to 
examine how students actually comprehend and interpret the symbolic representations of 
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mathematical concepts and relationships. The constant comparative method (Denzin & 
Lincoln, 1998) was used to analyze the qualitative data. 

Content analysis of students’ responses to the test tasks was focused on students’ 
misconceptions in relation to the meaning of mathematical symbols. These 
misconceptions seem to reveal students’ incapability to relate the symbolic to the verbal 
form of representation. For example, students translated the verbal expression “four 
times fewer” as “– x 4”. The term fewer was seen as an indication of the fact that they 
have to subtract and therefore the symbol “-” was used. Another interesting response 
given by some students, included the use of the expression “N=KxO” as a symbolic 
representation of the fact that the number of cubes didn’t change among players. The 
particular finding indicates that students considered the symbol “xO” as the identity 
element for multiplication. Examples of students´ answers reflecting the above 
misconceptions are given below. 

Verbal Symbolic  Tabular Verbal Symbolic 

 Children Cubes 

 1st   8 

 2nd 8 

 3rd  8 

 4th   8 

Five children 
share cubes 
among them. 
Each child gets 
four times 
fewer from the 
next one.  

N=-4xK* 

 5th  8 

Five children 
have some 
cubes to share. 
Each one will 
get 8. 

N=KxO* 

              Example 1                                                                Example 2 

*Letter “N” was agreed to represent the number of cubes that any child would get, and 
letter “K” to stand for the number of cubes the previous child would get. 

These examples of misinterpretation and misuse of the particular mathematical symbols 
are perhaps due to the fact that students use them frequently and therefore theorize them 
as the most appropriate symbols to express their mental representations. 

RESULTS 

In order to answer the questions of the present study, the assessment and comparison of 
model 1 (figure 1) and model 2 (figure 2) was the focus of the analysis of the data. 
Although both models fit the data, the ratio of ?2/df is smaller in model 2 (1.35) than in 
model 1 (1.87), and the CFI of model 2 (.98) is much greater than that of model 1 (.91). 
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Chi-squared difference test was also used to compare the fitting of the two models. The 
difference of ? 2 between the two models is 23.59, which is statistically significant (df=1, 
p<.001). It can be therefore claimed that model 2 fits the data in a better way. The 
critical difference between the two models is in the relations between the factors. This 
means that model 2, which has an excellent fitting, explains better than model 1 the 
structure of the relationships between the different modes of representations, and the 
relations between the particular indicators and the corresponding latent constructs 
(factors).   

The factor loadings of each task in model 2 are shown in figure 2, and the variances 
explained by the corresponding latent factors are illustrated in Table 1. All loadings 
were found to be significant (p<0.01). This implies that the hypothesized factors can be 
substantiated by the observed variables as measured by the test. Figure 2 also presents 
the effects of the factors in model 2 that highlight several important relations. The size 
of the effects (parameter estimates) in model 2 were tested through t-tests and all the 
paths were significant (p<.01). The graphical factor strongly exerts a direct effect on the 
verbal (0.67) and tabular (0.76) modes of representations. However, the effect of the 
graphical factor to the symbolic factor is indirect through the tabular factor of 
representation (0.53). The latter factor exerts a strong direct effect on symbolic factor 
(0.70).  

Table 1: Explained variance in each Latent Factor by their corresponding observed 
variables 

Latent 
Factors 

Observed 
Variables 

R2  Latent 
Factors 

Observed 
Variables 

R2 

Graphical GRA&TA* 0.75  Tabular TA&GRA 0.75 
(GRA) GRA&VE 

GRA&SYMB 
0.84 
0.76 

 (TA) TA&VE 
TA&SYMB  

0.90 

Verbal VE&TA 0.91  Symbolic TA&SYMB 0.89 
(VE) VE&GRA 0.87  (SY) SYMB&TA* 0.94 
         VE&SYMB 0.36   SYMB&GRA 0.86 

The graphical factor accounts for 45% of the variance on verbal factor and for 58% of 
the variance on tabular representations, while the tabular factor accounts for 50% of the 
variance on symbolic factor. The graphical factor also accounts indirectly for 28% of the 
variance on the symbolic representations. These results are in line with those reached by 
Aspinwall et al., (1997), indicating that in some cases the visual representations create 
cognitive difficulties that limit students’ ability to translate between graphical and 
algebraic representations. 
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THEORETICAL MODELS FOR MULTIPLE REPRESENTATIONS 

Two models were hypothesized as appropriate to answer the questions of the study. Both 
models included four factors representing four types of representations in mathematical 
relationships, namely, the graphical, the verbal, the tabular, and the symbolic. The first 
factor involves tasks in which a relationship is given in its graphical form and students 
are asked to translate it to its verbal, tabular, and symbolic form. The verbal factor 
includes tasks that provide students with the verbal description of a problem. Students 
are asked to translate the verbal description of the problem to its graphical, tabular, and 
symbolic representations. In the same way, the tabular and the symbolic factors include 
problems that are given in their tabular and symbolic forms, respectively, and students 
are asked to translate them to the other three forms of representations. These four factors 
were considered important in studies on representations (e.g., Janvier, 1996).  

However, the two models differ in their structure. Model 1, which is presented in figure 
1, views translations from one mode of representation to another as interrelated. Thus, 
model 1 provides support to the argument made in the first question of the study since it 
is based on the hypothesis that students are able of connecting different representations 
of a relationship. This model indicates not only that multiple representations are 
valuable for learning mathematical relationships but also that the differences among 
these representations can contribute to this value. Since all the factors in model 1 are 
interrelated, we hypothesize that each representation and translation makes clear the 
meaning of the mathematical relationship, and that students have the ability to move 
from one mode of representation to another one with relative facility.   
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On the other hand, model 2 (see figure 2) is based on the theoretical assumption that 
there are modes of mathematical representations that are prerequisites for other 
representations that are more complicated or sophisticated. It refers to the second 
question of the study, which hypothesizes that multiple representations function as 
distinct entities and that each representation yields its own insights into mathematical 
relationships. It also hypothesizes that multiple representations and translations 
constitute a hierarchical system, and that not all of them contribute to the development 
of mathematical relationships in the same way. It assumes that there are cases in which 
students do not recognize that the translations among multiple representations refer to 
the same concept, and in some cases different translations may create confusion. 

Figure 1: Model 1 Representing the Interrelations among the Translations. 
 
(Goodness of fit indices: X2=89.63, df=48, X2/df=1.87, CFI=.91, RMR=.007) 
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Figure 2: Model 2 Representing the Hierarchical Structure of Translations 
 
(Goodness of indices: X2=66.04, df=49, X2/df=1.35, CFI=.98, RMR=.007) 
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DISCUSSION  

The present study is in the framework of the ongoing discussion about the nature of 
mathematical representations. Basic research in this area provides support to two 
tentative hypotheses that: (a) mathematical representations are interrelated, and (b) 
mathematical representations constitute different entities (Duval, 2001). Our results 
provide support to the second research question, implying that multiple representations 
do not by themselves help students develop mathematical understanding. This is 
exemplified by the hierarchical structure of multiple representations supported by the 
data of our study. The hierarchy of multiple representations has theoretical and practical 
implications. From a theoretical perspective, this hierarchy means that some 
representations function as prototypes (Schwarz & Hershkowitz, 1999). Prototypes are 
the representations that have a set of characteristics most highly correlated with the 
characteristics of other representations, and serve as the basis for understanding and 
connecting a number of representations of the same content. In this study, the graphical 
factor seems to act as a prototype for understanding the representations starting from the 
verbal and tabular descriptions (verbal and tabular factors). At the same time, the tabular 
factor acts as a prototype for enabling students to handle the translations starting from 
symbolic forms (symbolic factor). Prototypicality further indicates that the cognitive 
demands of the translations among representations are not quite the same, and thus each 
one needs special attention during instruction (Duval, 2001). Moreover, findings based 
on the qualitative analysis, indicate students’ difficulties concerning the relation between 
the symbolic and the verbal form of representation. Therefore, teachers should be aware 
of the fact that a symbolic system in mathematics education does not always perform its 
functions in the expected way and should give special importance to the passage from 
natural to symbolic language (Bazzini, 1999). These results also support Miller’s (2000) 
conclusions that each representational system has its own regularities and transferring 
between representational systems and can sometimes be a stumbling block to learning 
new concepts.  

Finally, the above findings have some implications for instruction. The structure of the 
translations between different representations may facilitate instruction by following the 
paths of the proposed model and by sequencing correctly the domain of function 
representations. It can be therefore claimed that the proposed paths of model 2 can be 
used more explicitly in the process of teaching and learning mathematical relationships. 
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