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Summary. As soon as the first volume of “Descriptive Geometry” by Karl Pohlke (1810 – 1876) has appeared 
(Berlin, 1860), inclusive the fundamental theorem of oblique axonometry with a note that “the proof of the 
theorem probably could not be accomplished in an elementary way and that was why it was taken off for the 
second volume of the book”, both synthetic and analytic proofs has been made by many mathematicians within 
the time period longer than half a century. The paper presents – besides the history of proofs of the Pohlke’s 
theorem – the genial elementary proof of the generalized statement introduced by a young pupil of Pohlke, H. A. 
Schwarz (1843 – 1921) in 1864. The main goal of this paper is to point out the close connection between the 
method of oblique axonometry and a “free” parallel projection used in school practice within the tuition in 
stereometry. In conclusion there are notes on the problem of the completeness of the oblique image of a 
geometrical figure (considering the problems of geometry of position as well as problems involving 
perpendicularity and metrical problems). 
 
Riassunto. Il teorema fondamentale dell’Assonometria obliqua era pubblicato da Karl Pohlke (1830 – 1876) nel 
primo volume del suo libro “Geometria descrittiva” (Berlin, 1860) senza la dimostrazione con un avviso che “La 
dimostrazione di questo teorema sembra non poter essere fatta elementarmente perciò si deve riservarla per il 
secondo volume”. Subito dopo – nel corso del tempo più lungo del mezzo secolo – tanti matematici (persino il 
più rinomati) eseguivano le dimostrazioni del teorema, quelle sintetiche e anche analitiche. L’articolo offre – 
eccetto la storia interessante delle dimostrazioni della teorema di Pohlke – una dimostrazione semplice e 
luminosa – presentata da H. A. Schwarz (1843 – 1921), un giovane studente di Pohlke nel 1864. Lo scopo 
principale dell’articolo è mettere in evidenza la relazione stretta fra il metodo di rappresentazione di 
Assonometria obliqua e quello di proiezione parallela “libera” messa in pratica di scuola nel corso 
dell’insegnamento /apprendimento della Stereometria (Geometria elementare dello E3-spazio). Alla conclusione 
del testo ci sono le note riguardante il problema della completezza dell’immagine obliqua di una figura 
geometrica (riguardo ai problemi di natura posizionale e/o ai problemi di natura metrica concludendo i problemi 
della perpendicolarità).     
 
Abstrakt. Sotva vyšiel prvý diel učebnice „Deskriptívna geometria“ (Berlín, 1860) Karla Pohlkeho (1830 – 
1876), v ktorom autor vyslovil základnú vetu šikmej axonometrie s poznámkou, že pravdepodobne elementárny 
dôkaz vety neexistuje, a preto sa odkladá do druhého dielu učebnice, v priebehu vyše polstoročia sa objavilo 
mnoho dôkazov tejto vety (syntetických i analytických) – aj od najuznávanejších súdobých matematikov. Okrem 
zaujímavej histórie dôkazov Pohlkeho tvrdenia sa v článku čitateľ môže zoznámiť s geniálne jednoduchým 
dôkazom H. A. Schwarza (1843 – 1921), Pohlkeho žiaka. Hlavným cieľom článku je poukázať na tesný súvis 
zobrazovacej metódy šikmej axonometrie a tzv. voľného rovnobežného premietania používaného v školskej 
praxi vo vyučovaní stereometrie. Záver je venovaný poznámkam súvisiacich s úplnosťou obrazu geometrického 
útvaru vo voľnom rovnobežnom premietaní (vzhľadom na riešenie polohových a/alebo metrických úloh vrátane 
problémov o kolmosti základných geometrických útvarov). 
 

                                                 
1 This paper was supported by the subvention agency VEGA n. 1/3024/06 
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1 From the History of the Demonstration of Pohlke’s Theorem 
 
The fundamental theorem of oblique axonometry 
 “Any three non collinear segments in a plane with the same endpoint can be 
considered as the oblique parallel projection of a tripod.2” 
 
 Karl Pohlke (1810 Berlin – 1876 Berlin), professor of descriptive geometry at the 
Institute of technology in Berlin-Charlottenburg, has formulated the fundamental theorem of 
oblique axonometry in 1853. He was at that time a teacher of the local Academy of civil 
engineering. Because of some vagueness in the first version of the statement and the fact that 
the considered projection was assumed normal in most cases, the doubts of its verity have 

arisen. A letter to Pohlke from Jacob Steiner3 gives evidence of it. It has stimulated Pohlke to 
study more in detail the conditions in order for a quadruple of points to have been an oblique 
projection of vertices of the tetrahedron, the four edges of which constitute a tripod. The 
results of his research were published in 1858 (Miscellaneous Theorems and Problems).4  
 The tuition in descriptive geometry at German secondary schools, Academies and 
Institutes of technology required textbooks on this subject. Pohlke started the work on one of 
the first textbooks at the very beginning of his career. His textbook Descriptive Geometry 
(Darstellende Geometrie) in two volumes has gained mark of modernity owing to its contents 
as well as the consistent application of the scientific procedures established by Steiner in his 
work Systematic Treatise (Systematische Entwickelung). That has brought him a long-range 
success.5 Pohlke introduced the fundamental theorem of oblique axonometry in the first 
volume of his textbook (Berlin 1860, par. 113) with a notice that an elementary proof of the 
theorem probably did not exist and therefore it will be delayed until the second volume 
appears. The first edition of the first volume was followed by two another ones in 1866 and 
1872, the second one was published only once (1876). This “challenge” of Pohlke has been 
briefly answered at least by three elementary demonstrations of the Pohlke’s theorem.6 They 
have been – in the chronological order – the demonstration of J. W. Deschwanden 
(incomplete proof), of H. Kinkelin7 and of the young H. Schwarz, hardly twenty years old 
pupil of Pohlke, in that time without the doctor degree yet. The Schwarz’s demonstration was 
so genially simple that Pohlke published it with Schwarz’s permission in the second edition of 
the first volume of Descriptive Geometry. The Pohlke’s own demonstration has never been 
published and remained for more than a decade unknown.  
  

H. Schwarz8 and also T. Reye9 have proved the following generalized statement of the 
theorem: “Any three complanar segments ZOYOXO ′′′′′′ ,, such that at most three points of O', 

                                                 
2 tripod: three segments originated from a single point and perpendicular one to another 
3 Jacob Steiner (1796 – 1863), professor of geometry at the University of Berlin, one of the greatest German 
geometers of the 19th century; close friend of Pohlke  
4 Vermischte Sätze und Aufgaben (J. r. ang. Math., LV, 1858, 377) 
5 In the contents is not missing the introduction of principles of any linear method of representation including the 
relief perspective, applications to elementary surfaces and solids, plane sections of solids, intersections of solids, 
plane/space curves, surfaces of revolution, ruled surfaces, helicoids, etc.    
6 The fundamental theorem of oblique axonometry was named Pohlke’s theorem by mathematicians and 
descriptive geometers who have attempted to solve this problem.   
7 J. W. Deschwanden, the professor of descriptive geometry and the director of Institute of technology in Zürich, 
Application of oblique parallel Projection in axonometric Representation (Anwendung schiefer Paralell 
projectionen zu axonometrischen Zeichnungen, Natur. Ges. Zürich, VI, 1861, 254 – 284, VII); H. Kinkelin, 
professor of the Academy of civil engineering in Basil, Oblique axonometric Projection (Die schiefe 
axonometrische Projection, Natur. Ges. Zürich, VI, 1861, 358 – 369) – the analytic solution   
8 Elementary Demonstration of Pohlke’s fundamental Theorem of Axonometry (Elementarer Beweis des 
Pohlke’schen Fundamentalsatzes der Axonometrie, J. r. ang. Math., LXIII, 1863, 309 – 314); Hermann Schwarz 
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X', Y', Z' are collinear, can be considered as a parallel projection of three non complanar 
segments OX, OY, OZ with the prescribed ratios and mutual angles.” Within five decades 
were published numerous another demonstrations of the Pohlke-Schwarz’s theorem, both 
synthetic and analytic ones. We present some of them with the names of their authors.  
 The demonstration of Karel Pelz10, an outstanding mathematician in the field both 
synthetic and constructive geometry, was one of the first ones (About new Demonstration of 
the Pohlke’s fundamental Theorem, 1877). As soon as the publication has appeared, Schwarz 
recognized in it a proof identical to an original proof of Pohlke.11 G. V. Peschka12 has 
succeeded in completion of the Deschwanden’s proof; consequently the Peschka’s 
demonstration has been considered as the first elementary demonstration of the Pohlke’s 
Theorem in Austria-Hungary.  
 An elegant analytic proof of the statement in question has supplied Arthur Cayley13, an 
English algebraist, geometer and analyst. Also the top Bohemian mathematician of his time, 
Jan Sobotka14, has solved the problem of fundamental theorem of orthogonal axonometry as 
well as of an oblique one. Felix Klein15 oneself had no doubt about the significance of the 
Pohlke’s theorem and has accomplished another demonstration (an analytic one) that was 
published in a collection of his lectures “Elementary Mathematics from the higher point of 
view”. The second volume of this book, named Geometry, presents all geometry knowledge 
that is inevitable by Klein’s opinion for teacher candidates, especially.  
 

                                                                                                                                                         
(1843 – 1921) had earned his doctoral degree at Berlin under Weierstrass. After spending a short time at the 
University of Halle he accepted a professorship at the University of Göttingen (1875 – 1892) and then at the 
University of Berlin, where he worked until his death. His affection for geometry (though he has not occupied 
with any research in this domain) and his unusual ability to transform geometrical considerations into the 
language of analysis has brought him to the most significant results (for example Cauchy-Schwarz’s inequality, 
Schwarz’s functions, etc.).  
9 T. Reye (1838 – 1919), Demonstrations of Pohlke’s fundamental Theorem of Axonometry (Beweis von Pohlke’s 
Fundamentalsatz der Axonometrie, Vrtlj. Natur. Ges. Zürich, XI, 1866, 350 – 358) 
10 Karel Pelz (1845 Běleč u Křivoklátu – 1908 Prague); On a new demonstration of the fundamental theorem of 
Pohlke (Über einen neuen Beweis des Fundamentalsatzes von Pohlke [6]). K. Pelz took his university degree at 
the Polytechnic Institute in Prague, he was a student of Fiedler and Küpper. He worked as an assistant lecturer by 
Küpper for 5 years, a professor at technical secondary school at Těšín and in Graz, where he has entered in a 
very short time an academic career at the Polytechnic Institute. The years passed in Graz had been the most 
prosperous and productive years of his life. In 1896 his long-time dream came true when he turned to Prague and 
became an ordinary professor of descriptive geometry at the Czech Polytechnic Institute  and worked at this post 
until his death. K. Pelz has excelled in the synthetic theory of conics, curves and surfaces (especially the quadric 
ones) and has been interested in another various contemporary problems. His contribution to the solving several 
problems has always been excellent.   
11 He made a reference to it in Ges. Mathem. Abhandlungen II, Berlin 1890, 350. 
12 Gustav Adolf Victor Peschka (1830 – 1903), at that time the professor of descriptive geometry at the German 
Polytechnic Institute in Brno, in 1891 – 1901 the professor of descriptive geometry at the Polytechnic Institute in 
Vienna; An elementar Demonstration of Pohlke’s fundamental Theorem of Axonometry (Elementarer Beweis des 
Pohlke’schen Fundamentalsatzes der Axonometrie, Stzgsb. Math. Nat., Akad. Wien LXXVIII, 1878, II Abth., 
1043 – 54)  
13 Arthur Cayley (1821 – 1895), On a Problem of Projection (The quart. J. p. appl. Math., XIII, 1875, 19 – 29)   
14 Jan Sobotka (1862 – 1931), the professor of descriptive geometry at the Polytechnic Institute in Vienna, the 
first professor of desriptive geometry at the Czech Polytechnic Institute in Brno and from 1904 the professor of 
mathematics at the Czech University in Prague. On mathematical Study of Axonometry. (Zur rechnerischen 
Behandlungen der Axonometrie, Stzgsb. Böhm. Ges. Prag, 1900)  
15 Felix Klein (1849 – 1925), the professor at the University of Erlangen and Göttingen, German algebraist, 
analyst, geometer. In Erlangen, in a famous inaugural program in 1872 (The Erlangen program), he introduced 
the classification of geometries according to invariants under groups of transformations.    
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2 The Schwarz’s Proof of fundamental Theorem of Pohlke  
 
 From numerous proofs of the Pohlke-Schwarz’s fundamental theorem the following 
(due to H. Schwarz) is quite elementary. We give it in a broad outline. Schwarz has formulated 
the statement of Pohlke in a more general fashion: 
 
Theorem 1 The vertices of any quadrangle16 can be considered as an oblique parallel 
projection of the vertices of a tetrahedron that is similar to a given tetrahedron.17  
 The proof of theorem 1 is based upon the very interesting theorem of L’Huilier18 : The 
sections of an arbitrary three-edged closed prismatic surface include all the possible forms of 
triangles. (In other words: Every triangle can be considered as the normal projection of          
a triangle of a given form.) The next auxiliary theorem is a simple consequence of this 
proposition: 
 

Theorem 2  
To any n-edged (n > 3) closed prismatic surface Hn and to any n-polygon nP  affine19 to the 
arbitrary n-polygonal plane section of Hn  there exists a plane that intersects Hn in an n-
polygon that is similar to the given n-polygon nP .  
 
The proof of the Pohlke-Schwarz’s theorem is now easy. Evidently it is sufficient to prove the 
following modified statement (equivalent to the theorem 1): 
 

Theorem 3 
The oblique image of the vertices of any tetrahedron ABCD (by an oblique parallel projection 
onto a plane) can always be the vertices of a quadrangle 1111 DCBA  that is similar to a given 
quadrangle DCBA . 
Proof (of the theorem 3)  
 If an oblique parallel projection ϕ of the required properties does exist it holds20: 

• The intersection point 1111 DBCA ∩  of the diagonals of the quadrangle 1111 DCBA  has to 
be the parallel projection of two points that are incident separately with just one of two 
skew edges AC, BD of the given tetrahedron ABCD. Let’s denote them: M, N (M ∈ AC, 
N ∈ BD). Consequently ϕ (M) = ϕ (N) (ϕ (M) = M1, ϕ (N) = N1).  

• According to the properties of two similar figures as well as the fundamental 
properties of parallel projection we have: (A1C1M1) = ( MCA ), (B1D1N1) = ( NDB ) 
(similar quadrangles) and (A1C1M1) = (ACM), (B1D1N1) = (BDN) (parallel segments 
are projected in the same proportion). 

 

                                                 
16 We consider a simple quadrangle, i.e. a plane geometric figure ABCD consisting of four points A, B, C, D no 
three of which are collinear, and the four segments AB, BC, CD, DA (connecting the points in a given order). 
Four points are vertices, and four segments sides of the quadrangle. 
17 In the original Schwarz’s statement there was no mention of the quadrangle; explicitly was excluded only the 
case of four points that lied on the same line ([1] p. 303). But three collinear points as the parallel projection of 
the three vertices of tripod is neither the case of axonometry nor is used in representations of solids in school 
practice in solving of stereometric problems.    
18 Simon L’Huilier (1750 – 1840), French-Swiss mathematician. He has proved the theorem in 1811.  
19 Two n-polygons are called affine if and only if there exists an affine transformation which maps one of           
n-polygons onto another.   
20 An oblique image of any point X of the space E3 we denote X1 (ϕ : E3 → (α1), ϕ : X 6 X1). 



“Quaderni di Ricerca in Didattica”, n17, 2007. 
G.R.I.M. (Department of Mathematics, University of Palermo, Italy) 

The Pohlke-Schwarz Theorem and its Relevancy in the Didactics of Mathematics 
Zita Sklenáriková&Marta Pémová 

156

 
 

Fig. 1 
 It is now sufficient to construct the points M, N by following equalities: (ACM) =         
= ( MCA ), (BDN) = ( NDB ); evidently M ≠ N (it results from straight lines AC, BD being 
the skew ones). (Fig. 1) The line MN represents projection “rays” 

21
 (the projectors) of the 

oblique parallel projection that we construct. The projectors of the vertices of the tetrahedron 
ABCD constitute the edges of the four-edged closed prismatic surface 4H (a surface 4H is a 
boundary of the projection figure of the tetrahedron ABCD). The plane section of the surface 
4H by an arbitrary plane α (not parallel with MN) is a quadrangle DCBA ′′′′ , which is affine to 
the given quadrangle DCBA ; this statement follows from equalities a) (ACM) = ( MCA ′′′ ) = 
= ( MCA ), b) (BDN) = ( NDB ′′′ ) = ( NDB ). The last equalities in expressions a), b) stand for 
the necessary and sufficient condition in order for quadrangles DCBA ′′′′  and DCBA to be 
affine. The statement of the theorem 3 is now a direct consequence of the theorem 2. 
 

3  High Relevancy of Pohlke’s Theorem in Tuition in Mathematics 
 

The Pohlke’s theorem is a fundamental theorem of the axonometric representation of 
three-dimensional figures through an oblique parallel projection into a plane. The principles of 
such representation a potential reader can find e.g. in [2], [7] and in all handbooks                   
on descriptive geometry dealing with axonometric mapping for the use by engineers or 
specialists on computer graphics.  

The method is based on oblique parallel projection into an arbitrary plane ε (not at 
infinity) of the extended Euclidean space 3E 22 fixedly connected with a base ;≺ zyx EEEO ,,;  
of an arbitrary orthonormal coordinate system under a condition that the plane ε is not parallel 
to any of the axes x, y, z of coordinates and no coordinate axis is a projector of the oblique 
projection. The plane ε is called the axonometric plane of projections and an oblique 
projection of a point M into this plane is the axonometric projection of this point (denotation: 
Mk).23 The configuration ;≺ z

k
y
k

x
kk EEEO ,,;  is the axonometric coordinate system. By 

Pohlke’s theorem we can take points z
k

y
k

x
kk EEEO ,,, arbitrarily, under the condition that they 

are vertices of a quadrangle (in the axonometric plane of projections). (Fig. 2a, b)  
 

                                                 
21 More exactly: the projectors of a parallel projection are not rays, but a system of parallel non-oriented straight 
lines, while a ray is an oriented straight line and a system of all “congruently” oriented rays is a direction; for 
example the direction of illumination in the theory of shadows (the rays of light).  
22 Euclidean space E3

 is extended with ideal elements (points, lines and an ideal plane, so called elements in infinity). 
23 The set of axonometric projections of all points of the geometrical figure U is called axonometric projection of 
the figure U and is denoted Uk.   
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Fig. 2a, b 
Let M be an arbitrary non-ideal point of the space 3E  and xM, yM, zM its coordinates in 

the chosen orthonormal coordinate system. Then 
 xM = ( OEM xx ), yM = ( OEM yy ), zM = ( OEM zz )                          (1) 

where the points ,xM ,yM zM are the vertices of the parallelepiped (in this case rectangular 
one), which corresponds to a point M. The representation of a point M in axonometry will be 
an ordered couple of the points (Mk, M1k), M1 being a normal projection of a point M into the 
first auxiliary plane of projections π = xy 24 (the plane π is the first coordinate plane). The 
point M1 is said to be the first projection of the point M and the point M1k is the axonometric 
projection of the first projection of the point M, that is M1k = (M1)k. From the definition of the 
first projection of a point is obvious: 

MM1 || z ∨ (M = M1) ⇒ Mk M1k || zk ∨ (Mk = M1k), respectively. 
 

 It is easy to verify that the mapping ψ : 3E → ε × ε, ψ : M 6 (Mk, M1k) so that           
Mk M1k || zk or Mk = M1k  (in a way described above) is a bijection.  
 The coordinates xM, yM, zM of a point M establish the corresponding rectangular 
parallelepiped of the point M as well as its parallel projection (in the given axonometric 
coordinate system) considering that a ratio in which a point divides a line segment25 is an 
invariant under a parallel projection. Consequently the equalities (2)   

xM = ( k
x
k

x
k OEM ), yM = ( k

y
k

y
k OEM ), zM = ( k

z
k

z
k OEM )                          (2) 

follow from (1). The couple (Mk, M1k) is settled by the axonometric projections of two 
vertices of the mentioned parallelepiped.  
 Conversely, the fact that an ordered couple (Mk, M1k) determines points x

kM , y
kM , z

kM  
(Fig. 2b) and consequently the coordinates of the point M (and the point M itself) is evident. 
 
Note. An axonometric method of representation does not require the mastery of any other 
method of representation used in descriptive geometry. It does require a mastery of 
stereometry (elementary geometry of the Euclidean space E3) with the notion of parallel 
projection and its invariants/invariant properties, the fundamental notions connected with the 
parallel projections of simple geometrical objects (prismatic/cylindrical surface, pyramidal/ 
conical surface, sphere) and of solids derived from that objects (prism/cylinder, pyramid/ 
cone) in the free parallel projection used in a school practice.  
 

                                                 
24 It can be used also the second or the third auxiliary plane of projections in the connection with the second or 
the third plane of coordinates, respectively. 
25 To tell more exactly it is a ratio of an ordered triple of collinear points. 
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 What is the connection between the axonometric method of representation (by an 
oblique projection into a plane) and the free parallel projection26 used in a school practice for 
the illustration of the solving stereometric problems? From the generalized statement of 
Hermann Schwarz it follows that the correlation is very strong. It can be said, that the method 
of oblique axonometry forms a background of the representing of 3-space objects in the free 
parallel projection. The knowledge/understanding at least of its principle makes the work of     
a teacher in the tuition-instruction/learning process in stereometry much more effective.  
 Let’s notice that the map ψ : 3E → ε × ε, ψ : M 6 (Mk, M1k) keeps to be bijection also 

in the case of an arbitrary affine coordinate tetrahedron zyx EEOE . A normal (= the first) 
projection into the plane π is then substituted by an oblique parallel projection, the projectors 
of which are parallel to z-axis. The first projection could be also the central projection with a 
centre in an arbitrary non-ideal point. In both cases we have to do with the so-called inner 
projection connected with the representation of prisms/cylinders and pyramids/cones in the 
free parallel projection. 
 
 Stereometric problems are amply of the constructional character. Even if there is no 
difference between a general formal structure of the solving of the construction stereometric 
problem in comparison with a planimetric one (analysis of a problem, construction, 
demonstration, discussion), there is an essential new problem in stereometry – namely a 
presentation of the construction. Considering that really it is not possible to accomplish the 
geometric figure of the required properties (usually by plane means)27, it is necessary to 
postulate explicitly the concept of the construction in the solving stereometric problems. 
Under the construction in stereometry we understand the working out an algorithm, which 
would enable us to “accomplish” the space object of the required properties by the use of so-
called elementary constructions. We postulate elementary constructions as the simple basic 
problems that proceed towards objects, the existence of which is guaranteed by axioms and 
their simple consequences. It is necessary to list them at class; but, naturally, their introducing 
should correspond to the psychic maturity of pupils/students. The elementary constructions 
could be, for example, the following:  
 

1. To construct a plane that is incident with a given triple of non collinear points. 
2. To construct a line of intersection of two non-parallel planes. 
3. To solve any planimetric problem in a given plane. 
4. a) To choose an arbitrary point that is incident/is not incident with a given line. 

b) To choose an arbitrary point that is incident/is not incident with a given plane. 
            c) To choose an arbitrary line that is incident/is not incident with a given point. 
            d) To choose an arbitrary line that is incident/is not incident with a given plane. 
            e) To choose an arbitrary plane that is incident/is not incident with a given point. 

                                                 
26 Free parallel projection is called a parallel projection into a plane that is independent of any coordinate 
system. The solving the stereometric problem is connected as rule with some reference solid/figure by help of 
which the given geometric figures in the problem (points, lines, planes …) are determined.  
27 Even in the opposite case nothing would be solved, because there is a stupendous difference between the 
material model of the geometrical object and the abstract concept of this object (mathematics notion). [12] But 
this note does not want to reduce the importance of the work with material models in the tuition in stereometry. 
The model stands for an inevitable instrument not only at the time of the first contacts of the pupils/students with 
the space objects; it can be omitted only under condition that pupils/students by this time have managed very 
effectively the construction of “sketches” of geometric figures, e.g. of the images of the figures in the free 
parallel projection. This is possible only after having reached the certain level of the mastery of the system of 
stereometry and also it depends on the complexity of the studied problem. For example the study of the 
regular/semi-regular convex solids and their representation in descriptive geometry – even at the university level 
– is unthinkable without using models.    
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            f) To choose an arbitrary plane that is incident/is not incident with a given line.  
5.   To construct a line that passes through a given point and is parallel to a given line. 
 
 It does not mean that an algorithm of the solving a stereometric problem has to include 

only the elementary constructions 1 – 5 from the list above. After having acquired an 
algorithm of the solving of another simple problem (for example the construction of a plane 
passing through a given line and parallel to another line or the construction of a plane passing 
through a given point and parallel to another plane …) also this problem can figure in 
algorithm as an elementary construction.  

To work out an algorithm of the solving the stereometric problem is sometimes rather 
hard. It can be facilitated by the so-called sketch; by this term we understand an oblique image 
of a geometric object in the method of a free parallel projection. The fact that the free parallel 
projection is independent of any coordinate system is important too. For example, it enables 
the teacher to choose images of some figures arbitrarily, when explaining the matter. It also 
facilitates the taking notes by students. On the other side is important – from the didactic point 
of view – to formulate problems for students in such a way that the solution should be 
uniform. It will happen only in such problems, where images of the geometric figures are 
complete. One can require the completeness of an image with respect to the solution problems 
of position or the completeness of an image with respect to the solution metric problems; it 
depends on the characteristic of a given problem. There is no need to stress the importance of 
the training the solving stereometric problems by constructions in the image-plane (on plane 
images of space objects). This activity is – besides the acquiring the logical fundaments of the 
geometry of 3-dimensional Euclidean space (on the adequate level corresponding to the 
psychic maturity of pupils/students) – a component of an extraordinary importance in the 
tuition in Mathematics. The image/sketch of the 3-space object helps us to fill up the distance 
between the model and the abstract concept of the object. This all put very high requirements 
on the teacher’s work. 

 
The following notes can be understood as an attempt to define some difficulties 

connected with the construction of images of geometrical objects (affected by the free parallel 
projection) in the solving stereometric problems, as well as to adumbrate the possible ways of 
their solutions. Some of them will be formulated in the hypotheses of the research work.  

1. The fact that a teacher of Mathematics masters the system of elementary geometry of   
2-dimensional Euclidean plane as well as of 3-dimensional Euclidean space (system 
of stereometry) on the reliable level should be taken for self-evident. Without the 
knowledge of the system she/he would not be capable of the solving any of another 
problems. 

2. The matter of a high importance is a correct formulation of a problem – considering 
the basic classification of stereometric problems into two groups: a) problems of 
geometry of position; b) problems involving perpendicularity and metric problems.28 
For the managing these problems the teacher should be acquainted with a notion of the 
completeness of an image of a given geometric figure with respect to the solving 
position problems as well as metric ones. Some examples explaining the notions will 
follow.  

3. Every teacher acquainted with the Pohlke’s theorem should be aware of the fact, that 
demands (laid on pupils) which concern the execution of the correct “drawing” of a 
cube etc. (by raising absurd rules of the constant shortening of images of some edges, 
the measuring of angles etc.) are inappropriate. Also demands on pupils/students to 

                                                 
28 A simple computation problem (“substitution in formula”) in the solution of which no stereometric 
construction is required evidently is no metric problem.   
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identify the geometric object from its image (effected by the free parallel projection) 
in the case that the image is complete with respect to the solving position problems but 
incomplete with respect to the solving metric problems should be taken as 
inadmissible.  

4. The student of the secondary school would comprehend that the projection in question 
(in the free parallel projection) is not a normal one. The construction of the normal 
projection of a tripod is not elementary29; it is based on a knowledge that does not 
belong to the contents of the secondary/high school curriculum on the subject. 
 

 The following examples explain some of the notions from this paragraph. 
We call the oblique parallel image of an n-edged prism ( )AAAAH nn 121 ,...  ( AAA n...21 is 

the base n-polygon nP  and AA11  is a lateral edge of Hn ) complete with respect to the solving 
position problems if there are given: a) the projection of any triple of vertices of any its base           
polygon; b) the projection of one vertex of another base polygon (which lays on the same 
edge of the solid with a vertex of the given triple); c) the form of the n-polygon nP  (i.e. an 
arbitrary polygon that is similar to the polygon nP ) (for n > 3). The parallel projection of the 
mentioned quadruple of vertices can be chose – by the Pohlke-Schwarz’s theorem – arbitrarily 
and also suitably (for example in a way, that any two lateral edges does not lay in the same 
projecting plane, i.e. the projections of them are not incident, etc.). (Fig. 3a) For the 
completion of projections of the other vertices of nP  we use the fundamental properties of the 
parallel projection (the parallelism – the invariant property, the ratio of parallel segments – 
the invariant) and the information about its form. Projections of vertices of another base nP  
can be completed by using the property of the projection of congruently oriented congruent 
segments AAii  (i = 1, 2, …, n). However, every other geometric figure entering into the 
problem (a straight line, a plane …) has to be determined by points fixedly connected with a 
given reference solid, in this case the prism Hn . These points may lie on the lines passing 
through the edges of the prism as well as in the planes containing any couple of its lateral 
edges (also of non-neighbouring ones), in the planes of the base polygons, etc.  

Analogically the image of an n-edged pyramid ( )VAAAI nn ,...21  ( AAA n...21  is the base 
n-polygon nP  and the point V the principal vertex of )In  is called to be complete with respect 
to the solving position problems if there are given: a) the projection of any triple of vertices of 
its base polygon nP ; b) the projection of its principal vertex V; c) the form of the n-polygon nP .     

 

                                                 
29 Karl Fridrich Gauss (1777 – 1855); Gauss’fundamental Theorem of normal Axonometry. In: Works of Gauss 
(Gauss’ Werke II, p. 309, Gauss’ Werke VIII, p. 345 – 347) [1]  
Ludwig Julius Weisbach, (1806 – 1871); The monodimetric and axonometric Method of projection (Perspective) 
(Die monodimetrische und axonometrische Projectionsmethode (Perspective), in: Volz und Karmarsch, 
Polytechnische Mitteilungen, Tübingen, 1844) [1] 
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Fig. 3a, b, c 

 
In Fig. 3b can be mapped an arbitrary six-edged pyramid, the base polygon of which 

is for example the regular hexagon. We can complete the projections of the other vertices of 
this hexagon by the construction of its centre S. In the original six-polygon the quadrangle 

ASAA 321 is a rhomb; consequently the parallel projection of the point S is the fourth vertex of 
a parallelogram given by projections of other three vertices. In the final construction we use 
that the point S is the symmetry centre of the hexagon (an invariant property of a parallel 
projection). (The point S in the Fig. 3b is not marked; its construction basing on the above 
description is obvious.) 

Also in the constructions of images of oval solids (circular cylinders and circular 
cones)30 we can proceed in the same way. Let the directrix k (the edge of a solid) be given e.g. 
by its centre S and by the end-points of its two semi-diameters SK, SM perpendicular each to 
another. (Fig. 3c) Images of these segments (in a free parallel projection) are two conjugate 
radii of the ellipse, which is the projection of the circle k; by two conjugate radii is an ellipse 
fully determined. The image of the cylinder/cone can be completed by the projection of the 
centre S of the other basic circle/of its vertex V. The parallel projection of the quadruple S, K, 
M, S /V we can choose arbitrarily (Pohlke-Schwarz’s theorem), in a way that every triple of 
this quadruple is not collinear. The image including the cylinder/cone is complete if every 
another geometric figure entering into the problem is determined by points fixedly connected 
with a given reference cylinder/cone. In the case of a circular cylinder these points may lie on 
the lines that are incident with its sides31, in the planes that are incident with any of its base 
circle, in its tangent planes etc.  

 
What is substantial, in any case, is an ability to complete each point occurring in the 

solving problem by its auxiliary projection into the plane of its base polygon/circle. This 
auxiliary projection is a parallel one (with projectors determined by lateral edges or sides of a 
solid) and a central one (with the centre in the principal vertex/vertex of a solid) in the case of 
prisms/cylinders and pyramids/cones, respectively. Fig. 4 illustrates the solving of a simple 
position problem: to determine the position of a straight line m and a given solid (prism, 

                                                 
30 The directrix (basic curve) of a circular cylinder/cone is a circle.  
31 The side of a cylinder/cone with vertex V is each segment M M / MV (M ∈ k, M ∈ k , where k, k  are the 
basic circles of the cylinder and the segments M M and S S are parallel / k is the base circle of the cone).  
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pyramid) and also to construct – if there exists – their intersection. In both cases the line m is 
determined by two its points K, L; in the case of a prism the point K lies on the line containing 

the base edge AA32  and the point L in the plane that is incident with the vertices A1 , A2 , A1 ,  
 

 
 

m ∩ H7 = (m ∩ λ) ∩ H7 =                                   m ∩ I6 = (m ∩ λ) ∩ I6 = 
= m ∩ (λ ∩ H7 ) = RQ                                         = m ∩ (λ ∩ I6 ) = IJ 

 
Fig. 4a, b 

 

in the case of a pyramid the point K lies on the line AA61  and the point L in the plane of the 
face .65 AVA   

In the case of a pyramid the auxiliary projection is a central one from the centre V (the 
principal vertex of a pyramid) into the plane of its base polygon. For the central projection of 
the points K, L we get analogically: ∈= 11 , LKK AA65  32; the projecting plane λ = 1mL  of the 
line m intersects the surface of the pyramid in a triangle VJI 11  and consequently the line m 
intersects the given six-edged pyramid in the segment IJ. The points I, J are determined by 
ordered couples of points: I = (I, 1I ), J = (J, 1J ). 33  

 
The axonometric method of representation (by an oblique projection) also answers the 

question of the completeness of the image of a geometric object U with respect to the solution 
metric problems (problems involving perpendicularity inclusive): it is necessary to have given 
the parallel projection of a tripod 34, which is fixedly connected with an object U. In the case 
of a polyhedron it proves to be convenient to choose one of its faces (2 or 3 faces – if 
possible) in a plane containing a face (2, 3 faces) of a tetrahedron which corresponds to the 
given tripod. This knowledge makes immediately clear a reason why a cube, a rectangular of 
                                                 
32 The lower index “1” indicates the central projection of an object. 
33 Evidently, the interpretation of these solving problems can be another. In the case of the prism, all common 
points of the line m with the prism are exactly common points of m with an intersection of a direction plane of 
the given prism (that is incident with m) with the prism. In the case of the pyramid the points in question are 
analogically all common points of m with an intersection of a vertex plane of the given pyramid (incident with m) 
with the pyramid. However, the solution can be interpreted in this way only after a profound acquainting 
students with the problem of the classification of the position of the direction/vertex plane of a prismatic/ 
pyramidal surface and the surface itself and its transformation to the planimetric problem of the classification of 
a position of the intersection line of this plane with a plane of the base polygon nP  and the polygon nP  itself.   
34 In axonometry a tripod is represented by the axonometric coordinate system (p. 1, 5). End points of edges of 
this tripod can be taken for the vertices of a tetrahedron which is orthonormal; we say that this orthonormal 
tetrahedron corresponds to the given tripod. 
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given dimensions or a regular pyramid (given by the length of a base edge and its height) – 
consequently also a cube (implicitly) – are the most favourite reference solids in the solving 
metric problems (but unfortunately also problems of position).  

 
In what way could we avoid an unintentional stereotype? For to gain it is necessary: 
 

a) In the solving position problems to use in a greater extent parallelepipeds, oblique 
prisms, any pyramids (with a given regular base polygon or a base polygon of a given 
form) including tetrahedrons; a convenient reference figure could be any trihedral. 35  

b) In metric problems the training of working out algorithms of the problems solving (on 
basic geometric elements) on plane images of space objects should start from the 
image of an orthonormal tetrahedron ( )zyx EEEO ,,;  as a reference object. Once again 
we have to do with three edges of a cube (ending in the same point); but a fact of the 
great advantage in this case is that the other three faces of the cube “does not shade” 
the solving/solution. By the suitable location of a solid also does not take place the 
problem of the visibility.36 Only after having mastered the solution stereometric 
problems with this reference model it is possible pass from it to the solving problems 
on plane images of more diverse and complex reference solids.  

 
All these proposals will be components of the research in a certain project. If we take 

in consideration all we have referred to till now we can see that several very serious problems 
regarding an instruction in stereometry are going to arise. Many of them are directly connected 
with the problems we have dealt with in this paper; is impossible to separate them from the 
tuition/learning process in stereometry. We have to do with the representation of the E3-space 
objects by the free parallel projection. Let us recall at least one problem that is connected with 
indication of parallel projection of objects. The free parallel projection evidently is no one-to-
-one correspondence between space objects and their plane images and in the case of the 
incompleteness of the image of an object with respect to the solving metric problems is not 
possible to make any conclusions as to its form as well as to its metric characteristics. On the 
other hand, in initial lessons on stereometry – i.e. at the secondary and high school level – is 
established to use the identical indications of a parallel projection of a geometric figure and 
that of the original. It may simplify the wording and is fully justified in primary schools37 but 
can also be the cause of many misunderstandings. What it brings to practice in class, every 
teacher of this subject should know very well; maybe because of it the tuition in stereometry 
became a nightmare for many teachers of mathematics and often has been reduced to the 
training of plane sections of the cube and the calculation of the volumes of elementary solids. 
The main role of the teacher in stereometry is to form at students abstract (mathematics) 
concepts of the geometric figures, the logical sequence of notions, and their mutual 
continuity38 as well as to train abilities and skills of the students to solve the base problems 
connected with this concepts. The teacher should not leave the last aim out of account in 
tuition in stereometry on any level even when in the didactic transposition of knowledge (at 

                                                 
35 Trihedral is a figure formed by three noncomplanar lines which intersect in a point. A simple trihedral is the 
union of three noncomplanar rays with the same initial point. 
36 At the beginning of the tuition in stereometry the visibility of reference objects – as a rule – is not considered 
(the wire models) with the exception of the result of the solving problem in simple cases (e.g. when constructing 
the intersection point of a line with a plane the determination of the visibility of two rays of this line with respect 
to the given plane may be demanded).  
37 Also in primary school the children have to be aware of the fact that they have to do with two objects: 
geometric figures and their images. The use of models of elementary solids is inevitable.  
38 This is intended to mean students of high (grammar) schools and the university students. 
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that very moment) it is not actual. The great stimulus and source of motivation can be the 
computer techniques background.39   

 
 

 It is a great pleasure for us to express deep gratitude to Professor Filippo Spagnolo, 
Director of G.R.I.M. (Group of Research in Tuition in Mathematics) at the Department of 
Mathematics and Applications and the Faculty of Sciences of Formation of the University of 
Palermo for his graciousness and a generous approach to all those who are enchanted by 
Mathematics, its History and its Didactics above all as well as for his kind permission to 
publicize this article in the scientific review “Quaderni di Ricerca in Didattica”.       

 
 

References 
1.  Dörrie, H.: 100 Great Problems of Elementary Mathematics. Dover, New York 1965,  
     ISBN 0-486-61348-8 
2.  Glazunov, E. A. – Chetverukhin, N. F.: Axonometrija (Axonometry). Gos. Iz. T.-Teoret.  
     Lit., Moskva 1953  
3.  Hartshorne, R.: Geometry: Euclid and beyond. Springer, Berlin 2000, ISBN 0-387-98650-2 
4.  Klein, F.: Elementarmathematik vom höheren Standpunkte, Geometrie II. Berlin 1925;  
     (Russian translation: Nauka, Moskva 1987) 
5.  Loria, G.: Storia della Gemetria Descrittiva. Ulrico Hoepli, Milano 1921 
6.  Pelz, K.: On a new Demonstration of the fundamental Theorem of Pohlke. (Über einen  
     neuen Beweis des Fundamentalsatzes von Pohlke. Stzgsb. Math. Nat., Ak. der W. LXXVI,  
     Wien 1877, 123 – 138)  
7.  Pémová, M.: Oblique Axonometry – Pohlke’s Theorem. (Kosouhlá axonometria – Pohlkeho 
     veta, Diploma’s work, FMFI UK, Bratislava 2004) 
8.  Perepyolkin, D., I.: Course on elementary Geometry II (Kurs elementarnoj geometrii II.       

Gos. Iz. Tech. Teor. Lit., Moskva 1949)  
9.   Piják, V. and coll.: Constructive Geometry. (Konštrukčná geometria. SPN, Bratislava  
      1985) 
10. Sklenáriková, Z.: Methods of Representation II. (Zobrazovacie metódy II. Textbook, vyd.  
      UK, Bratislava 1980  
11. Sklenáriková, Z. – Čižmár, J.: Elementary Geometry of Euclidean plane. (Elementárna  
      geometria euklidovskej roviny. UK, Bratislava 2002, I. vyd., ISBN 80-223-1585-0,  
      II. vyd. 2005, ISBN 80-223-2020-X)  
12. Chetverukhin, N., F.: Stereometric Problems on projections Image. (Stereometričeskije  
      zadači na projekcijonnom čerťože. Učpedgiz, Moskva 1952)  
 
 

                                                 
39 We will mention this problem yet; it will be one component of the research in progress.  


