Geometria Algebrica A.A. 2023 - 2024Esercizi

Insiemi algebrici affini, Insiemi algebrici irriducibili.

Negli esercizi si suppone, se non scritto al contrario, che il campo k sia algebricamente chiuso di caratteristica zero, ad esempio $k = \mathbb{C}$.

- Sia k un campo infinito. Sia $V \subset \mathbb{A}^n_k$ un insieme algebrico affine. Sia L una retta non contenuta in V. Allora l'intersezione di V con L è o un insieme vuoto o un insieme finito.
- Sia $k = \mathbb{R}$. Quali degli insiemi seguenti sono insiemi algebrici affini ?
 - 1. $\{(\cos t, \sin t) | t \in [0, 2\pi] \} \subset \mathbb{R}^2$
 - 2. $\{(t, \sin t)|t \in (0, \infty)\} \subset \mathbb{R}^2$
- Sia k un campo infinito. Si dimostri che gli insiemi chiusi della topologia di Zariski di \mathbb{A}^2_k sono \mathbb{A}^2_k , \emptyset e gli insiemi del tipo:

$$\bigcup_{i=1}^n V(F_i) \cup \{P_1, \dots, P_m\}$$

dove F_i sono polinomi irriducibili e P_j sono punti, $i=1,\ldots,n;\ j=1,\ldots,m.$

Suggerimento. Si utilizzi che due curve piane hanno infiniti punti in comune se e solo se hanno una componente in comune. – L'insieme $V\subset \mathbb{A}^2_k$ è dato dalle equazioni

$$F(x,y) = x^2 + y^2 - 1 = 0$$
, $G(x,y) = x - 1 = 0$.

Trovare I(V). È vero che I(V) = (F, G)?

- Sia $f: X \to Y$ un'applicazione continua di spazi topologici. Supponiamo che X sia irriducibile e f(X) sia denso in Y. Si dimostri che Y è irriducibile.
- Si dimostri che ogni sottospazio affine di \mathbb{A}^n_k è irriducibile.
- Sia k un campo algebricamente chiuso di $char(k) \neq 2$. Trovare le componenti irriducibili dell'insieme $X \subset \mathbb{A}^3_k$ dato dalle equazioni

$$x^{2} + y^{2} + z^{2} = 0$$
, $x^{2} - y^{2} - z^{2} + 1 = 0$

- Sia $V=V(I)\subset \mathbb{A}^3_k$ l'insieme chiuso affine che corrisponde all'ideale $I=(x^2-yz,xz-x)$. Si scomponga V in componenti irriducibili.
- Sia E uno spazio topologico e sia V un sottoinsieme dotato dalla topologia indotta. Si dimostri che V è irriducibile se e solo se la chiusura \overline{V} è irriducibile.
- Sia E uno spazio topologico. Supponiamo che E sia coperto da insiemi aperti $E = \bigcup_{i \in I} V_i$, dove ogni V_i è irriducibile e ogni coppia V_i, V_j ha intersezione non vuota. Si dimostri che E è irriducibile.

Algebra di funzioni polinomiali. Applicazioni polinomiali, isomorfismo. Funzioni razionali.

- Sia $X \subset \mathbb{A}^2_k$ la curva $y^2 = x^3$. Si dimostri che l'applicazione $\mathbb{A}^1_k \to X$ data da $t \mapsto (t^2, t^3)$ è un omeomorfismo ma non è un isomorfismo polinomiale.
- Si dimostri che l'iperbole xy = 1 non è isomorfa a \mathbb{A}^1_k .
- Considerare l'applicazione polinomiale $u: \mathbb{A}^2_k \to \mathbb{A}^2_k$ data da u(x,y)=(x,xy). Trovare l'immagine $u(\mathbb{A}^2_k)$. È vero che questo insieme è: aperto; denso; chiuso?
- Sia V un chiuso affine irriducibile e sia $\varphi \in k(V)$ una funzione razionale. Sia $P \in V$ e supponiamo che $\varphi = \frac{f}{g}$ dove $f, g \in A(V)$, $f(P) \neq 0, g(P) = 0$. Si dimostri che $P \notin dom(\varphi)$.
- Sia $C\subset \mathbb{A}^2_k$ la curva $x^2+y^2=1$. Sia $\varphi=\frac{1-y}{x}$. Si calcoli il dominio di φ .

Insiemi algebrici proiettivi.

– Sia $u:\mathbb{P}^1 \to \mathbb{P}^3$ l'applicazione definita da

$$u((x_0:x_1)) = (x_0^3:x_0^2x_1:x_0x_1^2:x_1^3)$$

Si dimostri che l'immagine $X = u(\mathbb{P}^1)$ è l'insieme proiettivo definito dalle equazioni $M_{i,j} = 0$, dove $M_{i,j}$ sono i minori 2×2 della matrice

$$\begin{pmatrix} T_0 & T_1 & T_2 \\ T_1 & T_2 & T_3 \end{pmatrix}$$

L'insieme proiettivo X è detto cubica gobba.

- Sia X la cubica gobba. Siano P_1, P_2, P_3, P_4 quattro punti distinti appartenenti a X. Si dimostri che essi non appartengono ad alcun piano in \mathbb{P}^3 .
- Sia $X \subset \mathbb{P}^n$ un insieme quasiproiettivo. Si dimostri che X è insieme aperto nell'insieme proiettivo \overline{X} .
- Siano $x_1, x_2, \ldots, x_m \in \mathbb{P}^n$ punti dello spazio proiettivo. Si dimostri che esiste un iperpiano H, tale che $x_i \notin H$ per ogni i.

Suggerimento: Se $\mathbb{P}^n = \mathbb{P}(V)$ si consideri lo spazio proiettivo duale $\mathbb{P}(V^*)$ che parametrizza gli iperpiani in \mathbb{P}^n .

– Nell'esercizio precedente supponiamo che $m \geq 2$. Si dimostri che esiste un iperpiano H, tale che $x_1 \in H$ e $x_i \notin H$ per ogni $i \geq 2$.

Varietà algebriche.

- Si dimostri che $\Gamma(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}) = k$.
- Si dimostri che la varietà quasiaffine $V=\mathbb{A}^2\setminus\{(0,0)\}$ non è una varietà affine.

Suggerimento. Calcolare $\Gamma(V, \mathcal{O}_V)$ e utilizzare il teorema degli zeri per le varietà affini.

- Si dimostri che $V = \mathbb{A}^n \setminus \{(0, \dots, 0)\}$ è una varietà affine se e solo se n = 1.
- Sia $V \subset \mathbb{P}^n$ una varietà quasi proiettiva. Siano $F_0(\underline{t}), \ldots, F_m(\underline{t})$ polinomi omogenei dello stesso grado nelle variabili $\underline{t} = (t_0, t_1, \ldots, t_n)$. Supponiamo che per ogni $x = (x_0 : x_1 : \ldots : x_n) \in V$ esista $F_i(\underline{t})$ tale che x non sia zero di F_i , allora l'applicazione $\phi : V \to \mathbb{P}^m$ data da $\phi(x) = (F_0(x_0, \ldots, x_n) : \ldots : F_m(x_0, \ldots, x_n))$ è un morfismo.

- Sia $V \subset \mathbb{P}^n$ un insieme quasi proiettivo. Si dimostri che un'applicazione $\varphi: V \to \mathbb{P}^m$ è morfismo se e solo se per ogni punto $P \in V$ esiste un intorno U e polinomi omogenei dello stesso grado $F_0(\underline{T}), \ldots, F_m(\underline{T})$ tali che la restrizione $\varphi|_U$ ha la forma dell'esercizio precedente.
- Sia $\varphi:\mathbb{P}^n\to\mathbb{P}^n$ una proiettività. Si dimostri che φ è un isomorphismo.
- Si dimostri che la varietà di Grassmann G(m, m + n) è irriducibile.
- Se $X = (x_{ij})$ è una matrice $m \times (m+n)$ con coefficienti nel campo k di rango m denotiamo con W = [X] il sottospazio di k^{m+n} di dimensione m generato dalle righe di X. Consideriamo l'applicazione

$$u: G(m, m+n) \to \mathbb{P}^N$$

data di

$$W = [X] \mapsto (\ldots : M_{i_1 \cdots i_m} : \ldots)$$

dove $M_{i_1 \cdots i_m}$, con $i_1 < \cdots < i_m$, sono tutti i minori $m \times m$ della matrice X. Si dimostri che:

- (i) u è applicazione ben definita;
- (ii) u è un morfismo;
- (iii) u è applicazione iniettiva.

 $^{^1 \}mathrm{Un}$ isomorfismo di una varietà algebrica in se stessa $\varphi: X \to X$ si dice automorfismo di X.

Varietà quasi proiettive

- Si dimostri che tra 9 punti in \mathbb{P}^2 passa almeno una cubica.
- Dati 9 punti in \mathbb{P}^3 si dimostri che esiste almeno una quadrica che li contiene.
- Sia $r_{n,m} = \binom{n+m}{n} 1$, dove $m = r\ell$, $\ell \geq 2$. Denotiamo con T_{ℓ} il sottoinsieme di $\mathbb{P}^{r_{n,m}}$ che corrisponde ai polinomi omogenei in n+1 variabili che sono potenze ℓ -esime di polinomi di grado r. Si dimostri che T_{ℓ} è un sottoinsieme chiuso proiettivo, proprio di $\mathbb{P}^{r_{n,m}}$.
- Si dimostri che la varietà di Segre $\Sigma_{n,m} \subset \mathbb{P}^{(n+1)(m+1)-1}$ non è contenuta in nessun iperpiano di $\mathbb{P}^{(n+1)(m+1)-1}$.
- Sia $X=\mathbb{A}^2\setminus\{x\}$ dove x è un punto. Si dimostri che X non è isomorfa né a una varietà affine, né a una varietà proiettiva.
- Si dimostri che la varietà quasi proiettiva $V=\mathbb{P}^2\setminus\{x\}$ non è isomorfa né a una varietà quasi affine, né a una varietà proiettiva.

Suggerimento. Si calcoli $\Gamma(V, \mathcal{O}_V)$.

– Si dimostri che la varietà quasi proiettiva $\mathbb{P}^1 \times \mathbb{A}^1$ non è isomorfa né a una varietà quasi affine, né a una varietà proiettiva.

- Consideriamo l'applicazione di Segre $s_{1,1}: \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^3$. Sia $\Sigma_{1,1}$ la quadrica $w_{00}w_{11} w_{01}w_{10} = 0$. Per ogni $\alpha = (\alpha_0: \alpha_1) \in \mathbb{P}^1$ poniamo $L_{\alpha} = s_{1,1}(\alpha \times \mathbb{P}^1)$ e per ogni $\beta = (\beta_0: \beta_1) \in \mathbb{P}^1$ poniamo $M_{\beta} = s_{1,1}(\mathbb{P}^1 \times \beta)$. Si dimostri che $L_{\alpha}, \alpha \in \mathbb{P}^1$ e $M_{\beta}, \beta \in \mathbb{P}^1$ formano due famiglie di rette contenute in $\Sigma_{1,1}$ con le seguenti proprietà:
- (i) per ogni $\alpha, \alpha' \in \mathbb{P}^1, \alpha \neq \alpha'$ si ha $L_{\alpha} \cap L_{\alpha'} = \emptyset$ e per ogni $\beta, \beta' \in \mathbb{P}^1, \beta \neq \beta'$ si ha $M_{\beta} \cap M_{\beta'} = \emptyset$;
 - (ii) per ogni $\alpha \in \mathbb{P}^1$ e ogni $\beta \in \mathbb{P}^1$ si ha $|L_{\alpha} \cap M_{\beta}| = 1$.
- Sia il campo base k algebricamente chiuso di caratteristica $\neq 2$. Sia $Q \subset \mathbb{P}^3$ una quadrica di rango 4. Si dimostri che esistono due famiglie di rette $L_{\alpha}, \alpha \in \mathbb{P}^1$ e $M_{\beta}, \beta \in \mathbb{P}^1$ contenute in Q, tali che
 - $L_{\alpha} \cap L_{\alpha'} = \emptyset$ se $\alpha \neq \alpha'$ e $M_{\beta} \cap M_{\beta'} = \emptyset$ se $\beta \neq \beta'$
 - $|L_{\alpha} \cap M_{\beta}| = 1 \text{ per } \forall \alpha, \beta.$
- Si dimostri che la varietà proiettiva $\mathbb{P}^1 \times \mathbb{P}^1$ non è isomorfa a \mathbb{P}^2 .

Suggerimento. Si utilizzi il teorema di Bézout.