Geometria 3 Modulo 'Superfici di Riemann' $A.A.\ 2009-2010$ Esercizi

Numeri complessi; Limiti e continuità.

–Sia
$$z = 1 + i$$
, $w = 2 - i$, $\zeta = 4 + 3i$. Calcolare a) $Re(\zeta^{-1}), Im(\zeta^{-1})$, b) $\frac{w}{z}$ c) $\zeta^2 + 2\overline{\zeta} + 3$

–Rappresentare in forma esponenziale $re^{i\theta}$ i numeri

a)
$$\sqrt{5} - i$$
, b) $\frac{\sqrt{2}}{1+i}$ c) $\left(\frac{1+i}{\sqrt{2}}\right)^4$

– Trovare le radici

a)
$$\sqrt[3]{-i}$$
, b) $\sqrt[5]{1-i}$ c) $\sqrt[7]{\frac{1}{1-i}}$

-Trovare i punti dove le funzioni sono continue

a)
$$f(z) = \begin{cases} \frac{z^3 + i}{z - i}, & z \neq i \\ -2, & z = i \end{cases}$$

b)
$$f(z) = \begin{cases} \frac{z^4 - 1}{z - i}, & z \neq i \\ 4i, & z = i \end{cases}$$

– Trovare i seguenti limiti all'infinito o spiegare perchè non esistono

a)
$$f(z) = \frac{1}{|z|-1}$$
, b) $h(z) = \frac{|z|}{z}$ c) $g(z) = \frac{4z^6-7z^3}{(z^2-4)^3}$

d)
$$h(z) = Arg(z)$$
 e) $g(z) = \frac{z^4 - 1}{z^3 + 3z + 2}$

Serie. Serie di potenze.

- Siano $\sum_{k\geq 0} a_k$ e $\sum_{k\geq 0} b_k$ due serie di numeri complessi. Supponiamo le serie siano assolutamente convergenti e siano A e B le loro somme. Si dimostri che il prodotto di Cauchy $\sum_{n\geq 0} c_n$, dove $c_n = \sum_{k=0}^n a_k b_{n-k}$ è assolutamente convergente a la sua somma è uguale a $A \cdot B$.
- -Trovare il raggio di convergenza delle seguenti serie di potenze:

a)
$$\sum_{k=0}^{\infty} k(z-1)^k$$
, b) $\sum_{j=0}^{\infty} \frac{z^{3j}}{2^j}$ c) $\sum_{n=0}^{\infty} 5^{(-1)^n} z^n$

-Trovare il raggio di convergenza delle seguenti serie di potenze:

a)
$$\sum_{k=1}^{\infty} \frac{(k!)^2}{(2k-1)!} (z-2)^k$$
, b) $\sum_{k=0}^{\infty} (-1)^k z^{2k}$ c) $\sum_{n=1}^{\infty} \frac{n!}{n^n} z^n$

- Supponiamo $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ abbia raggio di convergenza R > 0. Suponiamo esista un $r \leq R$, r > 0 tale che f(z) = 0 per ogni $|z z_0| < r$. Si dimostri che $a_0 = a_1 = \ldots = a_n = \ldots = 0$.
- Se $F(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ e $G(z) = \sum_{n=0}^{\infty} b_n (z-z_0)^n$ hanno valori uguali in qualche disco $|z-z_0| < r$, r > 0, si dimostri che $a_0 = b_0, a_1 = b_1, \ldots, a_n = b_n, \ldots$
- Trovare le somme infinite

a)
$$\sum_{n=0}^{\infty} nz^n$$
, b) $\sum_{n=0}^{\infty} n^2 z^n$

– Siano $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ e $g(z) = \sum_{n=0}^{\infty} b_n (z-z_0)^n$ due serie di potenze convergenti nel disco $|z-z_0| < R$. Allora il prodotto di Cauchy $\sum_{n=0}^{\infty} c_n (z-z_0)^n$, dove $c_n = \sum_{k=0}^n a_k b_{n-k}$ è convergente nello stesso disco e si ha $f(z)g(z) = \sum_{n=0}^{\infty} c_n (z-z_0)^n$ per $|z-z_0| < R$.

Funzioni elementari.

- Si dimostri che valgono le seguenti identità:
 - a) $\cos(z) = \frac{1}{2}(e^{iz} + e^{-iz}), \quad \sin(z) = \frac{1}{2i}(e^{iz} e^{-iz})$
 - b) $\cos(\frac{\pi}{2} z) = \sin(z), \qquad \sin(\frac{\pi}{2} z) = \cos(z)$
- Sia $f: A \to \mathbb{C}$ una funzione di variabile complessa. Un punto $z_0 \in A$ si dice zero di f se $f(z_0) = 0$. Trovare gli zeri delle funzioni $\sin(z)$ e $\cos(z)$.
- Siano

$$\sinh(z) = \frac{1}{2}(e^z - e^{-z}) = z + \frac{1}{3!}z^3 + \frac{1}{5!}z^5 + \dots$$
$$\cosh(z) = \frac{1}{2}(e^z + e^{-z}) = 1 + \frac{1}{2!}z^2 + \frac{1}{4!}z^4 + \dots$$

le estenzioni al piano complesso delle funzioni reali $\sinh(x)$ e $\cosh(x)$. Verificare le seguenti identità:

$$\sin(iz) = i\sinh(z), \qquad \cos(iz) = \cosh(z)$$

Trovare gli zeri delle funzioni $\sinh(z)$ e $\cosh(z)$.

– Sia $\alpha \in \mathbb{C}$, $\alpha \notin \mathbb{Z}_{\geq 0}$. Sia $\binom{\alpha}{k} := \frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!}$. Si dimostri che la serie

$$\sum_{k=0}^{\infty} {\alpha \choose k} z^k = 1 + \alpha z + \frac{\alpha(\alpha - 1)}{2} z^2 + \cdots,$$

detta serie binomiale, ha raggio di convergenza 1.

– Sia $F_{\alpha}(z)$ la somma della serie binomiale. Si dimostri che vale l'identità

$$F'_{\alpha}(z) = \alpha \frac{F_{\alpha}(z)}{1+z}$$

Integrazione di funzioni a variabile complessa, Principio d'identità di funzioni olomorfe, Serie di Laurent

- Calcolare

a)
$$\oint_{|z|=2} \frac{e^z}{z^4} dz$$
 b) $\oint_{|z-1|=3} \frac{\sin(z+1)}{(z-1)^3} dz$

– a) Si dimostri che invertendo $e^z=w$ si ottiene la funzione polidroma

$$\log(w) = \ln(|w|) + i(Arg(w) + 2k\pi), \quad k \in \mathbb{Z}, \quad Arg(w) \in [0, 2\pi)$$

b) Si dimostri che la funzione

$$Log(1+z) = z - \frac{z^2}{2} + \frac{z^3}{3} - \cdots$$

soddisfa l'identità $e^{Log(1+z)}=1+z$. Quindi la funzione

$$Log(w) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{(w-1)^n}{n}$$

è un ramo di $\log(w)$ nel disco |w-1| < 1.

- Determinare la serie di Laurent della funzione

$$f(z) = \frac{z}{(z-2)(z-3)}$$

in un intorno bucato di ciascuno dei due poli z=2 e z=3, specificando il massimo raggio di convergenza.

– Trovare la parte principale e il residuo di ciascuna delle funzioni nel punto z_0 .

a)
$$\frac{e^z-1}{z^2}$$
, $z_0 = 0$; b) $\frac{z^2}{z^2-1}$, $z_0 = 1$; c) $\frac{\sin z}{(z-\pi)^2}$, $z_0 = \pi$

Formula dei residui

– Calcolare gli integrali

a)
$$\int_{-\infty}^{\infty} \frac{dx}{(x^2+x+1)(x^2+9)} dx$$
 b) $\int_{0}^{\infty} \frac{dx}{(x^2+1)^2}$

– Calcolare gli integrali

a)
$$\int_0^\infty \frac{x^2}{x^4 + 6x^2 + 5} dx$$
 b) $\int_{-\infty}^\infty \frac{x dx}{(x^2 + 1)(x^2 + 2x + 2)}$

- Calcolare gli integrali

a)
$$\int_{-\infty}^{\infty} \frac{dx}{(x^2 + a^2)(x^2 + b^2)}$$
, $a, b > 0$ b) $\int_{0}^{\infty} \frac{dx}{x^4 + 1}$

- Calcolare gli integrali

a)
$$\int_{-\infty}^{\infty} \frac{\cos \alpha x}{(x^2+1)(x^2+4)} dx \quad (\alpha > 0) \qquad \text{b) } \int_{-\infty}^{\infty} \frac{x \sin x}{x^4+1} dx$$

– Calcolare gli integrali

a)
$$\int_{-\infty}^{\infty} \frac{\sin x}{x^2 + 6x + 10} dx$$
, b)
$$\int_{-\infty}^{\infty} \frac{\cos x}{(x + \alpha)^2 + \beta^2} dx$$

– Calcolare gli integrali

a)
$$\int_0^{2\pi} \frac{d\theta}{(2-\sin\theta)^2}$$
 b) $\int_0^{2\pi} \frac{d\theta}{(1+\beta\cos\theta)^2}$ $-1 < \beta < 1$

- Calcolare gli integrali

a)
$$\int_{0}^{2\pi} \frac{\cos 2\theta}{1 - 2a\cos\theta + a^{2}} d\theta$$
 b)
$$\int_{0}^{\infty} \frac{\cos ax}{x^{2} + 1} dx \quad (a \ge 0)$$
 c)
$$\int_{-\infty}^{\infty} \frac{\cos x dx}{(x^{2} + a^{2})(x^{2} + b^{2})} (a > b > 0)$$
 d)
$$\int_{0}^{\pi} \frac{\cos \theta}{3 + \cos \theta} d\theta$$