Insiemi algebrici affini, Insiemi algebrici irriducibili.

<u>Esercizio 1</u>:: Sia $V \subset \mathbb{A}^n_k$ un insieme algebrico affine. Sia L una retta non contenuta in V. Allora l'intersezione di V con L è o un insieme vuoto o un insieme finito.

Soluzione: Sia V l'insieme delle soluzioni del sistema polinomiale

$$V: \begin{cases} F_1(s_1, \dots, s_n) = 0 \\ \vdots \\ F_m(s_1, \dots, s_n) = 0 \end{cases}$$

Sappiamo che L ha equazioni parametriche

$$L: \begin{cases} x_1 = a_1 t + b_1 \\ \vdots \\ x_n = a_n t + b_n \end{cases}$$

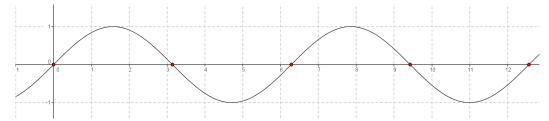
I punti d'intersezione $V \cap L$ corrispondono ai valori del parametro t per i quali

$$\begin{cases}
F_1(a_1t + b_1, \dots, a_nt + b_n) = 0 \\
\vdots \\
F_m(a_1t + b_1, \dots, a_nt + b_n) = 0
\end{cases} = \begin{cases}
f_1(t) = 0 \\
\vdots \\
f_m(t) = 0
\end{cases} (*)$$

dunque abbiamo due possibilità: o si annullano tutti f_i identicamente, ma questo non è possibile perché per ipotesi $L \not\subset V$ oppure qualche $f_i \neq 0$. Essendo un sistema polinomiale di una sola variabile, (*) possiede un numero finito di soluzioni, o è vuoto, dunque $V \cap L$ o è vuoto o è finito.

Esercizio 2: Quali dei seguenti insiemi sono insiemi algebrici affini?

- 1. $\{(\cos t, \sin t) : t \in [0, 2\pi]\} \subset \mathbb{R}^2$: è un insieme algebrico affine perché i suoi punti verificano l'equazione polinomiale $x^2 + y^2 = 1$.
- 2. $\{(t, \sin t) : t \in (0, +\infty)\} \subset \mathbb{R}^2$: non è un insieme algebrico affine perché i suoi punti verificano $y = \sin t$ e se lo fosse, l'intersezione con una retta come y = 0 risulterebbe un numero finito di punti per l'esercizio 1, ma non è così.



Ne concludiamo che soltanto il primo insieme è algebrico affine.

Esercizio 3: Si dimostri che gli insiemi chiusi della topologia di Zariski di $\mathbb{A}^2_{\mathsf{k}}$ sono gli insiemi del tipo

$$\bigcup_{i=1}^{n} V(F_i) \cup \{P_1, \dots, P_m\}$$

dove F_i sono polinomi irriducibili e P_j sono punti, $i=1,\ldots,n$ e $j=1,\ldots,m$.

Suggerimento: Si utilizzi il fatto che due curve piane hanno infiniti punti in comune se e solo se hanno una componente in comune.

Soluzione: Sappiamo che un insieme del genere è un chiuso come unione finita di chiusi. Dobbiamo fare vedere che ogni chiuso è di questo tipo. Sia $V \subset \mathbb{A}^2_k$ chiuso, allora sarà soluzione di un sistema polinomiale del tipo

$$\begin{cases} G_1 = 0 \\ \vdots & \subset \mathbb{A}_k^2 \\ G_m = 0 \end{cases}$$

Procediamo per induzione e vediamo il caso m=2: il sistema si riduce a

$$\begin{cases} G_1(t_1, t_2) = 0 \\ G_2(t_1, t_2) = 0 \end{cases}$$

e possiamo scomporre G_1 e G_2 in polinomi irriducibili

$$G_1 = R_1 \dots R_t$$
 e $G_2 = H_1 \dots H_s$

dove R_i ed H_j sono polinomi irriducibili, dunque

$$V(G_1, G_2) = \bigcup_{i,j} V(R_i, H_j).$$

Ogni $V(R_i, H_i)$ corrisponde al sistema polinomiale con polinomi irriducibili

$$\begin{cases} R_i(t_1, t_2) = 0 \\ H_j(t_1, t_2) = 0 \end{cases}$$

che ammette un numero finito di soluzioni, secondo il suggerimento, se i due polinomi non sono proporzionali, altrimenti $V(R_i, H_i) = V(R_i)$, dunque ne concludiamo che

$$V(G_1, G_2) = \bigcup_{i=1}^{n} V(F_i) \cup \{P_1, \dots, P_m\}.$$

Per II caso generale si suppone vero per m-1 e si dimostra per m:

$$V(G_1, \dots, G_{m-1}, G_m) = V(G_1, \dots, G_{m-1}) \cap V(G_m) = \left\{ \bigcup_{j=1}^{l} V(A_j) \cup \{Q_1, \dots, Q_r\} \right\} \cap V(G_m) = \bigcup_{j=1}^{l} V(A_j, G_m) \cup \{\text{insieme finito}\}$$

dove nella seconda uguaglianza abbiamo applicato l'ipotesi induttiva, e dunque si conclude applicando il caso $V(G_1, G_2)$ ad ogni $V(A_i, G_m)$.

Esercizio 4: L'insieme $V\subset \mathbb{A}^2_{\mathsf{k}}$ è dato dalle equazioni

$$F(x,t) = x^2 + y^2 - 1 = 0$$
, $G(x,y) = x - 1 = 0$.

Trovare I(V). È vero che I(V) = (F, G)?.

Soluzione: L'insieme V è dato dagli zeri comuni di F e G

$$V: \begin{cases} F(x,y) = x^2 - y^2 - 1 = 0 \\ G(x,y) = x - 1 = 0 \end{cases}$$

dunque $V = \{(1,0)\} = \{P\}$. Sappiamo dunque che $I(P) = I((1,0)) = (x-1,y), (F,G) = (x^2+y^2-1,x-1)$ e si ha $(F,G) \subset I(P)$. Sia ha $x-1=G \in (F,G)$ e $y^2=-F+(x+1)(x-1) \in (F,G)$. Il problema è quindi se $y \in (F,G)$, cioè è possibile rappresentare y nella forma

$$y = A(x, y)(x - 1) + B(x, y)(x^{2} + y^{2} - 1)$$
?

Se tale uguaglainza tra polinomi in due variabili fosse vera, sostituendo x = 1 otteremo una uguaglianza tra polinomi in una variabile

$$y = B(1, y)y^2$$

che è impossibile. Quindi si ha che $y \notin (F,G)$, ma $y^2 \in (F,G)$. Ne concludiamo che $(F,G) \subsetneq I(V) = \sqrt{(F,G)}$, dove $\sqrt{(F,G)} = I(P)$, per il teorema degli zeri.

<u>Esercizio 5</u>: Sia $f: X \to Y$ un'applicazione continua di spazi topologici. Supponiamo che X sia irriducibile e f(X) sia denso in Y. Si dimostri che Y è irriducibile.

Soluzione: Supponiamo per assurdo che $Y = Y_1 \cup Y_2$ con $Y_i \subsetneq Y$ chiusi. Sia $X_i = f^{-1}(Y_i)$ per $i = 1, 2, X_i$ sono chiusi in X perché f è continua. $X = X_1 \cup X_2$ perché $Y = Y_1 \cup Y_2$, allora poiché X è irriducibile si ha che almeno uno degli $X_i = X$, sia X_1 . Applichiamo f ed otteniamo

$$f(X_1) = f(X) \subset Y_1 \quad \Rightarrow \quad \overline{f(X)} = Y \subset Y_1$$

perché f(X) è denso in Y, allora $Y = Y_1$, ma questo è un assurdo.

Un'altra soluzione potrebbe essere quella di applicare la condizione equivalente sugli aperti secondo cui uno spazio è irriducibile se ogni due aperti non vuoti hanno intersezione non vuota.

Siano U_1 e U_2 due aperti non vuoti di Y. L'insieme f(X) è denso in Y per ipotesi, dunque $U_1 \cap f(X) \neq \emptyset$ e $U_2 \cap f(X) \neq \emptyset$, allora $f^{-1}(U_1) \neq \emptyset$ e $f^{-1}(U_2) \neq \emptyset$. Questi due aperti non vuoti di X hanno intersezione non vuota in quanto X è irriducibile. Sia x un punto dell'intersezione. Allora $f(x) \in U_1 \cap U_2$.

<u>Esercizio 6</u>: Si dimostri che ogni sottospazio affine di $\mathbb{A}^n_{\mathsf{k}}$ è irriducibile.

Soluzione: Sia $L \subset \mathbb{A}^n_k$. Se $L = \mathbb{A}^n_k$, allora già sappiamo che L è irriducibile. Sia dim L = d < n. Riduciamo il problema alla nota irrudicibilità di A^d_k nel modo seguente. L possiede una rappresentazione parametrica

$$\begin{cases} x_1 = a_{11}t_1 + \dots + a_{1d}t_d + b_1 \\ \vdots \\ x_n = a_{n1}t_1 + \dots + a_{nd}t_d + b_n \end{cases}$$

e guardiamo tale rappresentazione come applicazione: sia $u: \mathbb{A}^d_{\mathsf{k}} \to L$ definita da $u = (f_1, \ldots, f_n)$ dove $f_i = a_{i1}t_1 + \ldots + a_{id}t_d + b_i$. u è continua (nella topologia di Zariski) come applicazione polinomiale ed è surgettiva. Da $\mathbb{A}^d_{\mathsf{k}}$ irriducibile segue che anche L è irriducibile come caso particolare dell'esercizio 5.

L'affermazione si può provare anche dimostrando che l'ideale I(L) è un ideale primo. Questo si verifica facilmente per il caso particolare L_0 con equazioni $x_{d+1} = \cdots = x_n = 0$, e il caso generale si riduce a questo caso particolare eseguendo una affinità, che induce un automorfismo dell'anello di polinomi $k[t_1, \ldots, t_n]$ e trasforma I(L) in $I(L_0)$.

Esercizio 7: Sia k un campo algebricamente chiuso di char(k) $\neq 2$. Trovare le componenti irriducibili dell'insieme $X \subset \mathbb{A}^3_k$ dato dalle equazioni

$$x^{2} + y^{2} + z^{2} = 0$$
 $x^{2} - y^{2} - z^{2} + 1 = 0$.

Soluzione: L'insieme X è dato dagli zeri comuni dei due polinomi, dunque

$$X: \begin{cases} x^2 + y^2 + z^2 = 0\\ x^2 - y^2 - z^2 + 1 = 0 \end{cases}$$

e tale sistema è equivalente al sistema semplificato

$$\begin{cases} 2x^2 + 1 = 0 \\ x^2 + y^2 + z^2 = 0 \end{cases}$$

da cui otteniamo $x=\pm\frac{i}{\sqrt{2}}$ e due differenti possibilità

$$\begin{cases} y^2 + z^2 = \frac{1}{2} \\ x = \frac{i}{\sqrt{2}} \end{cases} \quad \cup \quad \begin{cases} y^2 + z^2 = \frac{1}{2} \\ x = -\frac{i}{\sqrt{2}} \end{cases} = Y \cup Z.$$

Tali componenti si possono scomporre ulteriormente? Studiamo i due sistemi: ognuno di essi rappresenta una curva piana, perché si tratta dell'intersezione di un cilindro e di un piano.

Studiamo per il momento la situazione in due dimensioni: sia $\mathcal{C} \subset \mathbb{A}^2_k$ rappresentata da $y^2 + z^2 = \frac{1}{2}$, \mathcal{C} è una conica irriducibile perché non ha punti singolari, oppure si può fare vedere che è irriducibile perché rappresentata da un polinomio di secondo grado irriducibile secondo il criterio di Eisenstein.

Attraverso la teoria delle coniche o Eisenstein si conclude che \mathcal{C} è irriducibile, ma come riportare il risultato al nostro sistema? Come provare che il sistema rappresenta una componente irriducibile? Basta immergere $\mathcal{C} \subset \mathbb{A}^2_k$ con continuità in \mathbb{A}^3_k e ricordare che le proprietà topologiche si trasportano per continuità. Definiamo $u: \mathcal{C} \to Y$ come

$$u(y,z) = \left(\frac{i}{\sqrt{2}}, y, z\right)$$

e osserviamo che u è un'applicazione polinomiale, surgettiva in particolare, $u(\mathcal{C}) = Y$, e dunque continua, allora per l'esercizio 5, poiché \mathcal{C} è irriducibile, anche Y lo è.

Analogamente si ragiona per Z: sia $v: \mathcal{C} \to Z$ definita da

$$v(y,z) = \left(-\frac{i}{\sqrt{2}}, y, z\right)$$

e dunque allo stesso modo si conclude che Z è irriducibile. $Y \neq Z$ (in effetti $Y \cap Z = \emptyset$), dunque $X = Y \cup Z$ è la scomposizione non cancellabile in chiusi irriducibili.

<u>Esercizio</u> 8: Sia $V = V(I) \subset \mathbb{A}^3_k$ l'insieme chiuso affine che corrisponde all'ideale $I = (x^2 - yz, xz - x)$. Si scomponga V in componenti irriducibili.

Soluzione: Il chiuso V è dato dalle soluzioni comuni del sistema

$$\begin{cases} x^2 - yz = 0 \\ xz - x = 0 \end{cases} \Rightarrow \begin{cases} x^2 - yz = 0 \\ x(z - 1) = 0 \end{cases}$$

da cui otteniamo che V è unione dei due sistemi

$$V: \left\{ \begin{array}{l} x^2 - yz = 0 \\ x = 0 \end{array} \right\} \cup \left\{ \begin{array}{l} x^2 - yz = 0 \\ z = 1 \end{array} \right\},$$

ma ancora sono ulteriormente riducibili in

$$\left\{\begin{array}{c} y=0\\ x=0 \end{array}\right\} \cup \left\{\begin{array}{c} z=0\\ x=0 \end{array}\right\} \cup \left\{\begin{array}{c} x^2-y=0\\ z=1 \end{array}\right\} = Y_1 \cup Y_2 \cup Z.$$

Quella che abbiamo ottenuto è la scomposizione in chiusi irriducibili non cancellabile di V? I sistemi Y_1 e Y_2 rappresentano delle rette, che sappiamo essere irriducibili, ma $\mathcal{C}: x^2 - y = 0$ è una parabola in \mathbb{A}^2_k e sappiamo essere una conica irriducibile. Con lo stesso procedimento dell'Esercizio n.7, immergiamo $\mathcal{C} \subset \mathbb{A}^2_k$ in \mathbb{A}^3_k con continuità

$$u: \mathcal{C} \to Z$$
 definita da $u(x,y) = (x,y,1)$

manda \mathcal{C} in Z, $u(\mathcal{C}) = Z$, dunque se \mathcal{C} è irriducibile, lo è anche Z. $V = Y_1 \cup Y_2 \cup Z$ è la scomposizione non cancellabile di V, in effetti si verifica subito che l'intersezione di ogni due chiusi della famiglia $\{Y_1, Y_2, Z\}$ è o vuota o finita.

<u>Esercizio</u> 9: Sia E uno spazio topologico e sia V un sottoinsieme dotato della topologia indotta. Si dimostri che V è irriducibile se, e solo se, la chiusura \overline{V} è irriducibile.

Soluzione: Se consideriamo l'inclusione $i:V\to \overline{V}$, otteniamo un caso particolare di $f:X\to Y$ nell'esercizio 5, dunque se V è irriducibile, allora anche \overline{V} è irriducibile. Adesso, perché se \overline{V} è irriducibile, allora V è irriducibile?

Sia \overline{V} irriducibile. Supponiamo per assurdo che $V=Y\cup Z$ con Y,Z chiusi propri di V, allora $Y=V\cap A$ e $Z=V\cap B$ per $A,B\subset E$ chiusi di E. Sia ha

$$V = (V \cap A) \cup (V \cap B) = V \cap (A \cup B) \Rightarrow V \subset A \cup B$$

e dunque $\overline{V} \subset A \cup B$ perché A,B sono chiusi in E, da cui $\overline{V} = (\overline{V} \cap A) \cup (\overline{V} \cap B)$. Essendo \overline{V} irriducibile, almeno uno dei due, ad esempio $\overline{V} \cap A$, è uguale a \overline{V} , allora $\overline{V} \subset A$, da cui $V \subset A$, ma questa è una contraddizione con il fatto che $Y = V \cap A \subsetneq V$.

Possiamo anche dare una seconda soluzione procedendo con il criterio degli aperti. Sia $U = V \cap \widetilde{U} \neq \emptyset$ aperto in V e $W = V \cap \widetilde{W} \neq \emptyset$ aperto in V, allora è vero che $U \cap W \neq \emptyset$? \widetilde{U} e \widetilde{W} sono aperti in E e \overline{V} è irriducibile, dunque $(\overline{V} \cap \widetilde{U}) \cap (\overline{V} \cap \widetilde{W}) \neq \emptyset$, allora $\widetilde{U} \cap \widetilde{W} \cap \overline{V}$ è aperto non vuoto in \overline{V} . Poché V è denso in \overline{V} si ha che $V \cap (\widetilde{U} \cap \widetilde{W}) \neq \emptyset$, che è quanto volevamo dimostrare.

Vediamo che si può ragionare direttamente con il criterio sugli aperti, oppure per assurdo con il criterio per i chiusi.

<u>Esercizio 10</u>: Sia E uno spazio topologico. Supponiamo che E sia coperto da insiemi aperti $E = \bigcup_{i \in I} V_i$ dove ogni V_i è irriducibile e ogni coppia V_i , V_j ha intersezione non vuota. Si dimostri che E è irriducibile.

Soluzione: Prima dimostriamo il seguente fatto:

In ogni spazio irriducibile X, ogni aperto non vuoto A è irriducibile.

Dimostrazione. A è denso in X, quindi $\overline{A}=X$. Ora applicando l'esercizio precedente concludiamo che A è irriducibile. Si può raggionare anche cosi: siano $U\subset A$ e $V\subset A$ aperti non vuoti, allora U e V sono aperti non vuoti in X perchè A è aperto in X. Allora $U\cap V\neq\emptyset$ perchè X è irriducibile. \square

Dall'ipotesi dell'esercizio concludiamo che ogni intersezione $V_i \cap V_j$ è aperto, irriducibile in V_i e quindi è tale in E. Per dimostrare che E è irriducibile procediamo con il criterio per aperti: siano U e W due aperti non vuoti di E. Bisogna dimostrare che $U \cap W \neq \emptyset$. Esiste un i tale che $V_i \cap U \neq \emptyset$ e un j tale che $V_j \cap W \neq \emptyset$ e inoltre per ipotesi $V_i \cap V_j \neq \emptyset$. Ora $U \cap V_i$ e $V_i \cap V_j$ sono aperti non vuoti nell'insieme irriducibile V_i , quindi hanno intersezione non vuota, allora $U \cap (V_i \cap V_j)$ è aperto, non vuoto in $V_i \cap V_j$. Similmente, raggionando con V_j otteniamo che $V \cap (V_i \cap V_j)$ è aperto, non vuoto in $V_i \cap V_j$. Siccome $V_i \cap V_j$ è irriducibile, come dimostrato sopra, deduciamo che questi due aperti in $V_i \cap V_j$ hanno intersezione non vuota. Concludiamo che $U \cap V \neq \emptyset$.

Algebra di funzioni polinomiali. Applicazioni polinomiali, isomorfismo. Funzioni razionali.

<u>Esercizio 1</u>: Sia $X \subset \mathbb{A}^2_{\mathsf{k}}$ la curva $y^2 = x^3$. Si dimostri che l'applicazione $u : \mathbb{A}^1_{\mathsf{k}} \to X$ data da $t \mapsto (t^2, t^3)$ è un omeomorfismo ma non è un isomorfismo polinomiale.

Soluzione: Vediamo se u è applicazione biiettiva. Prima verifichiamo che u è iniettiva. Se $x=t^2$ e $y=t^3$ per qualche t, allora, se $x \neq 0$, dividendo otteniamo $t=\frac{y}{x}$, se x=0, allora t=0. Dunque t è determinato in modo unico dalla coppia (x,y). Verifichiamo che u è surgettiva. Sia $P=(x,y)\in X$. Se x=0, allora (x,y)=(0,0) e poniamo t=0. Se $x\neq 0$, poniamo $t=\frac{y}{x}$. Allora $t^2=\frac{y^2}{x^2}=\frac{x^3}{x^2}=x$ e $t^3=\frac{y^3}{x^3}=\frac{y^3}{y^2}=y$. Ora dimostriamo che u è un omeomorfismo. Essa è polinomiale, dunque continua nella topologia di Zariski, e biettiva. Basta dimostrare che trasforma unsiemi chiusi in insiemi chiusi: \mathbb{A}^1_k viene mandato in X chiuso, un insieme finito di punti di \mathbb{A}^1_k viene mandato in un insieme finito di punti di X, che è un chiuso in X in quanto è chiuso in \mathbb{A}^2_k , infine l'insieme vuoto va ovviamente nell'insieme vuoto.

Per dimostrare che u non è un isomorfismo lavoriamo con le algebre: supponiamo per assurdo che $u: \mathbb{A}^1_{\mathsf{k}} \to X$ sia un isomorfismo e questo succede se, e solo se, $u^*: A(X) \to A(\mathbb{A}^1_{\mathsf{k}}) = \mathsf{k}[t]$ è isomorfismo. Questo omomorfismo ha la seguente forma esplicita:

$$u^* : \mathsf{k}[x, y]/(y^2 - x^3) \to \mathsf{k}[t]$$
 definite da $u^* (g(x, y) \pmod{y^2 - x^3}) \mapsto g(t^2, t^3)$.

Sia $g(x,y) = a_0 + a_1x + b_1y + a_{11}x^2 + a_{12}xy + a_{22}y^2 + \dots$, allora si ha

$$g(t^2, t^3) = a_0 + a_1 t^2 + b_1 t^3 + a_{11} t^4 + a_{12} t^5 + a_{22} t^6 + \dots$$

e osserviamo che $t \notin \text{Imm}(u^*)$, dunque l'omomorfismo non è surgettivo e ne concludiamo che u^* non è isomorfismo, allora $u: \mathbb{A}^1 \to X$ non è un isomorfismo.

<u>Esercizio</u> 2: Si dimostri che l'iperbole xy = 1 non è isomorfa ad \mathbb{A}^1_k .

Soluzione: Ragioniamo con le algebre di funzioni polinomiali, facendo vedere che non possono essere isomorfe. Ci chiediamo se l'algebra $A(X) \simeq \mathsf{k}[t_1,t_2]/(t_1t_2-1)$ è isomorfa all'algebra $\mathsf{k}[t]$. La relazione xy=1, dove $x=t_1|_X$ e $y=t_2|_X$, è sempre valida in A(X), dunque se A(X) è isomorfa a $\mathsf{k}[t]$ e se esistono due elementi in A(X) tali che xy=1, tali elementi devono esistere in $\mathsf{k}[t]$, ma questo non è vero, dobbiamo dimostrarlo. Supponiamo per assurdo che $\varphi:A(X) \xrightarrow{\sim} \mathsf{k}[t]$ sia un isomorfismo, allora da xy=1 si ha $\varphi(x)\varphi(y)=1$. Otteniamo che $\varphi(x)=f(t)$ e $\varphi(y)=g(t)$ e per la relazione $\varphi(x)\varphi(y)=1$ si deve avere che f,g sono costanti, da cui anche x e y sono costanti perché φ è un isomorfismo di k -algebre e $x=\varphi^{-1}(f), \ y=\varphi^{-1}(g), \ ma$ questo è impossibile perché x,y sono le funzioni coordinate.

<u>Esercizio</u> 3: Considerare l'applicazione polinomiale $u: \mathbb{A}^2_{\mathsf{k}} \to \mathbb{A}^2_{\mathsf{k}}$ data da u(x,y) = (x,xy). Trovare l'immagine $u(\mathbb{A}^2_{\mathsf{k}})$. È vero che questo insieme è: aperto, denso, chiuso?.

Soluzione: L'immagine è costituita da tutte le coppie (s,t), tali che

$$\begin{cases} s = x \\ t = xy \end{cases}.$$

Se $s \neq 0$, allora x = s e $y = \frac{t}{s}$, dunque abbiamo ottenuto x,y in modo da soddisfare il sistema, cioè $\mathbb{A}^2_{\mathsf{k}} \setminus \{s = 0\} \subset u(\mathbb{A}^2_{\mathsf{k}})$. Se invece s = 0, allora t = 0 e dunque il punto $(0,0) \in u(\mathbb{A}^2_{\mathsf{k}})$ e ne concludiamo quindi che

$$u(\mathbb{A}^2_{\mathbf{k}}) = \mathbb{A}^2_{\mathbf{k}} \setminus \{s = 0\} \cup \{(0, 0)\}.$$

È vero che $u(\mathbb{A}^2_{\mathsf{k}})$ è aperto? Studiamo il complementare: sia $X = \mathbb{A}^2_{\mathsf{k}} \setminus u(\mathbb{A}^2_{\mathsf{k}}) = \{(0,t) : \forall t \neq 0\}$ e per fare vedere che è un chiuso, dobbiamo fare vedere che X = V(S)) per qualche insieme S di polinomi. Sia $F(s,t) \in S$. Sappiamo che F(0,t) = 0 per ogni $t \neq 0$ e dunque per il principio di identità di polinomi si ha che F(0,t) = 0 per ogni t, ed in particolare F(0,0) = 0, da cui (0,0) è zero comune di tutti i polinomi in S. Siccome $(0,0) \notin X$ ne concludiamo che X non è chiuso, allora $u(\mathbb{A}^2_{\mathsf{k}})$ non è aperto.

 $u(\mathbb{A}^2_{\mathsf{k}})$ è denso in $\mathbb{A}^2_{\mathsf{k}}$? Poniamo $X=u(\mathbb{A}^2_{\mathsf{k}})$. Allora X è denso se, e solo se I(X)=(0). Sia $F(s,t)\in I(X)$, allora F(s,t)=0 con $s\neq 0$ e t arbitrario, quindi F(s,t) si annulla sull'insieme $(\mathbb{A}^1_{\mathsf{k}}\setminus 0)\times \mathbb{A}^1_{\mathsf{k}}$ ed entrambi fattori del prodotto cartesiano sono infiniti, dunque per il principio di identità polinomiale si ha che F=0 e I(X)=0, allora $u(\mathbb{A}^2)$ è denso.

Un secondo argomento è dato da: \mathbb{A}^2_k è irriducibile, $U = \{(s,t) : s \neq 0\}$ è un aperto non vuoto, dunque U è denso ed $U \subset u(\mathbb{A}^2_k)$ da cui $u(\mathbb{A}^2_k)$ è denso. In effetti osserviamo che il principio di identità dei polinomi è servito a dimostrare che \mathbb{A}^2_k è irriducibile.

 $X = u(\mathbb{A}^2_{\mathsf{k}})$ non è chiuso perché $\overline{X} = \mathbb{A}^2_{\mathsf{k}}$ e $X \neq \mathbb{A}^2_{\mathsf{k}}$. Ne concludiamo che esistono applicazioni polinomiali tali che le immagini non sono né aperte né chiuse.

Esercizio 4: Sia V un chiuso affine irriducibile e sia $\varphi \in \mathsf{k}(V)$ una funzione razionale. Sia $P \in V$ e supponiamo che $\varphi = \frac{f}{g}$, dove $f, g \in A(V), f(P) \neq 0$ e g(P) = 0. Si dimostri che $P \notin \mathrm{dom}(\varphi)$.

Soluzione: Supponiamo per assurdo che $\varphi = \frac{f_1}{g_1}$ dove $g_1(P) \neq 0$, allora si ha che $fg_1 = gf_1$ e in particolare in P

$$0 \neq f(P)g_1(P) = g(P)f_1(P) = 0$$

che è una constraddizione, dunque $P \notin \text{dom}(\varphi)$.

<u>Esercizio</u> 5: Sia $\mathcal{C} \subset \mathbb{A}^2_k$ la curva $x^2 + y^2 = 1$ e sia $\varphi = \frac{1-y}{x}$. Si calcoli il dominio di φ .

Soluzione: Sicuramente i punti $(x, y) \in \mathcal{C}$ con $x \neq 0$ appartengono a dom (φ) . Se invece x = 0 otteniamo i punti $P_1 = (0, 1)$ e $P_2 = (0, -1)$.

 $P_2 \notin \text{dom}(\varphi)$ perché otteniamo una forma del tipo $\frac{2}{0}$ e abbiamo visto nell'esercizio precedente che P_2 non è nel dominio. Vediamo cosa succede per $P_1 = (0, 1)$: dalla circonferenza, curva irriducibile, otteniamo che

$$x^{2} = 1 - y^{2} = (1 - y)(1 + y)$$
 da cui $\frac{1 - y}{x} = \frac{x}{1 + y}$

e dalla seconda rappresentazione otteniamo che $\varphi(P_1) = 0$ e φ è regolare in $P_1 = (0,1)$.

Insiemi algebrici proiettivi.

Esercizio 1: Sia $u: \mathbb{P}^1 \to \mathbb{P}^3$ l'applicazione definita da

$$u((x_0:x_1)) = (x_0^3:x_0^2x_1:x_0x_1^2:x_1^3)$$

Si dimostri che l'immagine $X = u(\mathbb{P}^1)$ è l'insieme proiettivo definito dalle equazioni $M_{i,j} = 0$, dove $M_{i,j}$ sono i minori 2×2 della matrice

$$\begin{pmatrix} T_0 & T_1 & T_2 \\ T_1 & T_2 & T_3 \end{pmatrix}$$

L'insieme proiettivo X è detto cubica gobba.

Soluzione: Abbiamo già dimostrato durante le lezioni che $u(\mathbb{P}^1) \subset X$, adesso dobbiamo fare vedere che $X \subset u(\mathbb{P}^1)$. Sia $(z_0: z_1: z_2: z_3)$ un punto di X. Sappiamo che i minori della matrice 2×3 sono tutti nulli, dunque la matrice A, in cui $T_i = z_i$, ha rango 1, pertanto una riga è proporzionale all'altra. Distinguiamo i due casi: supponiamo al momento che la seconda riga sia proporzionale alla prima, cioè che esista $\lambda \neq 0$ tale che

$$\begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} = \lambda \begin{pmatrix} z_0 \\ z_1 \\ z_2 \end{pmatrix} \quad \text{con} \quad \lambda \neq 0.$$

Da questa relazione otteniamo che $z_1 = \lambda z_0$, $\lambda z_1 = z_2$ e $\lambda z_2 = z_3$. Per forza deve essere $z_0 \neq 0$ perché altrimenti tutti gli $z_i = 0$ e $(0 : \ldots : 0)$ non è un punto proiettivo, dunque

$$(z_0: \lambda z_0: \lambda^2 z_0: \lambda^3 z_0) = (1: \lambda: \lambda^2: \lambda^3) = u(1:\lambda).$$

Analizziamo il secondo caso: supponiamo che la prima riga sia proporzionale alla seconda, cioè

$$\begin{pmatrix} z_0 \\ z_1 \\ z_2 \end{pmatrix} = \mu \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} \quad \text{con} \quad \mu \neq 0.$$

Dalla relazione otteniamo che $z_2 = \mu z_3$, $z_1 = \mu z_2$ e $z_0 = \mu z_1$ e come poco fa $z_3 \neq 0$. Si ha dunque

$$(\mu^3 z_3 : \mu^2 z_3 : \mu z_3 : z_3) = (\mu^3 : \mu^2 : \mu : 1) = u(\mu : 1).$$

e ne concludiamo che $X = u(\mathbb{P}^1)$.

<u>Esercizio</u> 2: Sia X la cubica gobba. Siano P_1, P_2, P_3, P_4 quattro punti distinti appartenenti a X. Si dimostri che essi non appartengono ad alcun piano in \mathbb{P}^3 .

Soluzione: Siano $P_i = u(q_i), i = 1, ..., 4$, dove $q_i \in \mathbb{P}^1$. Supponiamo che P_1, P_2, P_3, P_4 appartengano al piano H di equazione $a_0T_0 + \cdots + a_3T_3 = 0$. Sostituendo T_0, T_1, T_2, T_3 con rispettivamente $x_0^3, x_0^2x_1, x_0x_1^2, x_1^3$ otteniamo un polinomio omogeneo $f(x_0, x_1)$ di grado 3. Ora $P_i \in H$ se e solo se q_i è zero di f. Un polinomio omogeneo di grado 3 non può avere quattro zeri. Questa contraddizione dimostra che i quattro punti P_1, \ldots, P_4 non appartengono ad alcun piano H.

<u>Esercizio</u> 3: Sia $X \subset \mathbb{P}^n$ un insieme quasiproiettivo. Si dimostri che X è insieme aperto nell'insieme proiettivo \overline{X} .

Soluzione: Sappiamo che $X \subset \overline{X}$, allora $X = X \cap \overline{X}$. Sappiamo che X è quasiproiettivo, dunque $X = Z \cap W$ con Z chiuso e W aperto nello spazio proiettivo \mathbb{P}^n . Riunendo insieme le affermazioni otteniamo

$$X = (Z \cap W) \cap \overline{X} = \overline{X} \cap W$$

perché $\overline{X} \subset Z$, da cui concludiamo che X è aperto in \overline{X} .

Esercizio 4: Siano $x_1, x_2, \ldots, x_m \in \mathbb{P}^n$ punti dello spazio proiettivo. Si dimostri che esiste un iperpiano H tale che $x_i \notin H$ per ogni i.

Suggerimento: Se $\mathbb{P}^n = \mathbb{P}(V)$ si consideri lo spazio proiettivo duale $\mathbb{P}(V^*)$ che parametrizza gli iperpiani in \mathbb{P}^n .

Soluzione: L'iperpiano H è descritto da un'equazione omogenea della forma

$$a_0t_0 + a_1t_1 + \ldots + a_nt_n = 0$$

che non cambia se moltiplichiamo per una costante. Dunque è possibile associare ad ogni iperpiano H il punto proiettivo di coordinate $(a_0:a_1:\ldots:a_n)$. Notiamo che queste sono le coordinate del punto $\langle f \rangle \in \mathbb{P}(V^*)$, dove f è il polinomio omogeneo lineare (cioè la forma lineare), che determina l'equazione di H:

$$H \mapsto (a_0 t_0 + a_1 t_1 + \dots + a_n t_n) (\text{modk}^*) \equiv (a_0 : a_1 : \dots : a_n).$$

Se voglio determinare un iperpiano che non contiene gli m punti posso procedere determinando tutti gli iperpiani che contengono almeno uno di questi m punti e cercare H fra il resto degli iperpiani. Un punto appartiene ad un iperpiano H se verifica la sua equazione: $P = (\alpha_0 : \alpha_1 : \ldots : \alpha_n)$ appartiene ad H se

$$a_0\alpha_0 + a_1\alpha_1 + \ldots + a_n\alpha_n = 0$$

dove gli α_i sono fissati e gli a_i variano. Gli a_i devono soddisfare l'equazione

(*)
$$\alpha_0 s_0 + \alpha_1 s_1 + \ldots + \alpha_n s_n = 0$$

che corrisponde ad un iperpiano nello spazio proiettivo duale. Fissato $P = (\alpha_0 : \alpha_1 : \ldots : \alpha_n)$ gli elementi $H \in \mathbb{P}(V^*)$ tale che $P \in H$ formano un iperpiano di equazione (*).

Per quanto detto il problema si riduce a voler trovare in $\mathbb{P}(V^*)$ un punto che stia fuori dagli m iperpiani:

$$Z_1 \subset \mathbb{P}(V^*) \longleftrightarrow x_1 \in H$$

 $\vdots \qquad \vdots$
 $Z_m \subset \mathbb{P}(V^*) \longleftrightarrow x_m \in H$

esiste $H \in \mathbb{P}(V^*)$ punto tale che $H \notin Z_1 \cup \ldots \cup Z_m$? Cosi si trasforma il problema.

Sappiamo che Z_i : $G_i(\underline{s}) = 0$ con gr $G_i = 1$ e poniamo $G(\underline{s}) = G_1(\underline{s}) \dots G_m(\underline{s})$. G è un prodotto di polinomi lineari non nulli, dunque è non nullo perché ci troviamo in un dominio di integrità e quindi non può annullarsi. Per il principio di identità esiste $(\alpha_0, \dots, \alpha_n)$ tale che $G(\alpha_0, \dots, \alpha_n) \neq 0$. Tornando indietro nella corrispondenza punti di $\mathbb{P}(V^*)$ con iperpiani, otteniamo l'iperpiano cercato

$$H \longleftrightarrow (\alpha_0 : \ldots : \alpha_n).$$

Un altro modo per concludere è quello di sfruttare l'irriducibilità di \mathbb{P}^n : $Z_i \subsetneq \mathbb{P}^n$, perché $G_i(\underline{s})$ non è identicamente nullo, dunque non tutti i punti sono zeri di G_i , e $\mathbb{P}(V^*) \simeq \mathbb{P}^n$ è irriducibile, allora non è possibile che

$$\mathbb{P}(V^*) = Z_1 \cup \ldots \cup Z_m,$$

da cui concludiamo che esiste un punto $H \notin Z_1 \cup \ldots \cup Z_m$.

<u>Esercizio</u> 5: Nell'esercizio precedente supponiamo che $m \ge 2$. Si dimostri che esiste un iperpiano H tale che $x_1 \in H$ e $x_i \notin H$ per ogni $i \ge 2$.

Soluzione: Ripetendo lo stesso argomento $\mathbb{P}(V) \ni x_i \longleftrightarrow Z_i \subset \mathbb{P}(V^*)$. La condizione diventa $x_1 \in H$ se, e solo se, $H \in Z_1 \subset \mathbb{P}(V^*)$ e questo se, e solo se, $G_1(H) = 0$; $x_i \notin H$ se, e solo se, $H \notin Z_i$ per $i \geq 2$ e questo se, e solo se, $G_i(H) \neq 0$ per $i \geq 2$.

La condizione $x_i \notin H$ per ogni $i \geq 2$ si trasforma in $G_i(H) \neq 0$ per ogni i, dunque ponendo $G = G_2G_3 \dots G_m$, nella condizione eduivalente $G(H) \neq 0$. Ci chiediamo: esiste $H \in \mathbb{P}(V^*)$ tale che $G_1(H) = 0$, ma $G(H) \neq 0$? Supponiamo per assurdo che ogni $H \in \mathbb{P}(V^*)$ tale che $G_1(H) = 0$ soddisfa G(H) = 0, cioè $G|_{V(G_1)} = 0$. Per il teorema degli zeri proiettivo si ha $G \in I(V(G_1)) = \sqrt{(G_1)} = (G_1)$ perché G_1 è lineare, dunque irriducibile. Quindi $G_1 \mid G$, cioè $G_1 \mid G_2G_3 \dots G_m$, ma a punti diversi corrispondono iperpiani diversi e dunque G_i , G_j non sono proporzionali fra di loro se $i \neq j$, in particolare G_1 non può essere proporzionale ad alcun polinomio G_i con $i \geq 2$. Otteniamo una contraddizione.

Se vogliamo seguire la seconda soluzione bisogna far vedere che $Z_1 \not\subset Z_2 \cup \ldots \cup Z_m$.

Gli iperpiani $Z_i = V(G_i)$ sono irriducibili in quanto i polinomi lineari omogenei G_i sono irriducibili. Supponiamo per assurdo che $Z_1 \subset Z_2 \cup \ldots \cup Z_m$. Allora $Z_1 = \bigcup_{i=2}^m Z_1 \cap Z_i$, unione di chiusi. Siccome Z_1 è irriducibile, almeno uno di questi chiusi deve essere uguale a Z_1 , quindi $Z_1 \subset Z_i$ per qualche $i \geq 2$. È un assurdo, perche ai punti x_i diversi corrispondo iperpiani Z_i diversi.

Varietà algebriche.

Esercizio 1: Si dimostri che $\Gamma(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}) = \mathsf{k}$.

Soluzione: Sappiamo che

$$\mathbb{P}^n = \mathbb{A}_0^n \cup \mathbb{A}_1^n \cup \ldots \cup \mathbb{A}_n^n.$$

Sia $f \in \Gamma(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n})$. Nel caso n=1 il punto era il confronto di due diverse rappresentazioni della restrizione di f sull'intersezione $\mathbb{A}^1_0 \cap \mathbb{A}^1_1$. Cerchiamo di generalizzare questo argomento per ogni n. Sappiamo che \mathbb{A}^n_0 e \mathbb{A}^n_1 sono isomorfi ad \mathbb{A}^n attraverso gli isomorfismi i_0 e i_1 . Consideriamo i_0 :

$$i_0: \mathbb{A}^n \to \mathbb{A}^n_0$$
 definita da $(t_1, \ldots, t_n) \mapsto (1:t_1:\ldots:t_n)$

e $i_0^*(f) \in \Gamma(\mathbb{A}^n, \mathcal{O}_{\mathbb{A}^n})$, dunque è polinomiale

$$i_0^*(f) = g(t_1, \dots, t_n) \in k[t_1, \dots, t_n].$$

Vediamo adesso i_1

$$i_1: \mathbb{A}^n \to \mathbb{A}^n_1$$
 definita da $(s_1, \ldots, s_n) \mapsto (s_1: 1: s_2: \ldots: s_n)$

e $i_1^*(f) = h(s_1, \dots, s_n)$ per le stesse motivazioni.

 i_0 e i_1 sono isomorfismi con morfismi inversi $j_0: \mathbb{A}_0^n \to \mathbb{A}^n, \ j_0 = i_0^{-1}, \ \text{e} \ j_1: \mathbb{A}_1^n \to \mathbb{A}^n, \ j_1 = i_1^{-1}, \ \text{dunque} \ j_0^* = (i_0^*)^{-1} \ \text{e} \ j_1^* = (i_1^*)^{-1}, \ \text{da} \ \text{cui} \ f = j_0^*(g) \ \text{in} \ \mathbb{A}_0^n \ \text{e} \ f = j_1^*(h) \ \text{in} \ \mathbb{A}_1^n.$

Se consideriamo l'intersezione $\mathbb{A}^n_0 \cap \mathbb{A}^n_1$ allora la restrizione di f su questo apperto ha le due rappresentazioni

$$f = g \circ j_0 = g\left(\frac{x_1}{x_0}, \frac{x_2}{x_0}, \dots, \frac{x_n}{x_0}\right)$$

e

$$f = h \circ j_1 = h\left(\frac{x_0}{x_1}, \frac{x_2}{x_1}, \dots, \frac{x_n}{x_1}\right)$$

e si ha

$$g\left(\frac{x_1}{x_0}, \frac{x_2}{x_0}, \dots, \frac{x_n}{x_0}\right) = h\left(\frac{x_0}{x_1}, \frac{x_2}{x_1}, \dots, \frac{x_n}{x_1}\right)$$

allora

$$\frac{\widetilde{g}(x_0,x_1,\ldots,x_n)}{x_0^r} = \frac{\widetilde{h}(x_0,x_1,\ldots,x_n)}{x_1^l} \quad \text{funzioni razionali}$$

dove $x_0 \nmid \widetilde{g}$, $r = \operatorname{gr}(\widetilde{g})$, \widetilde{g} omogeneo, $x_1 \nmid \widetilde{h}$, $l = \operatorname{gr}(\widetilde{h})$, \widetilde{h} omogeneo. Tale uguaglianza si intende come valori nei punti $P \in \mathbb{A}_0^n \cap \mathbb{A}_1^n$ e vogliamo fare vedere che $\operatorname{gr}(\widetilde{h}) = l = 0 = r = \operatorname{gr}(\widetilde{g})$ e \widetilde{g} , \widetilde{h} sono costanti.

In k^{n+1} , $x_0 \neq 0$, $x_1 \neq 0$ si ha $x_1^l \widetilde{g} = x_0^r \widetilde{h}$, dunque per il principio di identità dei polinomi, poiché la prima variabile varia in $x_0 \neq 0$ in infiniti valori, $x_1 \neq 0$ varia in infiniti valori e così via, $x_1^l \widetilde{g} = x_0^r \widetilde{h}$ sono uguali. Se fosse r > 0, allora $x_0 \mid \widetilde{g}$, non potendo dividere x_1^l , ma questo è assurdo. In modo analogo se l > 0, allora $x_1 \mid \widetilde{h}$, assurdo per le stesse motivazioni, dunque l'unica possibilità è che r = l = 0, da cui f è costante, f = c con $c \in \mathsf{k}$.

Osservazione. Notiamo che sono state utilizzate solo le due carte affini \mathbb{A}_0^n e \mathbb{A}_1^n . In effetti, se $U = \mathbb{A}_0^n \cup \mathbb{A}_1^n = \mathbb{P}^n \setminus E$, dove E è il sottospazio proiettivo $x_0 = x_1 = 0$, allora l'argomento dell'esercizio 6 mostra che $\Gamma(U, \mathcal{O}_{\mathbb{P}^n}) = \mathsf{k}$.

<u>Esercizio</u> 2: Si dimostri che la varietà quasiaffine $V = \mathbb{A}^2 \setminus \{(0,0)\}$ non è varietà affine. Suggerimento: Calcolare $\Gamma(V, \mathcal{O}_V)$ e utilizzare il teorema degli zeri per le varietà affini.

Soluzione: Sappiamo che le funzioni polinomiali sono regolari, dunque $k[t_1, t_2] \subset \Gamma(V, \mathcal{O}_V)$. Vediamo se ci sono altri funzioni regolari su V.

Osserviamo che V è un aperto nella varietà irriducibile \mathbb{A}^2 , quindi $\overline{V} = \mathbb{A}^2$ e abbiamo una rappresentazione semplice delle funzioni regolari per i chiusi irriducibili e gli aperti contenuti in essi (Proposizione 96 e la proprietà n.3 degli insiemi quasiaffini), dunque

$$\Gamma(V, \mathcal{O}_V) = \mathcal{O}_V(V) = \left\{ \varphi|_V : \varphi \in \mathsf{k}(\mathbb{A}^2), V \subset \mathrm{dom}(\varphi) \right\}.$$

Sappiamo che $\varphi = \frac{F(t_1,t_2)}{G(t_1,t_2)}$ e φ è regolare in ogni punto diverso da (0,0) e possiamo supporre che F e G siano primi fra loro dopo opportune cancellazioni.

Supponiamo che G sia costante, allora φ è un polinomio, $\varphi \in \mathsf{k}[t_1, t_2]$. Supponiamo che G non sia costante, allora $\mathrm{gr}(G) \geq 1$ e se $P \in \mathbb{A}^2$ è tale che $G(P) \neq 0$, la funzione è regolare in P. Se G(P) = 0, allora dobbiamo distinguere due sottocasi: se F(P) = 0, allora non è chiaro se φ è regolare in P, se invece $F(P) \neq 0$ φ non

è regolare in P.

Esaminiamo il caso in cui G(P) = 0 = F(P) e $gr(G) \ge 1$: per il teorema di Bézout V(F,G) è un insieme finito perché F e G sono primi fra loro, mentre V(G) è un insieme infinito. Dunque esistono infiniti punti P tali che G(P) = 0 e $F(P) \ne 0$. Ne concludiamo che se $gr(G) \ge 1$, allora $\varphi = \frac{F}{G} \notin \Gamma(V, \mathcal{O}_V)$, dunque $\Gamma(V, \mathcal{O}_V) \simeq \mathsf{k}[t_1, t_2]$.

Se V fosse isomorfo ad una varietà affine, allora ad ogni ideale massimale $\mathfrak{m}\subset \Gamma(V,\mathcal{O}_V)$ deve corrispondere un punto $P=V(\mathfrak{m})$, ma in $\Gamma(V,\mathcal{O}_V)$ c'è un ideale massimale a cui non corrisponde alcun punto.

Consideriamo le funzioni coordinate $x_i = t_i|_V, i = 1, 2$. Si ha $\Gamma(V, \mathcal{O}_V) = \mathsf{k}[x_1, x_2] \simeq \mathsf{k}[t_1, t_2]$. Sia $I = (x_1, x_2)$. L'ideale I è massimale perché nell'isomorfismo l'ideale corrispondente (t_1, t_2) è massimale, ma

$$V(I) = \{ P \in V : x_1(P) = 0 = x_2(P) \}$$

e tale punto non esiste in $V = \mathbb{A}^2 \setminus \{(0,0)\}$, dunque la proprietà non è soddisfatta e non è possibile che V sia isomorfo ad un chiuso affine.

<u>Esercizio</u> 3: Si dimostri che $V = \mathbb{A}^n_k \setminus \{(0,\ldots,0)\}$ è una varietà afine se, e solo se, n=1.

Soluzione: Se n>1 utilizziamo lo stesso argomento dell'esercizio precedente. Bisogna però dimostrare diversamente che esisono infiniti punti P tali che G(P)=0 e $F(P)\neq 0$. In effetti, se $n\geq 3$, allora entrambi gli insiemi V(F,G) e V(G) sono infiniti. Supponiamo che deg $G\geq 1$ e sia G_1 un fattore irriducibile di G. Esso non divide F in quanto F e G sono primi fra loro. L'insieme $U=V(G_1)\setminus V(F)$ è aperto non vuoto in $V(G_1)$, perché se fosse $V(G_1)\subset V(F)$, cioè se fosse $F\in I(V(G_1))$, allora secondo il teorema degli zeri $F\in \sqrt{(G_1)}=(G_1)$, quindi G_1 dividerebbe F. Ora l'ipersuperficie $V(G_1)$ è irriducibile, quindi U è insieme denso in $V(G_1)$. Questo aperto, denso è infinito, perché se fosse finito esso sarebbe chiuso in \mathbb{A}^n_k , quindi $U=V(G_1)$ e dunque l'insieme irriducibile $V(G_1)$ consisterebbe di un solo punto, che à assurdo se $n\geq 2$. I punti dell'insieme infinito U sono zeri di G e non sono zeri di F, quindi G0 non è regolare in esse. Concludiamo, come nell'esercizio precedente che $\Gamma(V, \mathcal{O}_V) \cong \mathsf{k}[t_1, \ldots, t_n]$ e che in questa algebra è presente un ideale massimale che non corrisponde ad alcun punto di V1. Dunque, V2 non è varietà affine.

Se n=1 abbiamo $\mathbb{A}^1 \setminus \{0\}$ che abbiamo già visto essere isomorfa ad una varietà affine quale l'iperbole. Effettivamente osserviamo che in \mathbb{A}^1 ogni aperto è principale e abbiamo visto che un aperto principale è una varietà quasi affine isomorfa ad una varietà affine di uno spazio opportuno.

Esercizio 4: Sia $V \subset \mathbb{P}^n$ una varietà quasi proiettiva. Siano $F_0(\underline{t}), \ldots, F_m(\underline{t})$ polinomi omogenei dello stesso grado nelle variabili $\underline{t} = (t_0, t_1, \ldots, t_n)$. Supponiamo che per ogni $x = (x_0 : x_1 : \ldots : x_n) \in V$ esista $F_i(\underline{t})$ tale che x non sia zero di F_i , allora l'applicazione $\phi : V \to \mathbb{P}^m$ data da $\phi(x) = (F_0(x_0, \ldots, x_n) : \ldots : F_m(x_0, \ldots, x_n))$ è un morfismo.

Soluzione: Inanzitutto φ è ben definita. In effetti almeno uno dei valori $F_i(x_0,\ldots,x_n)$ è diverso da 0 per ipotesi e inoltre se (x_0,\ldots,x_n) viene sostituito con $(\lambda x_0,\ldots,\lambda x_n)$, dove $\lambda\in\mathsf{k},\ \lambda\neq0$, allora i valori di F_i vengono simultaneamente molteplicati per λ^d , dove d è il grado comune dei F_i , e quindi $(F_0(x_0,\ldots,x_n):\ldots:F_m(x_0,\ldots,x_n))$ non dipende dalla scelta delle coordinate proiettive di x. Sappiamo che

$$\mathbb{P}^m = \mathbb{A}_0^m \cup \mathbb{A}_1^m \cup \ldots \cup \mathbb{A}_m^m = U_0 \cup U_1 \cup \ldots \cup U_m$$

e siano

$$V_i = \phi^{-1}(U_i) = \{x \in V : F_i(x) \neq 0\} = V \setminus V(F_i)$$
 insieme aperto.

Si ha $V = \bigcup_{i=0}^{m} V_i$ ricoprimento di aperti e

$$V_i \xrightarrow{\phi|_{V_i}} U_i \xleftarrow{\simeq} \mathbb{A}^m.$$

Secondo una delle proprietà di morfismi basta verificare che $\phi|_{V_i}:V_i\to U_i$ è morfismo per ogni i. Consideriamo per semplicità il caso i=0, gli altri sono analoghi. Sia $x\in V_0$, allora

$$\varphi(x) = (F_0(x) : \dots : F_m(x)) = \left(1 : \frac{F_1(x)}{F_0(x)} : \dots : \frac{F_m(x)}{F_0(x)}\right) \longrightarrow \left(\frac{F_1}{F_0}(x), \dots, \frac{F_m}{F_0}(x)\right).$$

Le funzioni $\frac{F_i}{F_0}$ sono regolari si V_0 , quindi $\varphi|_{V_0}$ e morfismo.

<u>Esercizio</u> 5: Sia $V \subset \mathbb{P}^n$ una varietà quasi proiettiva. Si dimostri che un'applicazione $\varphi: V \to \mathbb{P}^m$ è morfismo se, e solo se, per ogni punto $P \in V$ esiste un intorno U e polinomi omogenei dello stesso grado $F_0(\underline{t}), \ldots, F_m(\underline{t})$ tali che la restrizione $\varphi|_U$ ha la forma dell'esercizio precedente.

Solutione:

- (\Leftarrow) Secondo l'esercizio precedente ogni $P \in V$ possiede un itorno U_P in cui $\varphi|_{U_P} : U_P \to \mathbb{P}^m$ è morfismo. Applichiamo una delle proprietà di morfismi considerando il ricoprimento $V = \bigcup_{P \in V} U_P$ e $\mathbb{P}^m = \mathbb{P}^m$ (ricoprimento di un unico aperto) e concludiamo che φ è morfismo.
- (\Rightarrow) Sia φ un morfismo e vogliamo dimostrare che ogni punto possiede un intorno U tale che $\varphi|_U$ si rappresenta come nell'esercizio precedente.

Riduciamo tutto agli spazi affini e ricordiamo che

$$\mathbb{P}^m = \mathbb{A}_0^m \cup \mathbb{A}_1^m \cup \ldots \cup \mathbb{A}_m^m$$

Se prendo $P \in V$, allora $\varphi(P) = Q \in \mathbb{A}_i^m$ per qualche i e considero le preimmagini degli \mathbb{A}_i^m , $\varphi^{-1}(\mathbb{A}_i^m) = V_i$:

$$V_i \xrightarrow{\varphi} \mathbb{A}_i^m \xleftarrow{j_i} \mathbb{A}^m.$$

Sappiamo che vale una proprietà analoga per gli spazi affini, dunque

$$\varphi|_{V_i} = (f_0 : \ldots : f_{i-1} : 1 : f_{i+1} : \ldots : f_m)$$

dove $f_j \in \Gamma(V_i, \mathcal{O}_{V_i})$, funzioni regolari in ogni punto di V_i , perché così sono fatti i morfismi in spazi affini. Siamo su V_i , aperto di uno spazio proiettivo, dunque sappiamo che le f_j sono frazioni di polinomi omogenei dello stesso grado in un opportuno intorno di P: esiste dunque un intorno U di P in V_i tale che ogni f_j è data da

$$f_j = \frac{G_j(t_0, \dots, t_n)}{H_j(t_0, \dots, t_n)} |_U,$$

dove G_j , H_j sono polinomi omogenei e $\operatorname{gr}(G_j) = \operatorname{gr}(H_j)$. Per quanto detto in U l'applicazione φ si rappresenta come

$$\varphi|_{U} = \left(\frac{G_0}{H_0} : \frac{G_1}{H_1} : \dots : \frac{G_{i-1}}{H_{i-1}} : 1 : \frac{G_{i+1}}{H_{i+1}} : \dots : \frac{G_m}{H_m}\right)$$

e ponendo $H = H_1 \dots H_m$, polinomio che non si annulla in alcun punto di U, si ha

$$\varphi|_{U} = \left(\frac{H}{H_0}G_0 : \frac{H}{H_1}G_1 : \dots : \frac{H}{H_{i-1}}G_{i-1} : H : \frac{H}{H_{i+1}}G_{i+1} : \dots : \frac{H}{H_m}G_m\right).$$

Osserviamo che $\frac{HG_{j}}{H_{i}}$ sono tutti polinomi omogenei di grado gr(H), dunque

$$\varphi|_U=(F_0:F_1:\ldots:F_m)$$

dove F_0, \ldots, F_m soddisfano le condizioni dell'esercizio precedente $(F_i(x) = H(x) \neq 0 \text{ per } \forall x \in U)$.

<u>Esercizio</u> 6: Sia $\varphi: \mathbb{P}^n \to \mathbb{P}^n$ una proiettività. Si dimostri che φ è un isomorphismo.

 $^{^1\}mathrm{Un}$ isomorfismo di una varietà algebrica in se stessa $\varphi:X\to X$ si dice automorfismo di X.

Soluzione: $\varphi(x) = (F_0(x) : F_1(x) : \dots : F_n(x))$, dove $F_i(x_0, \dots, x_n) = \sum_{j=0}^n a_{ij} x_j$ e la matrice $A = (a_{ij})$ è invertibile. I polinomi F_i sono omogenei di grado 1 e non hanno zeri comuni in \mathbb{P}^n in quanto il sistema lineare omogeneo con matrice A ha solo la soluzione banale. Dunque φ è un morfismo. L'applicazione $\psi : \mathbb{P}^n \to \mathbb{P}^n$ definita in modo analogo tramite la matrice inversa A^{-1} e pure un morfizmo e ovviamente $\psi \circ \varphi = id$ e $\varphi \circ \psi = id$. Dunque φ è un isomorfismo.

Esercizio 7: Si dimostri che la varietà di Grassmann G(m, m + n) è irriducibile.

Soluzione: Consideriamo la scomposizione di G(m, m+n) in unione di insiemi aperti

$$G(m, m+n) = \bigcup_{\substack{I \subset \{1, \dots, m+n\}\\|I|=m}} \mathbb{A}_I^{m \cdot n}.$$

Ogni $\mathbb{A}_I^{m \cdot n}$ è irriducibile in quanto isomorfo a $\mathbb{A}^{m \cdot n}$. Inoltre ogni due aperti $\mathbb{A}_I^{m \cdot n}$ e $\mathbb{A}_J^{m \cdot n}$ hanno intersezione non vuota, basta prendere una matrice X di tipo $m \times (m+n)$ con minori $|X_I|$ e $|X_J|$ diversi da 0. Secondo un esercizio svolto G(m, m+n) è irriducibile.

<u>Esercizio</u> 8: Se $X = (x_{ij})$ è una matrice $m \times (m+n)$ con coefficienti nel campo k di rango m denotiamo con W = [X] il sottospazio di k^{m+n} di dimensione m generato dalle righe di X. Consideriamo l'applicazione

$$u: G(m, m+n) \to \mathbb{P}^N$$

data da

$$W = [X] \mapsto (\dots : M_{i_1 \dots i_m} : \dots)$$

dove $M_{i_1...i_m}$ con $i_1 < ... < i_m$ sono tutti i minori $m \times m$ della matrice X. Si dimostri che:

- (i) u è applicazione ben definita;
- (ii) u è un morfismo;
- (iii) u è applicazione iniettiva.

Soluzione: (i) Sappiamo già dalla teoria che ogni elemento $W \in G(m, m+n)$ è in corrispondenza biunivoca con una classe [X] dove $X' \sim X$ se esiste A invertibile di tipo $m \times m$ tale che X' = AX. Adesso consideriamo l'applicazione

$$W = [X] \mapsto (\dots : M_{i_1 \dots i_m} : \dots)$$

che associa ad ogni classe il punto proiettivo fatto da tutti i minori $m \times m$ estratti da X, ma l'applicazione è ben definita? Si, perché i minori di AX sono uguali a $\det(A)$ per i minori di X, dunque si può tirare fuori una costante non nulla che è $\det(A)$. Inoltre W ha dimensione m, allora il rango di X è m e dunque almeno un minore estratto da X è non nullo.

(ii) Come abbiamo fatto per \mathbb{P}^n , scriviamo la varietà di Grassmann come unione di aperti

$$G(m, m+n) = \bigcup_{\substack{I = \{i_1, \dots, 1_m\}\\i_1 < \dots < i_m}} \mathbb{A}_I^{m \cdot n},$$

dove $\mathbb{A}_I^{m \cdot n}$ sono aperti affini costituiti da tutti i sottospazi di G(m, m+n) che si rappresentano con matrici che hanno per sottomatrice estratta di colonne i_1, \ldots, i_m una matrice invertibile.

Siano $S_I = S_{i_1...i_m}$ le coordinate proiettive di \mathbb{P}^N . Si ha $W \in \mathbb{A}_I^{m \cdot n}$ se, e solo se, $\det(X_I) = M_{i_1...i_m} \neq 0$, dunque $u(\mathbb{A}_I^{m \cdot n}) \subset D(S_I)$ e in più $\mathbb{A}_I^{m \cdot n} = u^{-1}(D(S_I))$.

Per dimostrare che u è un morfismo basta dimostrare, secondo una delle proprietà di morfismi, che la

restrizione $u|_{\mathbb{A}_I^{m \cdot n}}: \mathbb{A}_I^{m \cdot n} \to D(S_I)$ è morfismo per ogni $I = \{i_1, \dots, i_m\}$. Per comodità scegliamo $I = \{1, \dots, m\}$, gli altri casi sono analoghi: $W \in \mathbb{A}_I^{m \cdot n}$ se

$$W \equiv \left[\begin{pmatrix} 1 & 0 & \dots & 0 & & \\ 0 & 1 & \dots & 0 & & \\ \vdots & \vdots & \ddots & \vdots & t_{ij} & \\ 0 & 0 & \dots & 1 & & \end{pmatrix} \right]$$

dove $(\ldots:t_{ij}:\ldots)\in\mathbb{A}^{m\cdot n}$ e dunque

$$u([X]) = (1 : \ldots : M_{i_1 \ldots i_m}(t_{ij}) : \ldots).$$

Basta togliere 1 per passare allo spazio affine e ottenere un'applicazione da $\mathbb{A}_I^{m\cdot n}$ in uno spazio affine che è rappresentata da funzioni polinomiali, funzioni regolari, da cui concludiamo $u|_{\mathbb{A}_I^{m\cdot n}}$ è un morfismo e così lo è anche u.

(iii) Dimostrare che u è iniettiva significa di fatto poter identificare il sottospazio a partire dai minori. Sia $X = (a_{ij})$ di tipo $m \times (m+n)$ e di rango m, consideriamo adesso una matrice estesa \widetilde{X}

$$\widetilde{X} = \begin{pmatrix} x_1 & x_2 & \dots & \dots & x_{m+n} \\ & & & & \\ & & & & \\ & & & & \end{pmatrix}$$

 \widetilde{X} è di tipo $(m+1)\times (m+n)$, mentre la sottomatrice X di tipo $m\times (m+n)$ e di rango m. Dunque la prima riga $v=(x_1,\ldots,x_{m+n})$ appartiene allo sottospazio W generato dalle righe di X se, e solo se, il rango di \widetilde{X} è m e questo se, e solo se, tutti i minori $(m+1)\times (m+1)$ di \widetilde{X} sono nulli. Sviluppando questi minori secondo la prima riga otteniamo un sistema lineare omogeneo per x_1,\ldots,x_{m+n} con coefficienti $\pm M_{i_1\ldots i_m}$, dunque conoscendo la riga dei minori a meno di proporzionalità determiniamo un unico W e quindi u è iniettiva.

Varietà quasiproiettive.

Esercizio 1: Si dimostri che tra 9 punti in \mathbb{P}^2 passa almeno una cubica.

Soluzione: Siano P_1, \ldots, P_9 punti in \mathbb{P}^2 . In questo caso si ha n=2 ed m=3, dunque $\binom{n+m}{m}=\binom{2+3}{2}=10$ e le cubiche vengono parametrizzate dallo spazio proiettivo \mathbb{P}^9 .

La cubica X che cerchiamo ha l'equazione

$$X: \sum_{i+j+k=3} a_{ijk} x^i y^j z^k = 0 \quad \text{omogeneo}$$

dove a_{ijk} sono indeterminate e il loro numero è 10. Se $P_l=(\alpha_{0l}:\alpha_{1l}:\alpha_{2l})$ per $l=1,\ldots,l,$ allora

$$X \ni P_l \quad \Leftrightarrow \quad \sum_{i+j+k=3} a_{ijk} \alpha_{0l}^i \alpha_{1l}^j \alpha_{2l}^k = 0,$$

condizione analitica affinché i punti stiano in X, ma questo è un sistema lineare, dunque otteniamo 9 equazioni lineari omogene per le incognite a_{ijk} , dunque esiste sicuramente una soluzione non banale al sistema, cioè una cubica passante per i nove punti di \mathbb{P}^2 .

Esercizio \underline{z} : Dati 9 punti in \mathbb{P}^3 si dimostri che esiste almeno una quadrica che li contiene.

Soluzione: Utilizziamo lo stesso argomento: n=3 e m=2, dunque $\binom{n+m}{n}=\binom{3+2}{3}=10$, da cui le quadriche vengono parametrizzate in \mathbb{P}^9 e l'equazione della generica quadrica X è data da

$$X: \sum_{i+j+k+l=3} a_{ijkl} x_0^i x_1^j x_2^k x_3^l = 0 \quad \text{omogeneo}$$

e si procede in modo analogo.

<u>Esercizio</u> 3: Sia $r_{n,m} = \binom{n+m}{n} - 1$, dove $m = r\ell$, $\ell \geq 2$. Denotiamo con T_{ℓ} il sottoinsieme di $\mathbb{P}^{r_{n,m}}$ che corrisponde ai polinomi omogenei in n+1 variabili che sono potenze ℓ -esime di polinomi di grado r. Si dimostri che T_{ℓ} è un sottoinsieme chiuso proiettivo, proprio di $\mathbb{P}^{r_{n,m}}$.

Soluzione: Sappiamo che $r_{n,m} = \binom{n+m}{n} - 1$ e T_ℓ corrisponde all'insieme

$$\Sigma = \{F = G^{\ell} : G \text{ è omogeneo di grado } r\} \pmod{\mathsf{k}^*} \subset \mathbb{P}^{r_{n,m}}$$

e dobbiamo fare vedere che Σ è un chiuso proprio. Cerchiamo di costruire un morfismo da una varietà proiettiva a $\mathbb{P}^{r_{n,m}}$ tale che l'immagine sia Σ : consideriamo Gmod k^* in $\mathbb{P}^{r_{n,r}}$ e lo mandiamo nella sua potenza G^{ℓ} mod k^* in $\mathbb{P}^{r_{n,m}}$

$$\varphi: \mathbb{P}^{r_{n,r}} \to \mathbb{P}^{r_{n,m}}$$
 definita da $G \operatorname{modk}^* \to G^{\ell} \operatorname{modk}^*$

 φ è ben definita: se moltiplico per una costante $\lambda \neq 0$, allora posso tirar fuori λ^{ℓ} e ottenere lo stesso punto e se $G \neq 0$, allora $G^{\ell} \neq 0$. Si ha e $\Sigma = \text{Imm}(\varphi)$. Ora verifichiamo che φ è morfismo. Cerchiamo di esplicitare questa applicazione tramite le coordinate proiettive di $\mathbb{P}^{r_{n,r}}$. Se

$$G = \sum_{i_0 + \dots + i_n = r} u_{i_0 \dots i_n} t_0^{i_0} \dots t_n^{i_n},$$

allora

$$G^{\ell} = \sum_{j_0 + \dots + j_n = l \cdot r} F_{j_0 \dots j_n} \left(\dots, u_{i_0 \dots i_n}, \dots \right) t_0^{j_0} \dots t_n^{j_n}$$

dove $F_{j_0...j_n}$ sono polinomi omogenei di grado ℓ nelle variabili $u_{i_0...i_n}$. Ne deduciamo che φ in coordinate si esprime come

$$\varphi(\ldots:u_{i_0\ldots i_n}:\ldots)=(\ldots:F_{j_0\ldots j_n}(\ldots,u_{i_0\ldots i_n},\ldots):\ldots).$$

Sappiamo che un'applicazione da un insieme quasi proiettivo ad uno spazio proiettivo data da polinomi omogenei dello stesso grado, che non hanno zeri comuni appartenenti all'insieme quasiproiettivo, è un morfismo: $F_{j_0...j_n}$ sono polinomi omogenei dello stesso grado ℓ ; siccome $G \neq 0 \Rightarrow G^l \neq 0$ questi pollinomi non possono annularsi simultaneamente in nessun punto di $\mathbb{P}^{r_{n,r}}$, dunque φ è morfismo e $\Sigma = \varphi(\mathbb{P}^{r_{n,r}})$ è chiuso in $\mathbb{P}^{r_{n,m}}$ per il teorema dell'immagine di varietà proiettive.

Perché il chiuso è proprio? Consideriamo il polinomio di Fermat $F = t_0^m + \ldots + t_n^m$ e verifichiamo che $F \mod \mathsf{k}^* \not\in \Sigma$. Se $n \geq 2$, allora F è irriducibile, dunque non può essere potenza ℓ -esima di nessun polinomio in quanto $\ell \geq 2$ per ipotesi. Se n = 1, allora il polinomio di Fermat si scompone in n fattori lineari

$$F = t_0^m + t_1^m = \prod_{w_i^m = -1} (t_0 - w_i t_i)$$

non proporzionali fra di loro, quindi non può essere potenza ℓ -esima di nessun polinomio.

Esercizio 4: Si dimostri che la varietà di Segre $\Sigma_{n,m} \subset \mathbb{P}^{(n+1)(m+1)-1}$ non è contenuta in nessun iperpiano di $\mathbb{P}^{(n+1)(m+1)-1}$.

Soluzione: Supponiamo per assurdo che la varietà di Segre sia contenuta in qualche iperpiano

$$\Sigma_{n,m} \subset H = \left\{ \sum_{\substack{i=0,\dots,n\\j=1,\dots,m}} a_{ij} w_{ij} = 0 \right\}$$

Le coordinate w_{ij} nella varietà di Segre le possiamo scrivere come

$$(\ldots:w_{ij}:\ldots)=(\ldots:u_iv_j:\ldots)$$

e prendiamo come

$$(\ldots: u_i:\ldots) = (0:\ldots:0:1:0:\ldots:0) = P_i$$
 e $(\ldots: v_i:\ldots) = (0:\ldots:0:1:0:\ldots:0) = Q_i$

dove abbiamo messo 1 al posto i e j rispettivamente e zero altrove, da cui

$$s_{n,m}(P_i,Q_i) = (0:\ldots:0:1:0:\ldots:0)$$

al posto ij. Per ipotesi $s_{n,m}(P_i,Q_j) \in H$, dunque $a_{ij}=0$ e così abbiamo annullato tutti i coefficienti perché questo ragionamento lo posso fare per ogni i,j e questo è un assurdo perché almeno un coefficiente deve essere diverso da zero.

Si può dimostrare che $a_{ij}=0$ per $\forall i,j$ in un'altro modo. Se ogni punto $(\ldots:u_iv_j:\ldots)$ della varietà di Segre $\Sigma_{n,m}$ appartiene ad H, allora $\sum_{i,j}a_{ij}u_iv_j=0$ per ogni (u_0,\ldots,u_n) e ogni (v_0,\ldots,v_m) . Questo significa che il polinomio $\sum_{i,j}a_{ij}x_iy_j$ si anulla in ogni punto di $\mathbb{A}^{n+1}\times\mathbb{A}^{m+1}$. Dunque per il principio d'identità di polinomi $a_{ij}=0$ per $\forall i,j$.

<u>Esercizio</u> 5: Sia $X = \mathbb{A}^2 \setminus \{x\}$ dove x è un punto. Si dimostri che X non è isomorfa né a una varietà affine, né a una varietà proiettiva.

Soluzione: Perché X non può essere proiettiva?

Supponiamo per assurdo che X sia proiettiva, allora l'identità id : $X \to \mathbb{A}^2 \setminus \{x\} \subset \mathbb{A}^2$ è un morfismo, dunque id deve avere per immagine un numero finito di punti per un corollario al teorema dell'immagine di varietà proiettive, ma questo è un assurdo perché $|X| = \infty$.

Perché $\mathbb{A}^2 \setminus \{x\}$ non è varietà affine?

Per x=(0,0) è già noto. Supponiamo per assurdo che $\mathbb{A}^2\setminus\{x\}$ sia affine, ma esiste $T:\mathbb{A}^2\to\mathbb{A}^2$ trasformazione affine tale che $T(x)=\{(0,0)\}$, allora $\mathbb{A}^2\setminus\{x\}\simeq\mathbb{A}^2\setminus\{(0,0)\}$. Se $\mathbb{A}^2\setminus\{x\}$ fosse affine, allora anche $\mathbb{A}^2\setminus\{(0,0)\}$ sarebbe affine, contraddizione.

<u>Esercizio</u> 6: Si dimostri che la varietà quasi proiettiva $V = \mathbb{P}^2 \setminus \{x\}$ non è isomorfa né a una varietà quasi affine, né a una varietà proiettiva.

Suggerimento: Si calcoli $\Gamma(V, \mathcal{O}_V)$.

Soluzione: Perchè V non è varietà proiettiva, cioè non è isomorfa a un chiuso proiettivo?

 $\mathbb{P}^2 \setminus \{x\}$ è un insieme quasiproiettivo in \mathbb{P}^2 e secondo un corollario del teorema dell'immagine di varietà proiettive, se fosse isomorfo ad una varietà proiettiva, dovrebbe essere chiuso in \mathbb{P}^2 , che è assurdo, perché V è aperto, non vuoto nell'insieme irriducibile \mathbb{P}^2 e quindi è denso in \mathbb{P}^2 , ma $V \neq \mathbb{P}^2$.

Perchè V non è isomorfo a un insieme quasiaffinne $W \subset \mathbb{A}^n$?

Prima calcoliamo $\Gamma(V, \mathcal{O}_V)$. Ricordiamoci la soluzione dell'esercizio n. 2 del foglio "Varietà algebriche", riguardo all'uguaglianza $\Gamma(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}) = \mathsf{k}$. Abbiamo fatto l'osservazione che sono state utilizzate solo le due carte $\mathbb{A}^n_0 \in \mathbb{A}^n_1$ e risultava che l'uguaglianza $\Gamma(U, \mathcal{O}_{\mathbb{P}^n}) = \mathsf{k}$ vale per l'insieme aperto $U = \mathbb{A}^n_0 \cup \mathbb{A}^n_1 = \mathbb{P}^n \setminus E$, dove E è il sottospazio proiettivo $x_0 = x_1 = 0$. Se n = 2 questo ci da che $\Gamma(U, \mathcal{O}_U) = \mathsf{k}$, dove $U = \mathbb{P}^2 \setminus (0:0:1)$. Se $x \in \mathbb{P}^2$, allora esiste una proiettività che trasforma x in (0:0:1) e quindi $V = \mathbb{P}^2 \setminus \{x\}$ e isomorfa a $U = \mathbb{P}^2 \setminus (0:0:1)$, pertanto $\Gamma(V, \mathcal{O}_V) = \mathsf{k}$.

Ora si può ripetere l'argomento della soluzione dell'esercizio n.3 del foglio "Varietà algebriche". Supponiamo per assurdo che vi sia un'isomorfismo $u:V\to W$. Sia $i:W\hookrightarrow \mathbb{A}^n$ il morfismo di inclusione. Allora $i\circ u:V\to \mathbb{A}^n$ è un morfismo dato da n funzioni regolari $f_i\in \Gamma(V,\mathcal{O}_V),\ i\circ u=(f_1,\ldots,f_n)$ e siccome tutte le funzioni sono costanti u(V) deve essere un punto, che è un assurdo.

Esercizio 7: Si dimostri che la varietà quasi proiettiva $\mathbb{P}^1 \times \mathbb{A}^1$ non è isomorfa né ad una varietà quasi affine, né ad una varietà proiettiva.

Soluzione: Supponiamo per assurdo che $X = \mathbb{P}^1 \times \mathbb{A}^1$ sia una varietà proiettiva: $\mathbb{P}^1 \times \mathbb{A}^1$ è isomorfa a $\mathbb{P}^1 \times \mathbb{A}^1_0$, che è un insieme aperto in $\mathbb{P}^1 \times \mathbb{P}^1$. Secondo il teorema dell'immagine di varietà proiettive $\mathbb{P}^1 \times \mathbb{A}^1_0$ deve essere insieme chiuso in $\mathbb{P}^1 \times \mathbb{P}^1$, che è assurdo, perchè $\mathbb{P}^1 \times \mathbb{P}^1$ è irriducibile, quindi l'aperto proprio $\mathbb{P}^1 \times \mathbb{A}^1_0$ è denso in $\mathbb{P}^1 \times \mathbb{P}^1$.

Possiamo dare anche una seconda soluzione: sia $p_2: X \to \mathbb{A}^1$ la seconda proiezione, allora p_2 è un morfismo e poiché un morfismo di varietà proiettive ad uno spazio affine ha per immagine un numero finito di punti, $p_2(X)$ deve essere un insieme finito di punti, ma p_2 è surgettiva, contraddizione.

Supponiamo per assurdo che $X=\mathbb{P}^1\times\mathbb{A}^1$ sia una varietà quasi affine, allora $\varphi:X\stackrel{\sim}{\longrightarrow}V\subset\mathbb{A}^n$, dove V è un insieme quasi affine. A differenza di prima, non abbiamo funzioni regolari soltanto costanti, basta prendere una funzione regolare non costante in \mathbb{A}^1 e poi agire con p_2^* per trovare una funzione regolare non costante. Se considero $Y=\mathbb{P}^1\times\{0\}\subset\mathbb{P}^1\times\mathbb{A}^1$ chiuso, allora $\varphi|_Y:Y\to V\subset\mathbb{A}^n$ è una applicazione iniettiva, ma $Y\simeq\mathbb{P}^1$, dunque l'immagine è un punto, $\varphi|_Y$ trasforma $\mathbb{P}^1\times\{0\}$ in un punto per il corollario 123 delle lezioni, ma questo è assurdo perché φ è una applicazione iniettiva.

Esercizio 8: Sia $s_{1,1}: \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^3$ l'applicazione di Segre . Sia $\Sigma_{1,1}$ la quadrica $w_{00}w_{11} - w_{01}w_{10} = 0$. Per ogni $\alpha = (\alpha_0 : \alpha_1) \in \mathbb{P}^1$ poniamo $L_{\alpha} = s_{1,1}(\alpha \times \mathbb{P}^1)$ e per ogni $\beta = (\beta_0 : \beta_1) \in \mathbb{P}^1$ poniamo $M_{\beta} = s_{1,1}(\mathbb{P}^1 \times \beta)$. Si dimostri che L_{α} per $\alpha \in \mathbb{P}^1$ e M_{β} per $\beta \in \mathbb{P}^1$ formano due famiglie di rette contenute in $\Sigma_{1,1}$ con le seguenti proprietà

- (i) per ogni $\alpha, \alpha' \in \mathbb{P}^1$, $\alpha \neq \alpha'$ si ha $L_{\alpha} \cap L_{\alpha'} = \emptyset$ e per ogni $\beta, \beta' \in \mathbb{P}^1$, $\beta \neq \beta'$ si ha $M_{\beta} \cap M_{\beta'} = \emptyset$;
- (ii) per ogni $\alpha \in \mathbb{P}^1$ e ogni $\beta \in \mathbb{P}^1$ si ha $|L_{\alpha} \cap M_{\beta}| = 1$;

Soluzione: Sia $L_{\alpha} = s_{1,1}(\alpha \times \mathbb{P}^1)$ e siano $(v_0 : v_1)$ le coordinate di \mathbb{P}^1 , allora si ha

$$(*) L_{\alpha} : \begin{cases} w_{00} = \alpha_0 \cdot v_0 \\ w_{01} = \alpha_0 \cdot v_1 \\ w_{10} = \alpha_1 \cdot v_0 \\ w_{11} = \alpha_1 \cdot v_1 \end{cases}.$$

In L_{α} α è fissato e i v_i variano, dunque se la matrice associata al sistema (*) ha rango 2, L_{α} sarà uno spazio vettoriale di dimensione 2, cioè una retta proiettiva.

$$\begin{pmatrix} \alpha_0 & 0 \\ 0 & \alpha_0 \\ \alpha_1 & 0 \\ 0 & \alpha_1 \end{pmatrix} \begin{pmatrix} v_0 \\ v_1 \end{pmatrix} = \begin{pmatrix} \alpha_0 v_0 \\ \alpha_0 v_1 \\ \alpha_1 v_0 \\ \alpha_1 v_1 \end{pmatrix}$$

e vediamo che la matrice ha rango 2 perché almeno uno fra α_0 e α_1 è diverso da zero, dunque al variare di (v_0, v_1) si ottiene in k^4 uno spazio vettoriale W_α di dimensione 2, corrispondente al sostegno di $L_\alpha = \mathbb{P}(W_\alpha) \subset \mathbb{P}^3$. Similmente $M_\beta \subset \mathbb{P}^3$ sono rette.

Poiché $\alpha \times \mathbb{P}^1$ e $\alpha' \times \mathbb{P}^1$ non si intersecano se $\alpha \neq \alpha'$, le loro immagini attraverso l'applicazione iniettiva $s_{1,1}$ continueranno a non intersecarsi, dunque $L_{\alpha} \cap L_{\alpha'} = \emptyset$. Similmente $M_{\beta} \cap M_{\beta'} = \emptyset$ se $\beta \neq \beta'$.

Abbiamo una quadrica in cui abbiamo prodotto due sistemi di generatori che fra di loro non si intersecano, ma $|L_{\alpha} \cap M_{\beta}| = 1$? Si, perché

$$(\alpha \times \mathbb{P}^1) \cap (\mathbb{P}^1 \times \beta) = (\alpha, \beta)$$

e $s_{1,1}$ è iniettivo, dunque lo stesso vale per le immagini, $|L_{\alpha} \cap M_{\beta}| = 1$.

<u>Esercizio</u> 9: Sia il campo base k algebricamente chiuso di caratteristica $\neq 2$. Sia $Q \subset \mathbb{P}^3$ una quadrica di rango 4. Si dimostri che esistono due famiglie di rette L_{α} , $\alpha \in \mathbb{P}^1$ e M_{β} , $\beta \in \mathbb{P}^1$ contenute in Q, tali che

- $L_{\alpha} \cap L_{\alpha'} = \emptyset$ se $\alpha \neq \alpha'$ e $M_{\beta} \cap M_{\beta'} = \emptyset$ se $\beta \neq \beta'$
- $|L_{\alpha} \cap M_{\beta}| = 1 \text{ per } \forall \alpha, \beta.$

Soluzione: È noto che le quadriche in \mathbb{P}^3 dello stesso rango sono proiettivamente equivalenti, quindi esiste una proiettività di \mathbb{P}^3 che trasforma la quadrica di equazione $x_0x_1 - x_2x_3 = 0$, che è la quadrica dell'esercizio 8, nella quadrica Q. La proiettività T trasforma le due famiglie di rette dell'esercizio 8 in famiglie di rette contenute in Q, che soddisfano le proprietà richieste.

Esercizio 10: Si dimostri che $\mathbb{P}^1 \times \mathbb{P}^1$ non è isomorfa a \mathbb{P}^2 . Suggerimento: Si utilizzi il teorema di Bézout.

Soluzione: In questo caso abbiamo due varietà proiettive, dunque non possiamo utilizzare gli stessi ragionamenti che abbiamo usato finora, le funzioni regolari sulle entrambe varietà sono costanti. Supponiamo per assurdo che esista $\varphi: \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^2$ e per l'esercizio precedente abbiamo visto che in $\mathbb{P}^1 \times \mathbb{P}^1$ abbiamo due famiglie di rette che non si intersecano, $\{\alpha \times \mathbb{P}^1\}_{\alpha \in \mathbb{P}^1}$ e $\{\beta \times \mathbb{P}^1\}_{\beta \in \mathbb{P}^1}$, famiglie di chiusi in $\mathbb{P}^1 \times \mathbb{P}^1$ irriducibili. $\varphi(\alpha \times \mathbb{P}^1)$ è un chiuso di \mathbb{P}^2 irriducibile, dunque non può essere un punto, perché φ è iniettiva e deve essere per forza una curva irriducibile: $\varphi(\alpha \times \mathbb{P}^1) = V(F)$ con F polinomio omogeneo irriducibile perché non possiamo considerare né \mathbb{P}^2 né un punto, l'immagine deve essere un sottoinsieme proprio e φ non può essere costante. Similmente $\varphi(\alpha' \times \mathbb{P}^1) = V(G)$ con G polinomio omogeneo irriducibile, dunque $V(F,G) = \emptyset$ perché $\alpha \times \mathbb{P}^1$ e $\alpha' \times \mathbb{P}^1$ non si intersecano, ma questo per il teorema di Bézout non è possibile.