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FIBERWISE BIRATIONAL REGULAR MAPS OF FAMILIES OF
ALGEBRAIC VARIETIES

V. KANEV

Abstract. Given two regular maps of algebraic varieties g : X → S,

h : Y → S with irreducible fibers and a surjective regular map f : X → Y

such that g = h ◦ f and the restriction of f on each fiber is birational, we give
sufficient conditions for f to be an isomorphism. Similar problem is studied

for schemes.

Introduction

A well-known fact is that every regular map from an open subset of a complete
nonsingular algebraic curve to a complete algebraic variety may be extended to a
regular map of the curve. This is proved by considering the closure of the graph of
the map in the product of the curve and the variety and proving that the projection
of the closure to the curve is an isomorphism by means of Zariski’s main theorem.
If one tries to apply the same argument to families of curves one encounters the
following problem. Given two proper families of curves g : X → S, h : Y → S,
where h is smooth, and a commutative diagram of regular maps as in (1) below,
such that f is surjective, with finite fibers, and fs : g−1(s) → h−1(s) is birational
for every s ∈ S, is it true that f is an isomorphism? If the scheme-theoretic fibers of
g were reduced this would follow from Proposition 4.6.7 (i) of [7]. This condition,
however, might be difficult to verify. In fact a weeker condition on g suffices to
conclude that f is an isomorphism. One of our results is the following theorem.

Theorem 0.1. Let k be an algebraically closed field and let X,Y, S be algebraic
varieties over k. Let

(1) X
f

//

g
��

@@
@@

@@
@ Y

h
����

��
��

�

S

be a commutative diagram of morphisms such that:
(a) h is flat and dimk ΩY/S(y) ≤ dimy Yh(y) for ∀y ∈ Y ;
(b) g is proper, f is surjective and |f−1(y)| <∞ for ∀y ∈ Y ;
(c) for every s ∈ h(S) the fiber g−1(s) is irreducible and there is a point x ∈

g−1(s) such that g is flat at x and dimk ΩX/S(x) ≤ dimxXg(x);
(d) for every s ∈ g(X) = h(Y ) the map fs : g−1(s)→ h−1(s) is birational.

Then f : X → Y is an isomorphism.

This work was supported by Università di Palermo (research project 2012-ATE-0446). The
author is a member of G.N.S.A.G.A. of INdAM
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2 V. KANEV

We prove in Theorem 2.2 and Theorem 2.4 analogous statements for schemes
over a field of characteristic 0 and for schemes of finite type over a perfect field
respectively.

When the relative dimension of g : X → S is one, Theorem 9 of [12] applied to
SpecOX,x → SpecOS,s, where x ∈ X is arbitrary, s = g(x), implies that g : X → S
is smooth and therefore f : X → Y is an isomorphism by Proposition 4.6.7 of [7].
There are however two questionable points in the proof of Theorem 9 of [12], one
of which is a gap. We discuss them in Section 3.

The paper is organized as follows. In Section 1 we prove the main result, Theo-
rem 1.1, from which all other theorems in the paper are deduced. The arguments of
part of the proof are similar to those of Kollár (see [12] p.719). Our contribution is
in avoiding the use of the (S2)-property by means of Proposition 1.3. Theorem 1.1
is a statement concerning affine schemes. In Section 2 we apply it to obtain the
results of Theorem 2.2, Theorem 2.4 and Theorem 0.1 that we discussed above. In
Section 3 we discuss Theorem 9 of [12].

Notation. If ϕ : A → B is a homomorphism of rings and I ⊂ A, J ⊂ B are ideals
we denote, following [14], ϕ(I)B by IB and ϕ−1J by A ∩ J . If p ⊂ A is a prime
ideal, then k(p) is the quotient field of A/p. The term variety over an algebraically
closed field is used in the sense of [16]. We do not assume that the varieties are
irreducible.

1. The main theorem

Theorem 1.1. Let A→ R be a flat local homomorphism of Noetherian local rings.
Set m = rad(A), n = rad(R). Suppose that A is reduced. Suppose that:

(a) R⊗A k(m) is a regular ring and k(n) is separable over k(m);
(b) R⊗A k(p) is a regular ring for every minimal prime ideal p of A.

Set S = SpecA, s0 = m, Y = SpecR, y0 = n, and let h : Y → S be the associated
morphism of affine schemes. Suppose there is a commutative diagram of morphisms
of schemes
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f
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such that:

(i) f is finite and surjective;
(ii) Xs0 is irreducible and generically reduced;
(iii) g is flat at the generic point of Xs0 ;
(iv) if η ∈ Xs0 and ζ = f(η) ∈ Ys0 are the generic points of Xs0 and Ys0 then

f ](ζ) : k(ζ)→ k(η) is an isomorphism;
(v) every irreducible component of X contains g−1(s0).

Then Y is reduced and f ◦ i : Xred → Y is an isomorphism. Moreover the open
set of reduced points of X contains the generic point of g−1(s0). Assumption (a)
implies Assumption (b) if R is a localization of a finitely generated A-algebra, or if
A is a G-ring (cf. [13] § 34, or [14] § 32).
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Proof. Let p1, . . . , pm be the minimal prime ideals of A. One has Api = k(pi)
for every i since A is reduced. Tensoring 0 → A → ⊕iApi

by R one obtains by
Assumption (b) that R is reduced. Assumption (i) implies that X ∼= SpecB, where
B = OX(X) is a finite R-module and moreover f ](Y ) : R→ B is injective, since f
is surjective and R is reduced. The points of X where f is not flat form a closed
subset Z ⊂ X. The image f(Z) is closed in Y since f is finite. Let Y ′ = Y \ f(Z),
X ′ = f−1(Y ′). Then f |X′ : X ′ → Y ′ is finite and flat.

We claim that ζ ∈ Y ′. One applies [13, 20.G] to OS,s0 → OY,ζ → OX,η and
M = OX,η. By hypothesis OY,ζ and OX,η are flat OS,s0 -modules. Furtermore
Ys0 is integral by Assumption (a), so OY,ζ ⊗OS,s0

k(s0) ∼= OYs0 ,ζ
∼= k(ζ) is a field.

Hence OX,η⊗OS,s0
k(s0) is a flat OY,ζ⊗OS,s0

k(s0)-module. Therefore OX,η is a flat
OY,ζ-module. The hypothesis that g−1(s0) is irreducible implies that f−1(ζ) = η,
therefore ζ ∈ Y ′, η ∈ X ′.

Assumption (i) and Assumption (v) imply that every irreducible component
of Y , being an image of some irreducible component of X, contains h−1(s0) and
in particular ζ. Therefore the open set Y ′ is connected and dense in Y . We
claim that f |X′ : X ′ → Y ′ is an isomorphism. First, f∗OX′ is a locally free
sheaf of a certain rank d ≥ 1, since f |X′ is finite, surjective and flat, and Y ′ is
connected. One has d = dimk(y) Γ(Xy,OXy ) for every y ∈ Y ′. Let y = ζ. Then
f−1(y) = η and furthermore f : X → Y is unramified at η. Indeed, it suffices to
verify that f |Xs0

: Xs0 → Ys0 is unramified at η. This holds since OYs0 ,ζ
= k(ζ),

OXs0 ,η
= k(η), for by hypothesis Xs0 is irreducible and generically reduced, and

furthermore k(ζ) → k(η) is an isomorphism by Assumption (iv). We obtain that
for y = ζ, Xy = Spec k(η) and d = dimk(y) Γ(Xy,OXy ) = 1. This shows that
the morphism of sheaves of rings f ] : OY ′ → f∗OX′ makes f∗OX′ a locally free
OY ′ -module of rank 1. This implies that f ] : OY ′ → f∗OX′ is an isomorphism,
hence f |X′ : X ′ → Y ′ is an isomorphism. Since Y is reduced this implies that the
open set of reduced points of X contains X ′, in particular the generic point η of
g−1(s0) is a reduced point of X.

In order to prove the isomorphism f ◦ i : Xred
∼−→ Y we replace X by Xred and

observe that all the assumptions of the theorem hold for f ◦ i = fred : Xred → Y
and gred : Xred → S. We may thus assume that X = SpecB is reduced, so
Assumption (v) holds for every V (p), where p is an associated prime of B.

Let I be the radical ideal I = I(Y \ Y ′) ⊂ R. We will prove below (see § 1.4)
that if I 6= R, then depth(I,R) ≥ 2. Assuming this statement one proves that
f : X → Y is an isomorphism as follows. Consider the exact sequence of finite
R-modules

(3) 0→ R
f](Y )−→ B → Q→ 0.

Let R′ be the image of R. By way of contradiction let us assume Q 6= 0. Let
J = rad(Ann(Q)). One has V (J) = SuppQ, so Y \ V (J) ⊂ Y ′. The isomorphism
f−1(Y ′) ∼−→ Y ′, proved above, shows that Y ′ ⊂ Y \ V (J). Therefore I = J 6=
R. The stated inequality depth(I,R) ≥ 2 implies by [14, Theorem 16.6] that
Ext1R(Q,R) = 0. Hence (3) splits, B ∼= R′⊕Q′. Let p = AnnR(x) be an associated
prime ideal of Q. Since Ass(Q) ⊂ Supp(Q) = V (J) (cf. [14, Theorem 6.5]), one
has p ⊃ I. Let p′ ⊂ R′ be the image of p and let x′ ∈ Q′ be the preimage of x.
Since p′ · x′ = 0 the subset p′ ⊂ B consists of zero divisors, so p′ ⊂ P1 ∪ · · · ∪ Pm,
where Pi, i = 1, . . . ,m, are the associated prime ideals of B. Let pi = R∩Pi. Then
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p ⊂ p1 ∪ · · · ∪ pm, so p ⊂ pj for some j. Let P = rad(mB). Assumption (v) means
that Pi ⊂ P for every i. Hence R ∩ P ⊃ pj ⊃ p ⊃ I. Since P ∈ SpecB and
R ∩ P ∈ SpecR are the same as η ∈ X and ζ ∈ Y respectively, one obtains that
ζ belongs to V (I) = Y \ Y ′. This contradiction shows that Q = 0 and therefore
f ](Y ) : R→ B is an isomorphism. The isomorphism f ◦ i : Xred → Y is proved.

It remains to prove the last statement of the theorem. Let C be a finitely
generated A-algebra. Let T = SpecC, u : T → S = SpecA be the morphism
corresponding to A → C. Suppose there is an A-isomorphism of R with OT,z for
some z ∈ T . Let j : Y → T be the composition Y

∼−→ SpecOT,z −→ T . One has
u(z) = s0 and OT,z ⊗OS,s0

k(s0) ∼= OTs0 ,z
. Assumption (a) implies, according to

[11, Corollaire II.5.10], that the fiber Ts0 is smooth at z, so u is smooth at z by [1,
Theorem VII.1.8]. Smoothness is an open condition so we may, replacing T by an
affine neighborhood of z, assume that u : T → S is smooth. It is moreover surjective
since the flat morphism u is an open map. Every fiber Ts, s ∈ S is geometrically
regular. Let s ∈ S, y ∈ h−1(s), t = j(y). One has OS,s-isomorphisms

OYs,y
∼= OY,y ⊗OS,s

k(s) ∼= OTs,t.

ThereforeOYs,y is geometrically regular. This means that R⊗Ak(p) is geometrically
regular ring for every p ∈ SpecA, in particular Assumption (b) holds.

Suppose now that A is a G-ring. Then A is quasi-excellent (cf. [13, § 34]. Let
k = k(m), n0 = n/mR ⊂ R ⊗A k. Assumption (a) implies that R ⊗A k is formally
smooth with respect to the n0-adic topology (cf. [13, § 28.M] Proposition). Hence
by Théorèm 19.7.1 of [8, Ch.0] the homomorphism A→ R is formally smooth with
respect to the m-adic and n-adic topologies of A and R. A theorem of André [2]
yields that A→ R is a regular homomorphism, so R⊗Ak(p) is geometrically regular
for every p ∈ SpecA. This implies Assumption (b). �

Our next goal is to prove that depth(I,R) ≥ 2 provided I 6= R, a statement used
in the proof of Theorem 1.1. It is proved in [7, Ch.0] Proposition 10.3.1 that, given a
Noetherian local ring (A,m) and a homomorphism of fields k(m)→ K, there exists
a Noetherian local ring (B, J) and a flat local homomorphism (A,m) → (B, J)
such that mB = J and k(J) is isomorphic to K over k(m). We include for reader’s
convenience a proof of the following known fact.

Lemma 1.2. Let (A,m)→ (R, n) be a flat local homomorphism of local Noetherian
rings. Let k = k(m), K = k(n). Suppose K is separable over k. Suppose R⊗Ak is a
regular ring. Let (A,m)→ (B, J) be a flat local homomorphism as above: mB = J ,
k(J) is k-isomorphic to K. Then there is an A-isomorphism R̂ ∼= B̂[[T1, . . . , Tn]],
where R̂ is the n-adic completion of R and B̂ is the J-adic completion of B.

Proof. Let us first consider the case when k(m) → k(n) is an isomorphism and
(B, J) = (A,m). We have a commutative diagram of faithfully flat homomorphisms
(cf. [14, Theorem 22.4])

(4) A //

��

R

��

Â // R̂

Let t1, . . . , tn ∈ n be elements such that xi = ti(modmR), i = 1, . . . , n generate the
maximal ideal of the regular local ring R/mR ∼= R⊗A k. Let ϕ : Â[[T1, . . . , Tn]] −→
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R̂ be the homomorphism of Â-algebras such that ϕ(Ti) = ti (cf. [5, Theorem 7.16]).
Let m̂ = mÂ and n̂ = nR̂ be the maximal ideals of Â and R̂. The ring A′ =
Â[[T1, . . . , Tn]] is local and complete with maximal ideal M = (m̂, T1, . . . , Tn) (cf.
[4, Ch. III, § 2.6]). One has ϕ(M) = n̂, so R̂/MR̂ ∼= R̂/n̂ ∼= R/n ∼= k(n) ∼= k.
Hence ϕ : A′ → R̂ is surjective (cf. [14, Theorem 8.4]). In order to prove that ϕ is
injective, applying [14, Theorem 22.5], we need to verify that ϕ : A′⊗Âk → R̂⊗Âk is

injective. One has R̂⊗Â k ∼= R̂/m̂R̂ ∼= R̂/mR. By assumption the composition k =

k(m) → R/mR → R/n = k(n) is an isomorphism. Hence R̂/mR ∼= k[[x1, . . . , xn]]
(cf. [3, p. 124, Remark 2]). Therefore the composition

k[[T1, . . . , Tn]] ∼−→ A′/m̂A′
ϕ−→ R̂/m̂R̂

∼−→ k[[x1, . . . , xn]]

which transforms Ti in xi is an isomorphism. This implies that ϕ : A′⊗Âk → R̂⊗Âk
is an isomorphism. We conclude that ϕ : Â[[T1, . . . , Tn]] → R̂ is an isomorphism
provided k(m)→ k(n) is an isomorphism.

Let us consider now the general case when k = k(m)→ k(n) = K is an arbitrary
separable extension. By [14, Theorem 26.9] K is 0-smooth over k. Hence by
[14, Theorem 28.10] B is J-smooth over A. This implies that the homomorphism
B → K = R̂/n̂ has a lifting ϕ : B → R̂ which is a local homomorphism of A-
algebras (see [14, p. 214]). Applying [13, 20.G] to A→ B → R̂, taking into account
that B⊗A k → R̂⊗A k is flat since B⊗A k ∼= K is a field, we conclude that B → R̂
is flat. Furthermore k(J) = B/J → R̂/n̂ ∼= R/n = k(n) is an isomorphism and

R̂⊗B k(J) ∼= R̂⊗B (B ⊗A k) ∼= R̂⊗A k ∼= R̂/mR̂ ∼= R̂/m

is a regular local ring of dimension n. By the first part of the proof one concludes
that R̂ ∼= B̂[[T1, . . . , Tn]] �

Proposition 1.3. Let A → R be a flat local homomorphism of Noetherian local
rings. Set m = rad(A), n = rad(R). Suppose k = k(m)→ k(n) = K is a separable
extension. Suppose R⊗A k is a regular ring. Let I ⊂ R be a proper ideal such that:

(a) none of the prime ideals of the set A ∩ V (I) ⊂ SpecA is contained in an
associated prime ideal of A;

(b) I 6⊂ mR.
Then depth(I,R) ≥ 2.

Proof. We may replace I by its radical and thus assume that I = rad(I). Indeed,
depth(I,R) = depth(rad(I), R) (see [5, Corollary 17.8]), V (I) = V (rad(I)) and
I 6⊂ mR if and only if rad(I) 6⊂ mR since the condition that R ⊗A k is regular
implies that mR is a prime ideal. Let I = P1∩· · ·∩Pr, where Pi, i = 1, . . . , r are the
minimal prime ideals which contain I. We claim that there exists a1 ∈ A ∩ I, such
that a1 is not a zero divisor of A. If this were not the case, then A∩I ⊂ p1∪· · ·∪ps,
where pi, i = 1, . . . , s are the associated primes of A. Then A ∩ I ⊂ pj for some j
and consequently A∩Pi ⊂ pj for some i (cf. [3, Proposition 1.11]). This contradicts
Condition (a).

Let Î, R̂ be the n-adic completions of I and R. The equality depth(I,R) =
depth(Î , R̂) holds. Indeed, let I = (x1, . . . , xm). Consider the Koszul complex
K• = K•(x1, . . . , xm), where Ki(x1, . . . , xm) = ΛiN,N = ⊕mi=1Rei and di : Ki →
Ki+1 is di(v) = x ∧ v, where x =

∑m
i=1 xiei. Then depth(I,R) = r iff Hi(K•) = 0
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for i < r and Hr(K•) 6= 0 (cf. [5, Theorem 17.4]). Since Î = IR̂ the images x′i
of xi in R̂, i = 1, . . . ,m, generate Î. The corresponding Koszul complex is K

′• =
K ′(x′1, . . . , x

′
m) ∼= K•(x1, . . . , xm)⊗R R̂. Since R→ R̂ is faithfully flat one has that

Hi(K
′•) ∼= Hi(K•)⊗R R̂. By the above criterion depth(I,R) = depth(Î , R̂).

Let (A,m)→ (B, J) and R̂ ∼= B̂[[T1, . . . , Tn]] be as in Lemma 1.2. The hypothsis
I 6⊂ mR implies Î = IR̂ 6⊂ (mR)R̂ = mR̂ since R→ R̂, being a faithfully flat homo-
morphism, has the property that aR̂ ∩ R = a for every ideal a in R. Furthermore
the ring extensions A → B → B̂ → R̂ yield mR̂ = (mB)R̂ = JR̂ = ĴR̂. Therefore
Î 6⊂ ĴR̂.

Let a1 ∈ A ∩ I be a non zero divisor of A as above. Let a′1 ∈ Î be its image
in R̂. Let f ∈ Î \ ĴR̂. We claim that a′1, f is an R̂-regular sequence. This implies
that depth(Î , R̂) ≥ 2. Abusing notation we identify R̂ with B̂[[T1, . . . , Tn]]. Let
f = f(mod ĴR̂) ∈ K[[T1, . . . , Tn]]. There exist positive integers u1, u2, . . . , un such
that the automorphism s of K[[T1, . . . , Tn]] defined by s(Ti) = Ti +Tui

n for 1 ≤ i ≤
n − 1 and s(Tn) = Tn transforms f in g(T1, . . . , Tn) with g(0, . . . , 0, Tn) 6= 0 (cf.
[4, Ch.VII § 3 no.7] Lemma 3). The same substitution yields a B̂-automorphism
ϕ of B̂[[T1, . . . , Tn]]. Let g = ϕ(f). Let C = B̂[[T1, . . . , Tn−1]]. This is a complete
local ring with maximal ideal M = (Ĵ , T1, . . . , Tn−1) and R̂ ∼= C[[Tn]]. We claim
that a′1, g is a regular R̂-sequence. Indeed, the injectivity of A ·a1−→ A implies
the injectivity of R̂ ·a1−→ R̂ since the composition A → R → R̂ is flat. One has
g(modM) = g(0, . . . , 0, Tn) 6= 0 and R̂/a′1R̂

∼= (B̂/a′1B̂)[[T1, . . . , Tn]] ∼= C[[Tn]],
where C = (B̂/a′1B̂)[[T1, . . . , Tn−1]] is a complete local ring with maximal ideal
(Ĵ/a′1Ĵ , T1, . . . , Tn−1). Applying [4, Ch.VII § 3 no.8] Proposition 5 to the image of
g(moda′1R̂) in C[[Tn]] we conclude that g(moda′1R̂) is not a zero divisor in R̂/a′1R̂.
Therefore a′1, g is a regular R̂-sequence. Since ϕ(a′1) = a′1, ϕ(f) = g, the same holds
for a′1, f with a′1, f ∈ Î. We thus obtain that depth(I,R) = depth(Î , R̂) ≥ 2. �

1.4 (End of proof of Theorem 1.1). Recall that we have reduced the proof of the
theorem to the case of reduced X = SpecB and we have assumed by way of
contradiction that I = I(Y \ Y ′) 6⊂ R. We prove that depth(I,R) ≥ 2 applying
Proposition 1.3. The condition I 6⊂ mR is fulfilled since mR = ζ ∈ Y ′. We want to
verify that Condition (a) of Proposition 1.3 holds. By hypothesis A is reduced, so
one needs to prove that A ∩ V (I) contains none of the minimal prime ideals of A.
Let Xi = V (Pi), i = 1, . . . , n be the irreducible components of X. Assumption (i)
and Assumption (v) imply, using that η ∈ X ′ and ζ = f(η) ∈ Y ′, that there is a
bijective correspondence between the irreducible components of X and those of Y
given by

Xi 7→ Xi ∩X ′ 7→ f(Xi ∩X ′) 7→ f(Xi ∩X ′) = f(Xi) = Yi.

Let us give to Xi ⊂ X and Yi ⊂ Y the structure of reduced closed subschemes and
let fi : Xi → Yi be the morphism induced by f , i = 1, . . . , n. For every i the affine
schemes Xi, Yi are integral, the morphism fi is finite and if xi ∈ Xi, yi ∈ Yi are the
generic points, the homomorphism

(f ]i )yi
: k(yi) = OYi,yi

−→ OXi,xi
= k(xi)

is an isomorphism since it coincides withOY,yi
→ OX,xi

and yi ∈ Y ′, xi = f−1(yi) ∈
X ′. Let Y reg = {u ∈ Y |OY,y is a regular ring}. We claim that Y reg ⊂ Y ′. Let
y ∈ Y reg. One has that y ∈ Yi \∪j 6=iYj for some i. The regular ring OY,y = OYi,y is
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integrally closed in its field of fractions k(yi). The finite injective homomorphism of
integral domains f ]i (Yi) : OYi

(Yi)→ OXi
(Xi) induces an isomorphism of the fields

of fractions k(yi)
∼−→ k(xi), hence f−1

i (y) consists of a unique point x ∈ Xi and
(f ]i )y : OYi,y → OXi,x is an isomorphism. One has f−1(y) = f−1

i (y) = {x} since
y ∈ Yi\∪j 6=iYj . Furthermore OXi,x = OX,x since X is reduced and x ∈ Xi\∪j 6=iXj .
Therefore (f ])y : OY,y → OX,x is an isomorphism, so y ∈ Y ′. The claim that
Y reg ⊂ Y ′ is proved. Suppose now that q ∈ V (I) = Y \ Y ′ and A ∩ q = p is
a minimal prime ideal of A. Let S = A \ p. One has by Assumption (b) that
R ⊗A k(p) = R ⊗A Ap = S−1R is a regular ring. Hence Rq is a regular ring and
q ∈ Y reg which contradicts the inclusion Y reg ⊂ Y ′ proved above. We thus prove
that Condition (a) of Proposition 1.3 holds, therefore depth(I,R) ≥ 2. Theorem 1.1
is proved.

2. Some corollaries of Theorem 1.1

Lemma 2.1. Let g : X → S be a morphism of finite type of Noetherian schemes.
Suppose there is a d ∈ N such that every fiber g−1(y) is irreducible of dimension
d. Then every irreducible component of X is a union of fibers of g : X → S. If g
is closed, or if g is flat at the generic point of every irreducible component of X,
then there is a bijective correspondence between the irreducible components of X
and those of S given by Xi 7→ g(Xi) = Si as well as by Si 7→ g−1(Si) = Xi provided
g is closed.

Proof. Let X = ∪ni=1Xi be an irredundant union of irreducible components of X.
Let i ∈ [1,m]. Let Z = g(Xi). Let g−1(Z) = T1 ∪ T2 ∪ · · · ∪ Tp be an irredundant
union of closed irreducible sets where T1 = Xi. Let η be the generic point of
Z and let ζ1, ζ2, . . . , ζp be the generic points of T1, T2, . . . , Tp respectively. Then
g(ζ1) = η and for i ≥ 2 one has g(ζi) 6= η since g−1(η) is irreducible. Therefore
g(ζi) $ Z, so g−1(η) ⊂ T1 = Xi. Let gi = g|Xi

. Let y ∈ g(Xi). According to
[10, Lemme 13.1.1] dim g−1

i (y) ≥ dim g−1
i (η) = d. Furthermore g−1

i (y) is closed in
g−1(y) and g−1(y) is irreducible of dimension d by hypothesis. Therefore g−1

i (y) =
g−1(y), so g−1(y) ⊂ Xi. This proves the claim that Xi = ∪y∈g(Xi)g

−1(y). If g is
closed then Yi = g(Xi) is closed in Y and Xi = g−1(Yi) as shown above. Hence
Y = ∪mi=1Yi is an irredundant union of irreducible closed subsets. Let ξi be the
generic point of Xi, i = 1, . . . ,m. If g : X → S is flat at ξi then g(Xi) contains an
open subset of S. This implies that Yi = g(Xi) is an irreducible component of Y .
As proved above Xi is the unique irreducible component of Xi which dominates Yi.
Therefore if g : X → S is flat at every ξi, then Y = ∪mi=1Yi is an irredundant union
of irreducible components. �

Theorem 2.2. Let X,Y and S be schemes over a field k of characteristic 0. Sup-
pose S is reduced and locally Noetherian. Let

(5) X
f

//

g
��

@@
@@

@@
@ Y

h
����

��
��

�

S

be a commutative diagram of morphisms over k such that:
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(a) h is locally of finite type, flat, and every y ∈ Y is a regular point of the fiber
Yh(y);

(b) f is finite and surjective;
(c) every nonempty fiber of g is irreducible, generically reduced, and g is flat

at its generic point;
(d) if s ∈ h(Y ) and xs ∈ Xs, ys ∈ Ys are the generic points, then f ](ys) :

k(ys)→ k(xs) is an isomorphism.
Then f ◦i : Xred → Y is an isomorphism and the closed subset of nonreduced points
of X contains no fibers g−1(g(x)), x ∈ X.

Proof. Every fiber Ys, s ∈ h(Y ) is smooth since char(k) = 0 (see [11, Corol-
laire II.5.10]), so h is a smooth morphism. The statements of the teorem are of local
character, so we may suppose that X,Y and S are affine Noetherian schemes over k,
X and Y are of finite type over S and there is an integer d ∈ N such that dimYs = d
for every s ∈ h(Y ) [1, Proposition VII.1.4]. Let W ⊂ S be the open set W = h(Y ).
One has dimXs = d for every s ∈W since f is finite and surjective. By Lemma 2.1
every irreducible component of X is a union of fibers of X →W . Let S = SpecC,
Y = SpecD, X = SpecE. In order to prove that D = O(Y ) → O(Xred) = E/N
is an isomorphism it suffices to prove that for every p ∈ SpecD the localization
Dp → Ep/Np is an isomorphism. Let p ∈ SpecD, q = h(p) = p ∩ C. Consider the
diagram obtained from (5) after localization

Ep Dp
oo

Cq

``AAAAAAA

>>}}}}}}}}

We claim the assumptions of Theorem 1.1 are fulfilled for A = Cq, R = Dp,
SpecEp → SpecDp. Assumption (a) and Assumption (b) hold since SpecD →
SpecC is a smooth morphism and char(k) = 0. Assumption (i) holds for SpecEp →
SpecDp since by hypothesis D → E is a finite homomorphism and SpecE →
SpecD is surjective.

In order to verify Assumption (ii) we observe that the hypothesis that SpecE⊗C
k(q) ∼= SpecEq/qEq is irreducible and generically reduced is equivalent to the
statement that the ideal qEq of Eq has an irredundant primary decomposition
qEq = Q1 ∩ Q2 ∩ · · ·Qm, where Q1 = P1 is a prime ideal and P1 $ rad(Qi) for
i ≥ 2. Let P1 = Pq where P ∈ SpecE. We claim that P ∩D ⊂ p. Indeed, by the
surjectivity of SpecE → SpecD there exists a prime ideal P ′ ∈ SpecE such that
P ′ ∩D = p. One has P ′ ∩C = q since p∩C = q. The ideal P is the minimal prime
ideal of E among those which intersect C in q, hence P ′ ⊃ P and consequently
P ∩ D ⊂ p. Let S = C \ p. Localizing one obtains a primary decomposition
qEp = S−1P ∩ (∩i≥2S

−1Qi), where S−1P = S−1P1 $ S−1rad(Qi) = rad(S−1Qi)
for i ≥ 2. This proves that Spec (Ep/qEp) is irreducible and generically reduced,
which is what Assumption (ii) requires.

Assumption (iii) for SpecEp → SpecCq and Assumption (iv) for SpecEp →
SpecDp follow from Assumption (c) and Assumption (d) of the theorem. It remains
to verify Assumption (v). Let V (S−1P0) be an arbitrary irreducible component of
SpecEp. Here P0 is a minimal prime ideal of E such that P0∩D ⊂ p. By the going-
up theorem, there exists a prime ideal p1 of E such that p1 ⊃ P0 and p1 ∩D = p.
One has p1∩C = q. The irreducible component V (P0) of SpecE = X is a union of
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fibers of g by Lemma 2.1, hence every px ∈ SpecE such that px ∩ C = q contains
P0. In particular this holds for those px with px ∩ D ⊂ p. The latter subset of
SpecE corresponds bijectively to the closed fiber of SpecEp → SpecCq, hence this
fiber is contained in V (S−1P0).

Applying Theorem 1.1 we conclude that Dp → Ep/Np is an isomorphism, where
N is the nilradical of E. This holds for every p ∈ SpecD, therefore D → E/N is
an isomorphism. Let q ∈ g(SpecE) ⊂ SpecC. Let P be the minimal prime ideal
of E with the property that P ∩ C = q (Assumption (c)). Let P ∩ D = p. As
we have shown above if S = D \ p, then S−1P is the generic point of the closed
fiber of SpecEp → SpecCq. According to Theorem 1.1 the local ring (Ep)S−1P

is reduced. Since (Ep)S−1P = EP we conclude that P /∈ SuppN = V (Ann(N)).
The statements of Theorem 2.2 that f ◦ i : Xred → Y is an isomorphism and the
open set of reduced points of X intersects every nonempty fiber of g : X → S are
proved. �

If X is a scheme of finite type over a field k and W ⊂ X is a locally closed subset
we denote by W0 the set of closed points of W . This is a dense subset of W [6,
Proposition 3.35]. A morphism f : X → Y of schemes of finite type over a field k is
surjective if and only if f |X0 : X0 → Y0 is surjective [6, Exercise 10.6].

In the next proposition we use an argument we have found in [15].

Proposition 2.3. Let X and S be schemes of finite type over a field k and let
g : X → S be a morphism over k. Suppose there is a d ∈ N such that for every
closed point s ∈ S the fiber Xs is irreducible and dimXs = d. Then every irreducible
component of S is dominated by a unique irreducible component of X and every
irreducible component of X is a union of fibers of g. In each of the following three
cases there is a bijective correspondence between the irreducible components of X
and those of S given by Xi 7→ g(Xi) as well as by Si 7→ g−1(Si) in Case (a).

(a) g is a closed morphism.
(b) X is an equidimensional scheme.
(c) Every irreducible component of X contains a point in which g is flat.

Proof. Let us first suppose that S is irreducible. Let X = X1 ∪ · · · ∪ Xn be an
irredundant union of irreducible components of X. Let y ∈ S be a closed point.
By hypothesis g−1(s) is irreducible, so g−1(s) ⊂ Xj for some j. The hypothesis
implies that g|X0 : X0 → S0 is surjective, consequently S = f(Xi) for some i.
Renumbering we may suppose that i = 1. Let U = X1 \ ∪i≥2Xi. If x is a closed
point of U and s = g(x), then X1 is the unique irreducible component of X which
contains g−1(s). By a theorem of Chevalley [13, 6.E and 6.C] g(U) contains an open
subset V ⊂ S, V 6= ∅ and one has g−1(s) ⊂ X1 for every s ∈ V0. We claim that
Xi ⊂ g−1(S \ V ) for i ≥ 2. Let x ∈ (Xi \X1)0. Then s = g(x) /∈ V . The inclusion
(Xi \X1)0 ⊂ g−1(S \ V ) implies Xi ⊂ g−1(S \ V ) since (Xi \X1)0 is dense in Xi.
Therefore X1 is the unique irreducible component of X which dominates S. Let
η ∈ S be the generic point. Then Xη = (X1)η is irreducible, moreover dimXη = d
since the fibers of g|X1 : X1 → S over the closed points of V are of dimension d (cf.
[10, Theorem 13.1.3]).

Let now S be arbitrary and let y ∈ S. Let Z = {y}. Applying the above ar-
gument to Z ×S X → Z we conclude that Z is dominated by a unique irreducible
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component of g−1(Z), Xy is irreducible and dimXy = d. In particular these state-
ments hold for every irreducible component Z = Si of S. By Lemma 2.1 every
irreducible component of X is a union of fibers of g : X → S.

In Case (a) and Case (c) the bijective correspondence between the irreducible
components of X and those of S was proved in Lemma 2.1. In Case (b) it suffices
to prove that if S is irreducible, then so is X. Applying to Xi → f(Xi) the same
arguments as those relative to X1 → S we conclude that dimXi = d+ dim f(Xi).
If X were not irreducible, then f(Xi) ⊂ S \V for i ≥ 2 would imply that dimXi <
dimX1. Therefore X = X1 is irreducible. �

Theorem 2.4. Let X,Y and S be schemes of finite type over a perfect field k.
Suppose S is reduced. Let

(6) X
f

//

g
��

@@
@@

@@
@ Y

h
����

��
��

�

S

be a commutative diagram of morphisms over k such that:
(a) every closed point y ∈ Y is a regular point of the fiber Yh(y) and h is flat at

y;
(b) f is finite and f |X0 : X0 → Y0 is surjective;
(c) for every closed point s ∈ h(Y ) the fiber Xs is irreducible, generically re-

duced and g is flat at some point of Xs;
(d) for every closed point s ∈ h(Y ) the k(s)-morphism of integral schemes

(f ⊗ k(s))red : (Xs)red → Ys

is birational.
Then f ◦i : Xred → Y is an isomorphism and the closed subset of nonreduced points
of X contains no fiber g−1(g(x)), x ∈ X.

Proof. If y ∈ Y is a closed point and s = h(y) then k(y) is a separable extension of
k(s) since k(y) and k(s) are finite extensions of the perfect field k. Assumption (a)
implies that h is smooth at every closed point y ∈ Y . Since smoothness is an open
condition, h : Y → S is a smooth morphism. Reasoning as in Theorem 2.2 we
reduce the proof to the case S = SpecC, Y = SpecD, X = SpecE where C,D and
E are finitely generated algebras over k. Furtermore we may assume that there
is a d ∈ N such that dimYs = d = dimXs for every s ∈ h(Y ). If s is a closed
point of h(Y ) then by Assumption (c) Xs is irreducible. By Proposition 2.3 every
irreducible component of X is a union of fibers of g : X → S. We proceed in the
same way as in the proof of Theorem 2.2 taking an arbitrary maximal ideal p of D.
Then q = h(p) = p∩C is a maximal ideal of C. The rest of the proof is a repetition
of that of Theorem 2.2 observing that: the set of points of X where g is flat is open;
D → E/N is an isomorphism if and only if Dp → (E/N)p is an isomorphism for
every maximal ideal p of D. �

2.5 (Proof of Theorem 0.1). The map f : X → Y is proper since g : X → S is
proper. By hypothesis f is quasifinite, so by Zariski’s main theorem f is a finite map
[6, Corollary 12.89]. Assumption (c) means that g is smooth at x. Smoothness is
an open condition, so g is smooth at the scheme-theoretic generic point η ∈ g−1(s).
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This means in particular that the scheme-theoretic fiber Xs is generically reduced,
so Assumption (c) of Theorem 2.4 holds. By Theorem 2.4 the map f : X → Y is
an isomorphism.

3. A flatness criterion of Kollár

In this section we discuss Theorem 9 of [12] and point out two questionable
points in its proof, which are the reason of writing the present paper. The theorem
claims the following.

Theorem 3.1 (J. Kollár). Let ϕ : A→ B be a local homomorphism of Noetherian
local rings. Set m = rad(A), n = rad(B). Suppose A is excellent. Set X = SpecB,
x = n, Y = SpecA, y = m, f = Specϕ : X → Y , Z = Xy = SpecB ⊗ k(y).
Assume that

(a) dimZ = 1 and the closed subscheme (Z,OZ/torsion at x) of (Z,OZ) is
smooth;

(b) Y is reduced and every primary component of X contains Z;
(c) f is flat along Z \ {x};
(d) if char(k) > 0 then assume in addition that k(x) is finitely generated over

k(y).
Then f is flat and Z is smooth.

The first questionable point is in the claim at the bottom of page 718 of [12], that
it suffices to prove the theorem assuming that A and B are complete. Passing to
completions Â → B̂ it is unclear however why the second part of Assumption (b)
(this is Assumption (9.2) in ibid.) should continue to hold. We do not know
whether this is true or not under the assumptions of Theorem 3.1, but the following
example shows that the validity of this statement is not immediate. The surface
V = V (x2 − y2 − zy2) ⊂ SpecC[x, y, z] is irreducible and contains the curve C =
V (x − y, z). Let o = (0, 0, 0), X = SpecOV,o, Z = SpecOC,o. Consider the
completions X̂ = Spec ÔV,o ⊂ SpecC[[x, y, z]] and Ẑ = Spec ÔC,o. Then X̂ =
V (x − yg(z)) ∪ V (x + yg(z)), where 1 + z = g(z)2 and Ẑ ⊂ V (x − yg(z)) while
Ẑ 6⊂ V (x+ yg(z)).

Another problem is in the claim on page 719, lines 19 – 20, of [12] that R =
SpecOS [[t]] satisfies the condition (S2). A counterexample to this statement is
obtained using [9, Corollaire (5.10.9)] by taking any Y which is not equidimensional.

Acknowledgments. The author was on leave of absence from the Institute of Math-
ematics and Informatics of the Bulgarian Academy of Sciences.
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[7] Grothendieck A., Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux
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90123 Palermo, Italy
E-mail address: vassil.kanev@unipa.it


	Dipartimento di Matematica e Informatica

