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Introduction

Let Y be a smooth, projective, irreducible complex curve. A G-covering
p : C → Y is a Galois covering, where C is a smooth, projective, irreducible
curve and an isomorphism G

∼
−→ Aut(C/Y ) is fixed. Two G-coverings are equiv-

alent if there is a G-equivariant isomorphism between them. We are concerned
with the Hurwitz spaces HG

n (Y ) and HG
n (Y, y0). The first one parameterizes G-

equivalence classes of G-coverings of Y branched in n points. The second one,
given a point y0 ∈ Y , parameterizes G-equivalence classes of pairs [p : C → Y, z0],
where p : C → Y is a G-covering unramified at y0 and z0 ∈ p−1(y0). When G = Sd

one can equivalently consider coverings f : X → Y of degree d with full monodromy
group Sd. The Hurwitz spaces are smooth algebraic varieties and associating to a
covering its branch divisor yields finite étale morphisms HG

n (Y ) → Y (n) − ∆ and
HG

n (Y ) → (Y − y0)
(n) − ∆, where ∆ is the codimension one subvariety of Y (n)

whose points correspond to effective non simple divisors of Y .
The main result of the present paper is the explicit calculation of the mon-

odromy action of the fundamental groups of Y (n) −∆ and (Y − y0)
(n) −∆ on the

fibers of the above topological coverings (see Theorem 2.8 and Theorem 2.10). The
connected (=irreducible) components of HG

n (Y ) and HG
n (Y, y0) are in one-to-one

correspondence with the orbits of these monodromy actions.
The case Y = P1, G = Sd is classical. Hurwitz, using results of Clebsch [Cl],

proved in [Hu] the connectedness of the space which parameterizes equivalence
classes of simple coverings of P1 branched in n points (see [Vo2, Lemma 10.15] for
a modern account). The Hurwitz spaces of Galois coverings of P1 were first intro-
duced and studied by Fried in [Fr] in connection with the inverse Galois problem.
Fried and Völklein prove in [FV] that HG

n (P1) has a structure of algebraic vari-
ety over Q and if furthermore the center of G is trivial they relate the solution of
the inverse Galois problem to the existence of Q-rational points of HG

n (P1). They
also address the problem of determining the connected components of the complex
variety HG

n (P1). Berstein and Edmonds study in [BE] the Hurwitz spaces of sim-
ply branched coverings X → Y and address the problem of its connectedness in
relation to the topological classification of the generic branched coverings between
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two compact, oriented real surfaces. Harris, Graber and Starr proved in [HGS] the
irreducibility of the Hurwitz space of simply branched coverings of degree d of a
curve of positive genus, with monodromy group Sd, branched in ≥ 2d points. This
result was used in the proof of their theorem on existence of sections of morphisms
V → Y with rationally connected fibers. In our paper [K2] the irreducibility of this
Hurwitz space was used in the proof of the unirationality of certain types of Hurwitz
spaces of coverings of degree ≤ 5 of a curve Y of positive genus, thus extending
to curves Y of arbitrary genus a well known result of Arbarello and Cornalba for
coverings of P1. Catanese, Lönne and Perroni achieved in [CLP] the classification
of the irreducible components of the locus (in the moduli space of curves) of curves
admitting an effective action of the dihedral group G = Dm. Identifying certain
connected components of HG

n (Y ), when G = Dm, is a part of their study.
The present paper is essentially an adaptation to the case of Galois coverings of

the first two sections of the unpublished preprint [K1]. In the remaining sections of
this preprint we addressed the problem of proving the irreducibility of the Hurwitz
spaces of coverings X → Y of degree d with full monodromy group Sd in the cases
of simple branching or simple branching in all but one point. In particular, fixing
the type of the local monodromy at one special point, we obtained the irreducibility
provided the number of points of Y of simple branching is ≥ 2d − 2. The lower
bound 2d − 2 was improved in the paper of F. Vetro [Ve1]. In a series of papers
F. Vetro addressed the problem of determining the irreducible components of the
Hurwitz spaces of coverings X → Y of a curve Y of positive genus, imposing
various conditions on the type of branching. She also studied coverings with a
covering involution, when the monodromy group is not the full symmetric group,
but a Weyl group of type Bℓ or of type Dℓ (see [Ve1, Ve2, Ve3, Ve4]). She has
used in an essential way the formulas and the results of the first two sections of the
preprint [K1] which we include in the present paper.

In the preprint [KhK] Kulikov and Harlamov used an algebraic tool called semi-
group over a group in order to determine the connected components of the Hurwitz
spaces of coverings of a curve of arbitrary genus with fixed type of branching and
fixed monodromy group. When the number of branch points of each of the branch-
ing types is sufficiently large, they reduce the problem of finding the number of the
irreducible components of the Hurwitz space to a combinatorial problem involving
a certain graph.

The paper is organized as follows. In Section 1 we define and give some basic
properties of the Hurwitz spaces HG

n (Y ) and HG
n (Y, y0). This material is well

known when Y ∼= P1 (cf. [FV], [Vo1], [Vo2], [Em]) and the extension to curves
Y of arbitrary genus is immediate. We include a detailed account for reader’s
convenience.

Section 2 is devoted to the explicit calculation of the monodromy action of the
braid group π1((Y − y0)

(n) − ∆, D) on the fiber of HG
n (Y, y0) → (Y − y0)

(n) − ∆
over a point D. The fiber is identified with the set of Hurwitz systems of G. These
are ordered sets of elements (t1, . . . , tn;λ1, µ1, . . . , λg, µg) of G, which generate G,
ti 6= 1 ∀i and t1t2 · · · tn = [λ1, µ1] · · · [λg, µg]. After recalling a result of Birman [Bi]

which yields a system of generators of π1((Y −y0)
(n)−∆, D) we give in Theorem 2.8

explicit formulas for the monodromy action of these generators on the set of Hurwitz
systems. The monodromy action for the covering HG

n (Y ) → Y (n) −∆ is obtained
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by passing from Hurwitz systems to equivalence classes of Hurwitz systems with
respect to inner automorphisms of G.

In Section 3 we first discuss how to extend the arguments of the previous sections
removing the assumption that G is finite. In Proposition 3.1 (this is the Main
Lemma of [K1]) we prove a statement which turns out to be useful in determining
the connected components of the Hurwitz spaces. Namely, given a Hurwitz system
(t1, . . . , tn;λ1, µ1, . . . , λg, µg) of a group G, such that titi+1 = 1, let H be the
subgroup of G generated by t1, . . . , ti−1, ti+2, . . . , tn, λ1, µ1, . . . , λg, µg. Let h ∈ H.
Then the given Hurwitz system and the one obtained by replacing the pair (ti, ti+1)
by (h−1tih, h

−1ti+1h) belong to the same π1((Y − y0)
(n) −∆, D)-orbit.

Notation and conventions. We assume that the base field k = C. By homotopy of
arcs we always mean homotopy which fixes the end points. If G is a group and
t, h ∈ G we denote h−1th by th and hth−1 by ht

1. Preliminaries on Hurwitz spaces

1.1. We consider the product in a fundamental group induced by product of arcs
defined as

(1) γ1 ∗ γ2 =

{

γ1(2t) for 0 ≤ t ≤ 1/2,

γ2(2t− 1) for 1/2 ≤ t ≤ 1

We recall some standard facts ([Ma, Chapter 5], [Fo, Chapter 1]). Let f : X → Y
be a surjective morphism of smooth, projective, irreducible curves. Let D ⊂ Y
be the branch locus. Let Y ′ = Y − D and X ′ = f−1(Y ′). Then the restriction
f ′ : X ′ → Y ′ is a topological (unramified) covering. Let y0 ∈ Y ′. Then π1(Y

′, y0)
acts on the right on f−1(y0) as follows: if [α] ∈ π1(Y

′, y0) and x ∈ f−1(y0), let
α̃x : I → X ′ be the lifting of α with initial point x; then x · [α] := α̃x(1).

Consider the particular case of a Galois covering p : C → Y whose Galois group
is isomorphic to G. Let us fix an isomorphism C

∼
−→ Aut(C/Y ) ∼= Deck(C ′/Y ′).

Here G acts on C on the left. We call such a data a G-covering of Y . Let z0 ∈
p−1(y0). Then a surjective homomorphismmz0 : π1(Y

′, y0) → G, calledmonodromy
homomorphism is defined as follows:

(2) mz0([α]) = g iff z0 · [α] = gz0.

One has Ker(mz0) = p∗(π1(C
′, z0)). Suppose p : C → Y is branched in n ≥ 1

points. Let D = {b1, . . . , bn} be the branch locus. Let us choose neighborhoods
Ui ∋ bi such that every U i is homeomorphic to the unit disk, i = 1, . . . , n, and
U i ∩U j = ∅ for ∀i 6= j. For each i = 1, . . . , n let us choose an arc ηi in Y −∪n

i=1Ui

such that ηi(0) = y0, ηi(1) ∈ ∂U i, then let γi be the closed arc which starts at
y0, travels along ηi, makes a counterclockwise loop along ∂U i and returns to y0
along η−i . It is clear that mz0([γi]), called local monodromy at bi along γi, has the
property mz0([γi]) 6= 1 for every i = 1, . . . , n. Let Oi ⊂ G be the conjugacy class of
mz0([γi]). Another choice of Ui and ηi as above results in replacing each mz0([γi])
by another element in Oi. We conclude that m = mz0 : π1(Y

′, y0) → G satisfies
the following condition:

(3) m([γ1]) 6= 1, . . . ,m([γn]) 6= 1,

which is furthermore independent of the choice of γi, i = 1, . . . , n as above.
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1.2. Two G-coverings p : C → Y and p1 : C1 → Y are called G-equivalent if there
is a G-equivariant isomorphism f : C → C1 such that p1 = f ◦ p. Fixing y0 ∈ Y ′

let z0 ∈ p−1(y0), z1 ∈ p−1
1 (y0). The pairs (C, z0), (C1, z1) are called G-equivalent if

there is an isomorphism f as above, which furthermore satisfies f(z0) = z1. Such
an f is unique, when exists, since every covering automorphism of C ′ → Y ′ which
fixes z0 is the identity. It is clear that if (C, z0) and (C1, z1) are G-equivalent, then
mz0 = mz1 .

Proposition 1.3 (Riemann’s Existence Theorem). Let D ⊂ Y be a finite set,
|D| = n. Let Y ′ = Y −D and let y0 ∈ Y ′. Let G be a finite group. The following
sets are in one-to-one correspondence:

(a) the set of G-equivalence classes of pairs (p : C → Y, z0), where p : C → Y is
a G-covering, whose branch locus equals D and z0 ∈ p−1(y0);

(b) the set of epimorphisms m : π1(Y
′, y0) → G, which satisfy Condition 3.

If two pairs (p : C → Y, z0) and (p1 : C1 → Y, z1) correspond to one and the same
m : π1(Y

′, y0) → G, then the G-equivalence f : C → C1, f(z0) = z1 is unique.

Proof. One associates to (p : C → Y, z0) as in (a) the epimorphism m = mz0 . The
statements of the proposition are standard (see [Fo] and [Vo2]). We only mention
how one constructs a G-covering from an epimorphism m : π1(Y

′, y0) → G. Let
Γ = Ker(m). One lets

C ′ = {Γ[α] | [α] is a homotopy class of arcs with α(0) = y0, α(1) ∈ Y ′}.

The map p′ : C ′ → Y ′ is defined by p′(Γ[α]) = α(1). If g ∈ G and m([σ]) = g one
lets for z = Γ[α] ∈ C ′

gz = Γ[σ ∗ α].

One defines in a natural way topology on C ′ such that p′ : C ′ → Y ′ is a topological
covering map. It is regular and G ∼= Deck(C ′/Y ′). The complex analytic structure
on Y ′ induces a complex analytic structure on C ′. Compactifying one obtains a
holomorphic map of compact Riemann surfaces p : C → Y branched at D and the
action of G on C ′ extends to an action on C. The distinguished point z0 is Γ[cy0

],
where cy0

: I → {y0} ⊂ Y ′. One has mz0 = m.
It remains to prove that p : C → Y has an algebraic structure. Let K = M(C)

be the field of meromorphic functions of C. It is a Galois extension of the field of
rational functions C(Y ) with group isomorphic to G (see [Vo2, Theorem 5.9], where
Y ∼= P1 but the arguments apply to Y of arbitrary genus). Let f : X → Y be the
normalization of Y in K. One has M(Xan) = C(X) ∼= K = M(C). Choosing a
primitive element F of the field extension K/C(Y ) and using [Fo, Proposition 8.9]
one concludes that p : C → Y is biholomorphically equivalent to fan : Xan → Y .
Furthermore this equivalence is G-equivariant and compatible with the action of G
on the field K as follows from [Fo, Proposition 8.12]. �

Let Y (n) be the symmetric product of Y with itself n times and let ∆ ⊂ Y (n) be
the codimension one subvariety whose elements are the effective divisors of degree
n which have points of multiplicity > 1. Abusing notation we identify a point
D ∈ Y (n) −∆, D = b1 + · · ·+ bn with its support Supp(D) = {b1. . . . , bn}.

Definition 1. Let y0 ∈ Y . Let G be a finite group. We denote by HG
n (Y, y0) the

set of pairs (D,m) where D ∈ (Y − y0)
(n) − ∆ and m : π1(Y − D, y0) → G is a

surjective homomorphism which satisfies Condition 3.
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According to Proposition 1.3 the set HG
n (Y, y0) is in bijective correspondence

with the set of equivalence classes [p : C → Y, z0], where p : C → Y is a G-covering
branched in n points, unramified at y0, z0 ∈ p−1(y0) and the equivalence is the
G-equivalence as defined in § 1.2.

Example. Let f : X → Y be a covering of smooth, projective, irreducible curves
of degree d with branch locus D, |D| = n. Let y0 /∈ D. Let Λ = f−1(y0), let
S(Λ) be the symmetric group acting on the right on Λ. Suppose the monodromy
homomorphism µ : π1(Y − D, y0) → S(Λ) is surjective. The associated Galois
covering is explicitly constructed as follows. The curve

C ′ = {(x1, . . . , xn) | {x1, . . . , xn} = f−1(y), y ∈ Y −D}

is an irreducible, finite, étale covering of Y − D of degree n!. The group Sd of
permutations is considered acting on the right on {1, . . . , d}. For σ ∈ Sd we write
iσ for the image of i. The group Sd acts on the left on C ′ by σ · (x1, . . . , xd) =
(x1σ , . . . , xdσ ). The smooth completion p : C → Y is the Galois covering associated
with f : X → Y . To fix a point z0 ∈ C, z0 ∈ p−1(y0) means here to fix a bijection
φ : f−1(y0) → {1, . . . , d}.

Let p : C → Y be a G-covering with branch locus D. Let Y ′ = Y − D. Let
y0, y1 ∈ Y ′, let z0 ∈ p−1(y0), z1 ∈ p−1(y1). Let us connect z0 and z1 by an arc in
C ′ = p−1(Y ′) and let τ be its projection in Y ′. Then one has the following relation
between mz0 : π1(Y

′, y0) → G and mz1 : π1(Y
′, y1) → G:

mz0([τ ∗ α ∗ τ−]) = mz1([α]) for every [α] ∈ π1(Y
′, y1)

Definition 2. Let y0, y1 ∈ Y ′ = Y −D. Two homomorphisms m0 : π1(Y
′, y0) → G

and m1 : π1(Y
′, y1) → G are called arcwise connected if there is an arc τ : I → Y ′

with τ(0) = y0, τ(1) = y1 such that m1([α]) = m0([τ ∗ α ∗ τ−]) for every [α] ∈
π1(Y

′, y1). We write m1 = mτ
0 .

1.4. The following statements are easily verified.
(i) Arcwise connectedness is a relation of equivalence.
(ii) Given a G-covering p : C → Y and mz0 : π1(Y

′, y0) → G as in § 1.1 every
m1 : π1(Y

′, y1) → G arcwise connected with mz0 equals mz1 for some z1 ∈ p−1(Y ′).
(iii) Given a surjective homomorphism m : π1(Y

′, y0) → G, a homomorphism
m1 : π1(Y

′, y0) → G is arcwise connected withm if and only if it belongs to the orbit
Gm = {gmg−1 | g ∈ G} where gmg−1([α]) = gm([α])g−1 for every [α] ∈ π1(Y

′, y0).
(iv) If m : π1(Y

′, y0) → G satisfies Condition 3 then every m1 : π1(Y
′, y1) → G

arcwise connected with m satisfies it.

Proposition 1.5. Let D ⊂ Y be a finite set, |D| = n. Let Y ′ = Y −D, let y0 ∈ Y ′.
Let G be a finite group. The following sets are in one-to-one correspondence:

(a) the set of G-equivalence classes of G-coverings p : C → Y whose branch locus
equals D.

(b) the set of arcwise connected families of epimorphisms m = {m : π1(Y
′, y) →

G | y ∈ Y ′} which satisfy Condition 3
Suppose the center of the group is trivial: Z(G) = 1. In this case if two coverings

p : C → Y and p1 : C1 → Y correspond to one and the same m, then the G-
equivalence f : C → C1 is unique. This property holds if and only if Z(G) = 1.

Proof. Given p : C → Y as in (a) one lets m = {mz : π1(Y
′, y) → G | p(z) = y ∈

Y ′}. The proposition follows from: Proposition 1.3; the statements of § 1.4; the
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fact that every covering automorphism of p : C → Y is of the form σ(z) = hz for
some h ∈ G and from the fact that it is G-equivariant iff h ∈ Z(G). �

Definition 3. Let G be a finite group. We denote by HG
n (Y ) the set of pairs

(D,m), where D ∈ Y (n) −∆ and m is a family of arcwise connected epimorphisms
m : π1(Y −D, y) → G, which satisfy Condition 3.

1.6. According to Proposition 1.5 the set HG
n (Y ) is in bijective correspondence

with the set of equivalence classes [p : C → Y ], where p : C → Y is a G-covering
branched in n points with respect to the G-equivalence defined in § 1.2. Let y0 ∈ Y
and let U(y0) ⊂ HG

n (Y ) be the subset {(D,m) | y0 /∈ D}. By § 1.4 (iii) the map
HG

n (Y, y0) → U(y0) given by (D,m) 7→ (D,m) is G-invariant with respect to the
action g(D,m) = (D, gmg−1) and U(y0) is bijective to HG

n (Y, y0)/G.

1.7. Let b : HG
n (Y, y0) → (Y − y0)

(n) − ∆ be the map b(D,m) = D. Following
[Fu, § 1.3] we want to define a Hausdorff topology on HG

n (Y, y0) which makes b
a topological covering map. Let (D,m) ∈ HG

n (Y, y0). Let D = b1 + · · · + bn.
Let Ui ∋ bi be neighborhoods, such that every U i is homeomorphic to the unit
disk, i = 1, . . . , n, furthermore U1, . . . , Un are disjoint and y0 /∈ ∪n

i=1U i. Let
N(U1, . . . , Un) ⊂ (Y − y0)

(n) − ∆ be the neighborhood of D consisting of E =
y1 + · · · + yn with yi ∈ Ui. Let U = ∪n

i=1Ui. The inclusion Y − U → Y −D is a
deformation retract, so for every epimorphism m : π1(Y − D, y0) → G there is a
unique epimorphism m(E) : π1(Y − E, y0) → G such that the following diagram
commutes

(4) π1(Y −D, y0)

m

((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗

π1(Y − U, y0)
∼=

oo
∼=

//

µ

��

π1(Y − E, y0)

m(E)
vv♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠

G

We let

Nm(U1, . . . , Un) = {(E,m(E)) |E ∈ N(U1, . . . , Un}

Proposition 1.8. Let Y be a smooth, projective, irreducible curve. Let y0 ∈ Y . Let
G be a finite group. Let HG

n (Y, y0) be as in Definition 1. Suppose HG
n (Y, y0) 6= ∅.

(a) HG
n (Y, y0) may be endowed by a Hausdorff topology such that the map b :

HG
n (Y, y0) → (Y − y0)

(n) − ∆ given by b(D,m) = D is a covering map. A basis
of open sets of this topology is the family of sets Nm(U1, . . . , Un) obtained varying
D ∈ (Y − y0)

(n) − ∆, m : π1(Y − D, y0) → G and U1, . . . , Un as above. Every
open set N(U1, . . . , Un) ⊂ (Y − y0)

(n) − ∆ is evenly covered: b−1(N(U1, . . . , Un))
is a disjoint union of open sets homeomorphic to N(U1, . . . , Un). The connected
components of b−1(N(U1, . . . , Un)) are in bijective correspondence with the set of
epimorphisms µ : π1(Y − ∪n

i=1Ui, y0) → G. The covering b is proper.
(b) HG

n (Y, y0) has a unique structure of a complex manifold, such that b : HG
n (Y, y0)

→ (Y −y0)
(n)−∆ is holomorphic. Furthermore b is a finite étale holomorphic map.

(c) HG
n (Y, y0) has a unique structure of a C-scheme of finite type, such that

HG
n (Y, y0)

an is biholomorphic to the complex manifold of Part (b). Furthermore
HG

n (Y, y0) is smooth, equidimensional of dimension n and b : HG
n (Y, y0) →

(Y − y0)
(n) −∆ is a finite, étale morphism.

(d) HG
n (Y, y0) is an affine variety.
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Proof. The statements of (a) are easily verified and are left to the reader.
(b) Starting from a complex analytic atlas of (Y −y0)

(n)−∆with charts contained
in various N(U1, . . . , Un) one constructs a complex analytic atlas of HG

n (Y, y0) and
with this complex analytic structure b : HG

n (Y, y0) → (Y − y0)
(n) − ∆ is a finite

étale holomorphic map. Let M be this complex manifold. If M ′ is another com-
plex manifold with underlying topological space HG

n (Y, y0), such that b : M ′ →
(Y − y0)

(n) − ∆ is holomorphic, then every x ∈ M ′ has a complex analytic chart
(V, φ), φ(V ) ⊂ Cn, such that b maps V homeomorphically in some N(U1, . . . , Un).
It is known that such a map b : V → b(V ) is biholomorphic (cf. [Nar, p. 86]).
Therefore id : M → M ′ is biholomorphic.

(c) These statements follow from Théorèm 5.1, Proposition 3.1 and Proposi-
tion 3.2 of [SGA1, Exposé XII].

(d) The curve Y − y0 is affine, so (Y − y0)
(n) −∆ is an affine variety. Therefore

the finite cover HG
n (Y, y0) is an affine variety. �

Proposition 1.9. Let Y be a smooth, projective, irreducible curve. Let G be a
finite group. Let HG

n (Y ) be the set of Definition 3. Suppose HG
n (Y ) 6= ∅.

(a) HG
n (Y ) may be endowed by a Hausdorff topology such that the map b :

HG
n (Y ) → Y (n) − ∆ given by b(D,m) = D is a proper covering map. For ev-

ery D ∈ Y (n) −∆ any neighborhood N(U1, . . . , Un) (cf. § 1.7) is evenly covered.
(b) HG

n (Y ) has a unique structure of a complex manifold such that b : HG
n (Y ) →

Y (n) −∆ is holomorphic. Furthermore b is a finite étale holomorphic map.
(c) HG

n (Y ) has a unique structure of a C-scheme of finite type, such that HG
n (Y )an

is biholomorphic to the complex manifold of Part (b). Furthermore HG
n (Y ) is

smooth, equidimensional of dimension n and b : HG
n (Y ) → Y (n) − ∆ is a finite,

étale morphism.
(d) HG

n (Y ) is a quasiprojective variety. If Y ∼= P1 it is an affine variety.

Proof. (a) Let y0 ∈ Y . The group G acts on HG
n (Y, y0) by g(D,m) = (D, gmg−1).

This induces a faithful, properly discontinuous action of G/Z(G) onHG
n (Y, y0). One

endows U(y0) ∼= HG
n (Y, y0)/G by the quotient topology (cf. § 1.6). One has that

HG
n (Y ) = ∪y∈Y U(y) and for each pair y1, y2 ∈ Y the intersection U(y1) ∩ U(y2) is

open in U(yi), i = 1, 2. This defines a topology on HG
n (Y ). Let D = b1 + · · ·+ bn ∈

Y (n)−∆, let Ui ∋ bi, y0 /∈ ∪n
i=1U i be as in § 1.7. Let m = {m : π1(Y −D, y) → G}

be a family of arcwise connected epimorphisms. It is uniquely determined by a G-
orbit Gm = {gmg−1 | g ∈ G} for some m : π1(Y −D, y0) → G (cf. § 1.4). Passing
to G-orbits in (4) let m(E) correspond to Gm(E). We let

Nm(U1, . . . , Un) = {(E,m(E)) |E ∈ N(U1, . . . , Un}.

This is an open subset of U(y0) equal to the image of Nm(U1, . . . , Un) under the
quotient map HG

n (Y, y0) → U(y0). One has the equality

b−1(N(U1, . . . , Un)) =
⊔

m

Nm(U1, . . . , Un)

and furthermore for every m the restriction b : Nm(U1, . . . , Un) → N(U1, . . . , Un) is
a homeomorphism, as it follows from the corresponding statement for the covering
HG

n (Y, y0) → (Y − y0)
(n) −∆.

The statements of (b) and (c) are proved similarly to those of Proposition 1.9.
(d) It suffices to prove that each connected component H of HG

n (Y ) is quasipro-
jective. Every such H is irreducible since HG

n (Y ) is nonsingular. Let H be the
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normalization of Y (n) in the field C(H). Then H is projective since Y (n) is and
H is isomorphic to a Zariski open subset of H. Therefore H is quasiprojective. If
Y ∼= P1, then Y (n) ∼= Pn and ∆ is isomorphic to a hypersurface of degree n. So
Y (n) −∆ is an affine variety. Therefore HG

n (Y ) is an affine variety as well. �

Definition 4. Let O1, . . . , Ok be conjugacy classes of G, Oi 6= Oj if i 6= j. Let
n = n1O1+ · · ·+nkOk be a formal sum where ni ∈ N. Let |n| := n1+ · · ·+nk = n.
We denote by HG

n (Y, y0) (resp. HG
n (Y )) the subset of HG

n (Y, y0) (resp. HG
n (Y ))

whose points correspond to G-equivalence classes [p : C → Y, z0] (resp. [p : C →
Y ]) where the coverings p : C → Y have ni branch points with local monodromies
which belong to Oi, i = 1, . . . , k.

It is clear that HG
n (Y, y0) is a union of connected components of HG

n (Y, y0) if it
is nonempty and one has

HG
n (Y, y0) =

⊔

|n|=n

HG
n (Y, y0).

Similarly HG
n (Y ) is a union of connected components of HG

n (Y ) if it is nonempty
and one has

HG
n (Y ) =

⊔

|n|=n

HG
n (Y ).

2. Braid moves

2.1. Suppose that g(Y ) ≥ 1. Let us fix the orientation of the real 2-manifold Y
considered as a complex manifold. Let D = {b1, . . . , bn} ⊂ Y . Let b0 /∈ D. We
describe a standard way of choosing generators of π1(Y −D, b0). Cutting Y along
2g simple closed arcs, which begin at b0 and do not contain any of bi, i ≥ 1,
one obtains a standard 4g-polygon with sides α1, β1, α

−1
1 , β−1

1 , . . . , αg, βg, α
−1
g , β−1

g

which circle the polygon in counterclockwise direction. We consider a simple closed
arc L which begins at b0, L− b0 is contained in the interior of the 4g-polygon and
passes consecutively in counterclockwise direction through the points {b1, . . . , bn}.
The closed arc L divides the 4g-polygon into two regions R and R′ which stay on
the left, respectively on the right side of L with respect to its counterclockwise
orientation. We choose a simple arc ℓ1 which lies inside the region R and connects
b0 and b1. Then we choose a second simple arc ℓ2 inside R which connects b0 with
b2, has only b0 as point in common with ℓ1, and lies on the left side of ℓ1. Continuing
in this way we obtain an ordered n-tuple (ℓ1 . . . , ℓn) of simple arcs which do not
meet outside b0. Let γi be a closed arc which begins at b0, travels along ℓi to a point
near bi, makes a small counterclockwise loop around bi, and returns to b0 along ℓi.
We obtain a (n + 2g)-tuple of closed arcs (γ1, . . . , γn;α1, β1, . . . , αg, βg) which we
call a standard system of closed arcs. The corresponding homotopy classes yield a
standard system of generators for π1(Y −D, b0) which satisfy the only relation

(5) γ1γ2 · · · γn ≃ [α1, β1] · · · [αg, βg]

Figure 1 illustrates such a standard system. A reader who prefers the clockwise
orientation of closed arcs and ordering of the branch points from left to right may
look at this and all subsequent figures from the other side of the sheet. Here and in
the rest of the paper we will use the same notation, for the sake of its simplification,
for a closed arc and for its homotopy class when the correct meaning is clear from
the context. Given a G-covering p : C → Y with branch locus D, a point b0 ∈ Y −D
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γ

i

1γn

1
−1

γ

β

β

α

α1

−1
1

1

Figure 1. Standard system of closed arcs

and a point z0 ∈ p−1(b0) consider the homomorphismm = mz0 : π1(Y −D, b0) → G.
Let ti = m(γi), λk = m(αk), µk = λg+k = m(βk).

Definition 5. Let G be a group. An ordered set (t1, . . . , tn;λ1, µ1, . . . , λg, µg) of
elements of G which generate G, has the property ti 6= 1 for ∀i and satisfies the
relation

t1t2 · · · tn = [λ1, µ1] · · · [λg, µg]

is called a Hurwitz system (of generators) of the group G. We let λg+k = µk.

According to Proposition1.3, given D ∈ Y (n) − ∆ and b0 /∈ D, and fixing
the closed arcs (γ1, . . . , γn;α1, β1, . . . , αg, βg) as above, the fiber of HG

n (Y, b0) →
(Y − b0)

(n)−∆ over D may be identified with the set of all Hurwitz systems, while
by Proposition 1.5 and § 1.6 the fiber ofHG

n (Y ) → Y (n)−∆ overD may be identified
with the set of equivalence classes [t1, . . . , tn;λ1, µ1, . . . , λg, µg] of Hurwitz systems
modulo inner automorphisms of G, i.e. (t1, . . . , µg) is equivalent to (t′1, . . . , µ

′
g) if

there exists an element g ∈ G such that t′i = gtig
−1, λ′

k = gλkg
−1, µ′

k = gµkg
−1

for ∀i, k.
An equivalent way of constructing a standard system of closed arcs is the fol-

lowing. One chooses first the 2g simple closed arcs α1, β1, . . . , αg, βg. Then one
chooses n simple arcs which start at b0, lie inside the 4g-polygon, do not meet
outside b0, and have for end points the n points of D. One enumerates these arcs
according to the directions of departure in counterclockwise order. The obtained
(n+2g)-tuple (ℓ1, . . . , ℓn;α1, β1, . . . , αg, βg) is called an arc system (cf. [Lo] p.416).
One considers the induced ordering of the points of D. One can take for R a
star-like region which contains the union ℓ1 ∪ . . . ∪ ℓn and let L = ∂R. In this
way one obtains all ingredients used to construct a standard system of closed arcs
(γ1, . . . , γn;α1, β1, . . . , αg, βg).

2.2. The connected components of HG
n (Y ) are in one-to-one correspondence with

the orbits of the full n-strand braid group π1(Y
(n) − ∆, D) acting on the fiber of

the topological covering HG
n (Y ) → Y (n)−∆ over D. Similar statement holds about

HG
n (Y, b0) → (Y − y0)

(n) − ∆ where one considers the braid group
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π1((Y − b0)
(n) − ∆, D). The identification of these fibers with the Hurwitz sys-

tems reduces the problem of determining the connected components of HG
n (Y, b0)

and HG
n (Y ) to calculating the action of the respective braid groups on Hurwitz sys-

tems and then finding the orbits. Abusing notation we will identify, using Propo-
sition 1.3, the G-equivalence classes [C → Y, z0] with the corresponding points
(D,m) ∈ HG

n (Y, b0) and similarly by Proposition 1.5 the G-equivalence classes
[C → Y ] with the corresponding points (D,m) ∈ HG

n (Y ).
Let γi, αk, βk, 1 ≤ i ≤ n, 1 ≤ k ≤ g be a standard system of closed arcs obtained

from an arc system ℓi, αk, βk, 1 ≤ i ≤ n, 1 ≤ k ≤ g as in § 2.1. Let Du, 0 ≤ u ≤ 1
be a closed arc in (Y − b0)

(n) −∆ with D0 = D1 = D. We show later, in the cases
we need, that starting from the given arc system, one can extend the map u 7→ Du

to a homotopy of arc systems ℓui , α
u
k , β

u
k , 1 ≤ i ≤ n, 1 ≤ k ≤ g based at b0. This

yields a corresponding homotopy of closed arcs γu
i , α

u
k , β

u
k 1 ≤ i ≤ n, 1 ≤ k ≤ g

which form a standard system for each u ∈ [0, 1]. Let [C → Y, z0] correspond
to (D,m) ∈ HG

n (Y, b0) and let (t1, . . . , tn;λ1, µ1, . . . , λg, µg) be the corresponding
Hurwitz system. Then the lifting of the closed arc Du, 0 ≤ u ≤ 1 starting from
[C → Y, z0] equals, according to Proposition 1.8, to (Du,mu : π1(Y −Du, b0) → G)
where

mu(γu
i ) = ti, mu(αu

k) = λk, mu(βu
k ) = µk

Let γ1
i = γ′

i, α
1
k = α′

k, β
1
k = β′

k and m1 = m′. We obtain that the end point of the
lifting of Du is [C ′ → Y, z′0] where mz′

0
= m′ : π1(Y −D, b0) → G is defined by

m′(γ′
i) = ti, m′(α′

k) = λk, m′(β′
k) = µk

Evaluating m′ at γi, αk, βk we obtain

(6) m′(γi) = t′i, m′(αk) = λ′
k, m′(βk) = µ′

k.

So (t′1, . . . , t
′
n;λ

′
1, µ

′
1, . . . , λ

′
g, µ

′
g) is the Hurwitz system corresponding to

[C ′ → Y, z′0]. One may also consider

(7) m(γ′
i) = t′′i , m(α′

k) = λ′′
k , m(β′

k) = µ′′
k .

The Hurwitz system (t′′1 , . . . , t
′′
n;λ

′′
1 , µ

′′
1 , . . . , λ

′′
g , µ

′′
g ) corresponds to a pair

[C ′′ → Y, z′′0 ] such that mz′′
0
= m′′ : π1(Y −D, b0) → G satisfies

(8) m′′(γi) = t′′i , m′′(αk) = λ′′
k , m′′(βk) = µ′′

k

Lemma 2.3. Given the topological covering HG
n (Y, b0) → (Y − y0)

(n) − ∆ let us
lift the arc D1−u, 0 ≤ u ≤ 1 starting from [C → Y, z0]. Then the end point is
[C ′′ → Y, z′′0 ].

Proof. In terms of γ′
i, α

′
k, β

′
k the monodromy homomorphism of [C → Y, z0] is

given by m(γ′
i) = t′′i , m(α′

k) = λ′′
k , m(β′

k) = µ′′
k . Let us consider the homotopy

of closed arcs γ1−u
i , α1−u

k , β1−u
k , 0 ≤ u ≤ 1 and the arc in HG

n (Y, b0) given by

nu : π1(Y −D1−u, b0) → Sd where nu(γ1−u
i ) = t′′i , n

u(α1−u
k ) = λ′′

k , n
u(β1−u

k ) = µ′′
k .

Then n0 = m, n1 = m′′ (cf. Eq.(8)) �

Definition 6. Given a closed arc Du, 0 ≤ u ≤ 1 in the configuration space
(Y −b0)

(n)−∆ the transformation of Hurwitz systems (t1, . . . , tn;λ1, µ1, . . . , λg, µg)
7→ (t′1, . . . , t

′
n;λ

′
1, µ

′
1, . . . , λ

′
g, µ

′
g) given by Eq.(6) is called a braid move of the first

type. The transformation (t1, . . . , tn;λ1, µ1, . . . , λg, µg) 7→ (t′′1 , . . . , t
′′
n;λ

′′
1 , µ

′′
1 , . . . ,

λ′′
g , µ

′′
g ) given by (8) is called a braid move of the second type.
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The braid moves of the first and of the second type are inverse to each other
according to Lemma 2.3. It is evident that the braid moves of both types commute
with inner automorphisms of G. So the braid moves are well-defined on equivalence
classes of Hurwitz systems (cf. § 2.1).

2.4. There is a convenient system of generators of π1((Y−b0)
(n)−∆, D). We include

here some material borrowed from [Bi] and [Sc] for the sake of convenience of the
reader and since our choices differ slightly from theirs. Consider the Galois covering
p : (Y −b0)

n → (Y −b0)
(n) with Galois group Sn. Restricting to the complement of

∆ one obtains an unramified Galois covering p : (Y −b0)
n−p−1(∆) → (Y −b0)

(n)−
∆. Following the notation of [FN] if Q1 = {b0} one denotes (Y − b0)

n − p−1(∆) by

F1,nY . Let D = {b1, . . . , bn}, D̃ = (b1, . . . , bn). One has an exact sequence

(9) 1 −→ π1(F1,nY, D̃) −→ π1((Y − b0)
(n) −∆, D) −→ Sn −→ 1

One determines first a system of generators of the pure braid group π1(F1,nY, D̃) as
follows. Consider the closed arcs in F1,nY defined by (b1, . . . , bi−1, rik(t), bi+1, . . . , bn)
and (b1, . . . , bi−1, tik(t), bi+1, . . . , bn), with t ∈ [0, 1], where rik and tik are the
closed simple arcs based at bi and pictured on Figure 2 by a continuous line and
by a dotted line respectively. We denote the corresponding homotopy classes by

b

A

α

β

α
k

k

k

−1

−1

i
j

ij

0

t ik

r ik

b
b

β

k

Figure 2. Generators of the pure braid group π1(F1,n, D̃)

ρik, τik ∈ π1(F1,n(Y ), D̃). Informally ρik corresponds to a loop of the i-th point
along αk and τik corresponds to a loop of the i-th point along βk. Let us denote
by Aij , i < j the element of π1(F1,nY, D̃) represented by a closed simple arc in Y n

which leaves fixed bk for k 6= i and moves bi along the arc pictured on Figure 2.
For every i and every j > i the pictured loop is chosen so as to stay on the left of
all arcs used to construct ρik and τik for k = 1, . . . , g.

Claim. The pure braid group π1(F1,nY, D̃) is generated by ρik, τik and Aij where
i, j = 1, . . . , n, i < j and k = 1, . . . , g.

Proof. This is proved by induction on n. When n = 1 the claim is obvious. Let
n ≥ 2. Consider the fibration F1,nY → F1,n−1Y defined by (y1, y2, . . . , yn) →
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(y2, . . . , yn). One has an exact sequence

1 → π1(Y−{b0, b2, . . . , bn}, b1) → π1(F1,nY, (b1, . . . , bn)) → π1(F1,n−1Y, (b2, . . . , bn)) → 1

since π2(F1,n−1Y ) = 1 by [FN], Corollary 2.2. The elements ρik, τik, Aij with i ≥ 2
map to the corresponding elements in π1(F1,n−1Y, (b2, . . . , bn)). The group π1(Y −
{b0, b2, . . . , bn}, b1) is freely generated by elements which map into ρ1,k, τ1,k, A1,j

where j ≥ 2, k = 1, . . . , g. This shows the claim. �

Following [Fu] p.547 and using the notation of § 2.1 let us denote by Ri the
simply connected region of R enclosed by the arcs ℓi and ℓi+1 and the arc of L
from bi to bi+1. For every i = 1, . . . , n − 1 choose simple arcs ηi : [0, 1] → Y
going from bi to bi+1 in Ri and η′i : [0, 1] → Y going from bi+1 to bi in R′. Let
si : [0, 1] → Y (n) −∆ be the closed arc

si(t) = {b1, . . . , bi−1, ηi(t), η
′
i(t), bi+2, . . . , bn}

The homotopy class of si is denoted by σi. We may consider π1(F1,n(Y ), D̃) as

embedded in π1((Y − b0)
(n) −∆, D). The following relations are easy to verify (cf.

[FB] p.249)

ρi+1,k = σiρikσ
−1
i , τi+1,k = σiτikσ

−1
i

Aij = σ−1
i · · ·σ−1

j−2σ
2
j−1σj−2 · · ·σi

(10)

Proposition 2.5 (Birman). Let a, b ∈ Z, 1 ≤ a, b ≤ n. The braid group
π1((Y −b0)

(n)−∆, D) is generated by σj , ρak, τbk where 1 ≤ j ≤ n−1, 1 ≤ k ≤ g.

The corresponding homotopy classes generate π1(Y
(n) −∆, D) as well.

Proof. Let us consider the exact sequence (9). The braids σj map to the transpo-
sitions (j j+1), j = 1, . . . , n− 1 which generate Sn. So σj , ρik, τik, Aij with i < j

generate π1((Y −b0)
(n)−∆, D) according to the claim proved in § 2.4. The relations

(10) show that the generators may be reduced as stated in the theorem. The last
statement follows from the surjection π1((Y −b0)

(n)−∆, D) ։ π1(Y
(n)−∆, D). �

We described in § 2.4 closed arcs in (Y − b0)
(n) −∆ based at D = {b1, . . . , bn}

whose homotopy classes form a system of generators σj , ρik, τik for π1((Y −b0)
(n)−

∆, D). Our aim now is for each of these to construct a homotopy of the standard
system of closed arcs γu

i , α
u
k , β

u
k as in § 2.2. This will permit us to calculate eventu-

ally the corresponding braid moves of the Hurwitz systems. The calculation of the
braid moves σj , j = 1, . . . , n − 1 is due to Hurwitz (cf. [Hu] or e.g. [Vo2], Theo-
rem 10.3). We define closed arcs δk : [0, 1] → Y, δk(0) = δk(1) = b0, k = 0, 1, . . . , g
as follows. We let δ0(t) = b0, ∀t ∈ [0, 1]. We connect the initial vertex of α1 with
the end vertex of β−1

1 in the 4g-polygon of Figure 1 by a simple arc which belongs
to the region R′ on the right of L (cf. 2.1). This yields δ1. We connect the initial
vertex of α1 with the end vertex of β−1

2 by a simple arc which belongs to the region
on the right of L and on the left of δ1. We denote the corresponding closed arc
of Y by δ2. Continuing in this way we obtain δ1, δ2, . . . , δg (see Figure 3). Clearly
δk ≃ [α1, β1] · · · [αk, βk] in Y −D and δg ≃ γ1 · · · γn according to (5).

Theorem 2.6. Let Y be a compact, closed Riemann surface of genus g(Y ) ≥ 1.
Let b0 ∈ Y and let γi, αk, βk with 1 ≤ i ≤ n, 1 ≤ k ≤ g be a standard system
of closed arcs as in 2.1. Let δk, k = 0, 1, . . . , g be the closed arcs defined above.
For each of the closed arcs in (Y − b0)

(n)−∆ constructed in § 2.4 and representing
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σj , ρik, τik there is a homotopy γu
i , α

u
k , β

u
k , u ∈ [0, 1] of the standard system of closed

arcs such that the end system γ′
i, α

′
k, β

′
k, 1 ≤ i ≤ n, 1 ≤ k ≤ g is homotopic to:

a. for σj where 1 ≤ j ≤ n− 1

γ′
i ≃ γi for ∀i 6= j, j + 1, α′

k ≃ αk, β
′
k ≃ βk for ∀k

γ′
j ≃ γj+1, γ′

j+1 ≃ γ−1
j+1γjγj+1

b. for ρik where 1 ≤ i ≤ n, 1 ≤ k ≤ g

γ′
j ≃ γj for ∀j 6= i, α′

ℓ ≃ αℓ for ∀ℓ, β′
ℓ ≃ βℓ for ∀ℓ 6= k

γ′
i ≃ µikγiµ

−1
ik , β′

k ≃ (ζikγiζ
−1
ik )βk, where

µik ≃ (γ1 · · · γi−1)
−1δk−1αk(δ

−1
k δg)(γi+1 · · · γn)

−1, ζik ≃ (δ−1
k δg)(γi+1 · · · γn)

−1

c. for τik where 1 ≤ i ≤ n, 1 ≤ k ≤ g

γ′
j ≃ γj for ∀j 6= i, α′

ℓ ≃ αℓ for ∀ℓ 6= k, β′
ℓ ≃ βℓ for ∀ℓ

γ′
i ≃ νikγiν

−1
ik , α′

k ≃ (ξikγ
−1
i ξ−1

ik )αk, where

νik ≃ γi+1 · · · γn(δ
−1
k δg)

−1βkδ
−1
k−1γ1 · · · γi−1, ξik ≃ δ−1

k−1γ1 · · · γi−1

For each of the inverse closed arcs corresponding to σ−1
j , ρ−1

ik , τ−1
ik there is a corre-

sponding homotopy of the standard system γi, αk, βk, 1 ≤ i ≤ n, 1 ≤ k ≤ g such
that the end system γ′′

i , α
′′
k , β

′′
k , 1 ≤ i ≤ n, 1 ≤ k ≤ g is homotopic to:

d. for σ−1
j where 1 ≤ j ≤ n− 1

γ′′
i ≃ γi for ∀i 6= j, j + 1, α′′

k ≃ αk, β
′′
k ≃ βk for ∀k

γ′′
j ≃ γjγj+1γ

−1
j , γ′′

j+1 ≃ γj

e. for ρ−1
ik where 1 ≤ i ≤ n, 1 ≤ k ≤ g

γ′′
j ≃ γj for ∀j 6= i, α′′

ℓ ≃ αℓ for ∀ℓ, β′′
ℓ ≃ βℓ for ∀ℓ 6= k

γ′′
i ≃ µ−1

ik γiµik, β′′
k ≃ (ζ̃−1

ik γ−1
i ζ̃ik)βk, where

µik is as in (b) and ζ̃ik ≃ (γ1 · · · γi−1)
−1δk−1αk

f. for τ−1
ik where 1 ≤ i ≤ n, 1 ≤ k ≤ g

γ′′
j ≃ γj for ∀j 6= i, α′′

ℓ ≃ αℓ for ∀ℓ 6= k, β′′
ℓ ≃ βℓ for ∀ℓ

γ′′
i ≃ ν−1

ik γiνik, α′′
k ≃ (ξ̃−1

ik γiξ̃ik)αk, where

νik is as in (c) and ξ̃ik ≃ (γi+1 · · · γn)(δ
−1
k δg)

−1βk

Proof. (a) Here one moves only γj and γj+1. Clearly γ′
j ≃ γj+1 and γjγj+1 ≃

γ′
jγ

′
j+1, so γ′

j+1 ≃ γ−1
j+1γjγj+1.

(b) The effect of the homotopy of γi, αk, βk along ρik is pictured on Figure 3.
One moves the point bi along the arc rik pictured on Figure 2 and together with
it deforms the closed arc γi. At the moment γu

i reaches the side βk one deforms
also βk in order that the condition γu

i and βu
k have no points in common except b0

remains valid. None of γj for j 6= i, or αℓ for ∀ℓ, or βℓ for ∀ℓ 6= k changes in this ho-
motopy. The effect of cutting Y along the closed arcs α1, β1, . . . , αk, β

′
k, . . . , αg, βg

is the same as to cut a region containing bi from the original 4g-polygon and glue
it along the side βi as described in Figure 3 (NW) (NW=Northwest). We wish to
express γ′

i in terms of the standard system γj , αℓ, βℓ, 1 ≤ j ≤ n, 1 ≤ ℓ ≤ g. The
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−1
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Figure 3. Homotopy along ρik

closed arc γ′
i is pictured in the original 4g-polygon on Figure 3 (NE). It is clear that

γ′
i ≃ ηikγiη

−1
ik where ηik is the closed arc pictured on Figure 3 (SW). That ηik is

homotopic to (γ1 · · · γi−1)
−1(δk−1αk)δ

−1
k (γ1 · · · γi−1) is evident from Figure 3 (SE).

Furthermore ηikγiη
−1
ik ≃ (ηikγi)γi(ηikγi)

−1. Using the relation γ1 · · · γn ≃ δg we ob-

tain ηikγi ≃ (γ1 · · · γi−1)
−1δk−1αk(δ

−1
k δg)(γi+1 · · · γn)

−1. This proves the formula
for γ′

i of Part (b). The calculation of β′
k is similar. The closed arc β′

k is pictured in
the original 4g-polygon on Figure 4 (NW). It is homotopic to ωik · βk where ωik is
the closed arc based at b0 pictured on Figure 4 (NE). We then consider δkωikδ

−1
k

(see Figure 4 (SW)). The latter is homotopic to (γ1 · · · γi−1)γi(γ1 · · · γi−1)
−1. We

thus obtain ωik ≃ (δ−1
k γ1 · · · γi−1)γi(γ1 · · · γ1)

−1δk. We then have

ωik ≃ δ−1
k (γ1 · · · γi−1γi)γi(γ1 · · · γi−1γi)

−1δk

≃ [δ−1
k δg(γi+1 · · · γn)

−1]γi[γi+1 · · · γnδ
−1
g δk]

since γ1 · · · γn ≃ δg. This proves the second formula of Part (b).

(c) The arguments here are very similar to those of Part (b). One deforms γi
and αk with bui moving along the arc tik (see Figure 2). When bui returns to bi
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bi

bi

bi

δkbi

kβ

kβ

αk

k
−1

’

kβ

αk

k
−1

kβ

αk

k
−1

kβ

k

k
−1

α α

α α

α

ωik

Figure 4

one obtains closed arcs γ′
i and α′

k for which γ′
i ≃ θikγiθ

−1
ik , α′

k = εikαk where θik
and εik are represented by arcs in the original 4g-polygon pictured on Figure 5.
We calculate θik in the following way. We consider it as a product of four arcs

bi

kβ

αk

k
−1α

bi

bi+1

θik kβ

αk

k
−1α

ε ik

Figure 5

according to the picture. We deform θik in such a way that the first arc becomes a
closed simple arc encircling {b1, . . . , bi} in clockwise direction, then the second arc
goes from the initial point of α1 to the end point of α−1

k , the third arc goes from
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the initial point of αk to the initial point of α1 and the fourth arc equals the first
one with the opposite orientation. We have accordingly

θik ≃ (γ1 · · · γi)
−1(δkβk)δ

−1
k−1(γ1 · · · γi)

Conjugating γi by θik we may cancel the last factor γi from θik and replace
(γ1 · · · γi)

−1 by (γi+1 · · · γn)δ
−1
g . We thus obtain γ′

i = νikγiν
−1
ik where

νik ≃ (γi+1 · · · γn)(δ
−1
k δg)

−1βkδ
−1
k−1(γ1 · · · γi−1)

Finally, δk−1εikδ
−1
k−1 ≃ (γ1 · · · γi−1)γ

−1
i (γ1 · · · γi−1)

−1. This proves the last formula
of Part (c).

In order to obtain the formulas of (d), (e) and (f) from those of (a), (b) and (c)
we notice that if we apply in each case to (γ′′

1 , . . . , γ
′′
n;α

′′
1 , . . . , β

′′
g ) the braid moves

σj , ρik, τik respectively we obtain (γ1, . . . , γn;α1, . . . , βg). For example, in order to

verify (d) we have γj ≃ γ′′
j+1, γj+1 ≃ (γ′′

j+1)
−1γ′′

j γ
′′
j+1. Therefore γ′′

j ≃ γjγj+1γ
−1
j .

In Case (e) applying ρik to (γ′′
1 , . . . , β

′′
g ) we obtain γj ≃ γ′′

j for ∀j 6= i, αℓ ≃ α′′
ℓ for

∀ℓ, βℓ ≃ β′′
ℓ for ∀ℓ 6= k. Furthermore γi ≃ µ′′

ikγ
′′
i (µ

′′
ik)

−1 where µ′′
ik is expressed by

γ′′
j , α

′′
ℓ , β

′′
ℓ as in (b). Since neither γ′′

i nor β′′
k enter in this expression we may replace

γ′′
j , α

′′
ℓ , β

′′
ℓ by γj , αℓ, βℓ and we obtain µ′′

ik = µik. Thus γ′′
i ≃ µ−1

ik γiµik. Similarly

we have βk = (ζikγ
′′
i ζ

−1
k )β′′

k where ζik is as in (b). Replacing γ′′
i by µ−1

ik γiµik and

canceling we obtain β′′
k = (ζ̃−1

ik γ−1
i ζ̃ik)βk where ζ̃ik is as in (e). In a similar manner

one deduces (f) from (c). �

2.7. Recall from Section 1 and § 2.1 that given D ∈ Y (n) − ∆, b0 ∈ Y − D
and fixing a standard system of closed arcs γ1, . . . , γn;α1, β1, . . . , αg, βg there is a

bijective correspondence between the fiber of HG
n (Y, b0) → (Y − b0)

(n) − ∆ over
D and the set of Hurwitz systems (t1, . . . , tn;λ1, µ1, . . . , λg, µg). Similarly there is

a bijective correspondence between the fiber of U(b0) → (Y − b0)
(n) − ∆ and the

set of equivalence classes of Hurwitz systems [t1, . . . , tn;λ1, µ1, . . . , λg, µg] modulo

inner automorphisms, where U(b0) is the preimage of (Y − b0)
(n) −∆ with respect

to the map HG
n (Y ) → Y (n) −∆. In the next theorem we calculate the monodromy

action of π1((Y − b0)
(n) − ∆, D) on these fibers. According to Proposition 2.5 it

suffices to determine the braid moves which correspond to the generators σj , ρik, τik.
We denote the corresponding braid moves of the first type (cf. Definition 6) by
σ′
j , ρ

′
ik, τ

′
ik and we denote the corresponding braid moves of the second type (inverse

to those of the first type) by σ′′
j , ρ

′′
ik, τ

′′
ik.

Theorem 2.8. Let (t1, . . . , tn;λ1, µ1, . . . , λg, µg), λg+k = µk, be a Hurwitz system
of the group G. Let uk = [λ1, µ1] · · · [λk, µk] for k = 1, . . . , g and let u0 = 1. The fol-
lowing formulas hold for the braid moves (t1, . . . , tn;λ1, µ1,
. . . , λg, µg) 7→ (t′1, . . . , t

′
n;λ

′
1, µ

′
1, . . . , λ

′
g, µ

′
g) of the first type.

a. For σ′
j where 1 ≤ j ≤ n− 1

t′i = ti for ∀i 6= j, j + 1, λ′
ℓ = λℓ, µ′

ℓ = µℓ for ∀ℓ

(tj , tj+1) 7→ (t′j , t
′
j+1) = (tjtj+1t

−1
j , tj).(11)
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b. For ρ′ik where 1 ≤ i ≤ n, 1 ≤ k ≤ g

t′j = tj for ∀j 6= i, λ′
ℓ = λℓ for ∀ℓ, µ′

ℓ = µℓ for ∀ℓ 6= k

(ti, µk) 7→ (t′i, µ
′
k) = (a−1

1 tia1, (b
−1
1 t−1

i b1)µk) where

a1 = (t1 · · · ti−1)
−1uk−1λk(u

−1
k ug)(ti+1 · · · tn)

−1, b1 = (t1 · · · ti−1)
−1uk−1λk.

c. For τ ′ik where 1 ≤ i ≤ n, 1 ≤ k ≤ g

t′j = tj for ∀j 6= i, λ′
ℓ = λℓ for ∀ℓ 6= k, µ′

ℓ = µℓ for ∀ℓ

(ti, λk) 7→ (t′i, λ
′
k) = (c−1

1 tic1, (d
−1
1 tid1)λk) where

c1 = ti+1 · · · tn(u
−1
k ug)

−1µk(uk−1)
−1t1 · · · ti−1, d1 = ti+1 · · · tn(u

−1
k ug)

−1µk.

The following formulas hold for the braid moves (t1, . . . , tn;λ1, µ1, . . . , λg, µg) 7→
(t′′1 , . . . , t

′′
n;λ

′′
1 , µ

′′
1 , . . . , λ

′′
g , µ

′′
g ) of the second type.

d. For σ′′
j where 1 ≤ j ≤ n− 1

t′′i = ti for ∀i 6= j, j + 1, λ′′
ℓ = λℓ, µ′′

ℓ = µℓ for ∀ℓ

(tj , tj+1) 7→ (t′′j , t
′′
j+1) = (tj+1 , t

−1
j+1tjtj+1).(12)

e. For ρ′′ik where 1 ≤ i ≤ n, 1 ≤ k ≤ g

t′′j = tj for ∀j 6= i, λ′′
ℓ = λℓ for ∀ℓ, µ′′

ℓ = µℓ for ∀ℓ 6= k

(ti, µk) 7→ (t′′i , µ
′′
k) = (a−1

2 tia2, (b
−1
2 tib2)µk) where

a2 = ti+1 · · · tn(u
−1
k ug)

−1λ−1
k (uk−1)

−1t1 · · · ti−1, b2 = ti+1 · · · tn(u
−1
k ug)

−1.

f. For τ ′′ik where 1 ≤ i ≤ n, 1 ≤ k ≤ g

t′′j = tj for ∀j 6= i, λ′′
ℓ = λℓ for ∀ℓ 6= k, µ′′

ℓ = µℓ for ∀ℓ

(ti, λk) 7→ (t′′i , λ
′′
k) = (c−1

2 tic2, (d
−1
2 t−1

i d2)λk) where

c2 = (t1 · · · ti−1)
−1uk−1µ

−1
k (u−1

k ug)(ti+1 · · · tn)
−1, d2 = (t1 · · · ti−1)

−1uk−1.

Proof. Formulas (d), (e) and (f) are obtained from formulas (a), (b) and (c) of
Theorem 2.6 respectively applying the homomorphism m : π1(Y − D, b0) → G
and equalities (7) and (8). By Lemma 2.3 the braid moves of the first type are
inverse to the braid moves of the second type. We may thus obtain formulas (a),
(b) and (c) from formulas (d), (e) and (f) of Theorem 2.6 respectively applying the
homomorphism m. �

Corollary 2.9. Using the notation of Theorem 2.8 the following formulas hold.

(i) For ρ′ik :

ρ′nk : tn 7→ t′n = a−1
1 tna1, where a1 = (u−1

k ug)
−1[µk, λk]λk(u

−1
k ug)

ρ′1k : µk 7→ µ′
k = (b−1

1 t−1
1 b1)µk, where b1 = uk−1λk

ρ′nk : µk 7→ µ′
k = (b−1

1 t−1
n b1)µk, where b1 = (u−1

k ug)
−1[µk, λk]λk.

(ii) For τ ′ik :

τ ′1k : t1 7→ t′1 = c−1
1 t1c1, where c1 = uk−1[λk, µk]µku

−1
k−1

τ ′1k : λk 7→ λ′
k = (d−1

1 t1d1)λk, where d1 = uk−1[λk, µk]µk

τ ′nk : λk 7→ λ′
k = (d−1

1 tnd1)λk, where d1 = (u−1
k ug)

−1µk.
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(iii) For ρ′′ik :

ρ′′1k : t1 7→ t′′1 = a−1
2 t1a2, where a2 = uk−1[λk, µk]λ

−1
k u−1

k−1

ρ′′1k : µk 7→ µ′′
k = (u−1

k t1uk)µk,

ρ′′nk : µk 7→ µ′′
k = (b−1

1 tnb1)µk, where b1 = (u−1
k ug)

−1.

(iv) For τ ′′ik :

τ ′′nk : tn 7→ t′′n = c−1
2 tnc2, where c2 = (u−1

k ug)
−1[µk, λk]µ

−1
k (u−1

k ug)

τ ′′1k : λk 7→ λ′′
k = (u−1

k−1t
−1
1 uk−1)λk,

τ ′′nk : λk 7→ λ′′
k = (d−1

2 t−1
n d2)λk, where d2 = (u−1

k ug)
−1[µk, λk].

In particular

(13) ρ′′ng : µg 7→ tnµg, τ ′′11 : λ1 7→ t−1
1 λ1.

Proof. Let us prove the first formula of Part (ii). The other formulas can be either
proved similarly or are restatements of particular cases of Theorem 2.8. We have
τ ′1k : t1 7→ t′1 = c−1

1 t1c1 where c1 = t2 · · · tn(u
−1
k ug)

−1µku
−1
k−1. Since t1 · · · tn = ug

it holds (t2 · · · tn)
−1t1(t2 · · · tn) = u−1

g t1ug. Hence

t′1 = (uk−1µ
−1
k u−1

k )t1(· · · )
−1 = (uk−1µ

−1
k [λk, µk]

−1u−1
k−1)t1(· · · )

−1

= (uk−1[λk, µk]µku
−1
k−1)

−1

t1 (uk−1[λk, µk]µku
−1
k−1)

�

Summing up the discussion made so far in this section we obtain the following
result.

Theorem 2.10. Let n, g be integers such that n > 0, g ≥ 1. Let us consider
the set of all Hurwitz systems (t1, . . . , tn;λ1, µ1, . . . , λg, µg) of the group G (cf.
Definition 5). Let F be the free group generated by the symbols σj , ρik, τik where
1 ≤ j ≤ n− 1, 1 ≤ i ≤ n, 1 ≤ k ≤ g. Let us consider the action of F on the right
on the set of Hurwitz systems of G defined by the formulas for σ′

j , ρ
′
ik, τ

′
ik of Theo-

rem 2.8 (a)–(c). Then the connected components of HG
n (Y, b0) (cf. Proposition 1.8)

correspond bijectively to the orbits of this action and the connected components of
HG

n (Y ) (cf. Proposition 1.9) correspond bijectively to the orbits of the associated
action of F on the set of equivalence classes of Hurwitz systems modulo inner auto-
morphisms of G. The same statements hold if we consider instead the action of F
on the left on the set of Hurwitz systems of G defined by the formulas for σ′′

j , ρ
′′
ik, τ

′′
ik

of Theorem 2.8 (d)–(f).

Proof. HG
n (Y, b0) → (Y − b0)

(n) − ∆ is a topological covering map. According to
the definition of product of arcs (cf. (1)) the monodromy action of the fundamental
group π1((Y −b0)

(n)−∆, D) on the fiber over D is a right action. The identification
of this fiber with the set of Hurwitz systems, Proposition 2.5 and the calculation
of the braid moves of the first type σ′

j , ρ
′
ik, τ

′
ik in Theorem 2.8 yield the statement

about the orbits of the right action of F .
Consider the associated left action gx = xg−1. The orbits are the same and

according to Lemma 2.3 the braid moves of the second type σ′′
j , ρ

′′
ik, τ

′′
ik are inverse

to those of the first type σ′
j , ρ

′
ik, τ

′
ik respectively. This shows the statement about

the orbits of the left action of F .
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Let b0 ∈ Y . The inclusion Y − b0 →֒ Y induces an epimorphism π1((Y − b0)
(n)−

∆, D) → π1(Y
(n) −∆, D), so the monodromy action of these fundamental groups

on the fiber over D of U(b0) → (Y − b0)
(n) −∆ (cf. § 2.7) and HG

n (Y ) → Y (n) −∆
respectively yields the same monodromy group. This shows the statement about
HG

n (Y ). �

Corollary 2.11. Let O1, . . . , Ok be k different conjugacy classes of G. Let n =
n1O1+· · ·+nkOk, let |n| = n1+· · ·+nk = n and let HG

n (Y, y0) be as in Definition 4.

Then HG
n (Y, y0) is connected (hence irreducible) if and only if F acts transitively

on the set of Hurwitz systems (t1, . . . , tn;λ1, µ1, . . . , λg, µg) which have the property
that ni of the elements t1, . . . , tn belong to Oi , i = 1, . . . , k. Similarly HG

n (Y )

is connected (hence irreducible) if and only if F acts transitively on the set of
equivalence classes of Hurwitz systems [t1, . . . , tn;λ1, µ1, . . . , λg, µg] which have the
above property.

3. Hurwitz systems of arbitrary groups

The definitions and the arguments of Section 1 and Section 2 may be applied to
arbitrary, possibly infinite, groups. If G is infinite the sets HG

n (Y, y0) and HG
n (Y )

are non empty if and only if G has at least one Hurwitz system of generators. In this
case each one of HG

n (Y, y0) and HG
n (Y ) has a structure of a complex manifold, the

maps HG
n (Y, y0) → (Y − y0)

(n) −∆ and HG
n (Y ) → Y (n) −∆ given by (D,m) 7→ D

and (D,m) 7→ D respectively, are topological covering maps and are holomor-
phic. The set HG

n (Y, y0) corresponds bijectively to the set of G-equivalence classes
[p′ : C ′ → Y −D, z0] where:

• D ∈ Y (n) −∆, y0 /∈ D;
• p′ : C ′ → Y − D is a holomorphic map of Riemann surfaces, which is a
regular topological covering map;

• an isomorphism G
∼
−→ Deck(C ′/Y −D) is fixed;

• if D = b1 + · · · + bn, the local monodromies of p′ at the points b1, . . . , bn
are all nontrivial;

• z0 ∈ p′−1(y0).

Similarly, the set HG
n (Y ) corresponds bijectively to the set of G-equivalence classes

[p′ : C ′ → Y −D] as above with the conditions y0 /∈ D and z0 ∈ p′−1(y0) skipped.
In no point of the proofs of Theorem 2.8 and Theorem 2.10 the condition that G
is finite is used. So they hold under the only assumption that the group G has at
least one Hurwitz system of generators (t1, . . . , tn;λ1, µ1, . . . , λg, µg).

Definition 7. We call two Hurwitz systems of G braid-equivalent if one is obtained
from the other by a finite sequence of braid moves σ′

j , ρ
′
ik, τ

′
ik, σ

′′
j , ρ

′′
ik, τ

′′
ik where

1 ≤ j ≤ n− 1, 1 ≤ i ≤ n, 1 ≤ k ≤ g. We denote the braid equivalence by ∼.

Theorem 2.10 shows that two elements (D,m) and (D,m′) of HG
n (Y, y0) corre-

spond to braid-equivalent Hurwitz systems if and only if they belong to one and
the same connected component of HG

n (Y, y0).
The following statement is a useful tool for determining if two Hurwitz systems

are braid-equivalent.

Proposition 3.1. Let (t1, . . . , tn;λ1, µ1, . . . , λg, µg) be a Hurwitz system of the
group G. Suppose that titi+1 = 1. Let H be the subgroup of G generated by
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{t1, . . . , ti−1, ti+2, . . . , tn;λ1, µ1, . . . , λg, µg}. Then for every h ∈ H the given Hur-
witz system is braid-equivalent to (t1, . . . , ti−1, t

h
i , t

h
i+1, ti+2, . . . , tn;λ1, µ1, . . . , λg, µg)

Proof. Let us fix t1, . . . , ti−1, ti+2, . . . , tn;λ1, µ1, . . . , λg, µg. Let H1 ⊆ H be the
subset consisting of elements h such that the statement of the lemma holds for an
arbitrary pair (ti, ti+1) = (τ, τ−1).

Step 1. We claim H1 is a subgroup of H. Let h ∈ H1 and let t = htih
−1. Then ti =

th, so by assumption (. . . , th, (t−1)h, . . .) can be obtained from (. . . , t, t−1, . . .) by a
sequence of braid moves. Then one can obtain (. . . , t, t−1, . . .) from (. . . , ti, t

−1
i , . . .)

by the inverse sequence of braid moves. Thus h−1 ∈ H1. If h1, h2 ∈ H1, then
(. . . , ti, t

−1
i , . . .) ∼ (. . . , th1

i , (t−1
i )h1 , . . .) ∼ (. . . , th1h2

i , (t−1
i )h1h2 , . . .), so h1h2 ∈ H1.

Step 2. For every ℓ 6= i, i+1 the element tℓ belongs to H1. Applying a sequence of
braid moves σ′

j , σ
′′
j we can move the adjacent pair (ti, ti+1) wherever we want among

the first n elements of the Hurwitz system without changing the other elements. So
move (ti, ti+1) to the left side of tℓ. Then we have (ti, ti+1, tℓ) ∼ (ti, tℓ, t

−1
ℓ ti+1tℓ) ∼

(tℓ, t
−1
ℓ titℓ, t

−1
ℓ ti+1tℓ). We then move the pair (thi , t

h
i+1) with h = tℓ back to the

initial position.

Step 3. For every k = 1, . . . , g the element h = uk−1λku
−1
k belongs to H1. First sup-

pose that i = 1. In this case t2 = t−1
1 . Let us perform a braid move ρ′1k. One obtains

(t1, t
−1
1 , . . . , λk, µk, . . .) ∼ (t′1, t

−1
1 , . . . , λk, µ

′
k, . . .) where t′1 = a−1

1 t1a1 with a1 =

uk−1λk(u
−1
k ug)(t2 · · · tn)

−1 and µ′
k = (b−1

1 t−1
1 b1)µk with b1 = uk−1λk. We have

t1 · · · tn = ug, so a1 = uk−1λku
−1
k t1. Let us move t2 = t−1

1 to the first place using σ′′
1 .

One obtains (t−1
1 , t1t

′
1t

−1
1 , . . . , λk, µ

′
k, . . .). Here t1t

′
1t

−1
1 = th1 where h = uk−1λku

−1
k .

Let us perform again ρ′1k. The elements uk−1, λk have not changed with respect to

the original Hurwitz system, so µ′
k 7→ [(uk−1λk)

−1(t−1
1 )−1(uk−1λk)]µ

′
k = µk. Mov-

ing the second element th1 to the first place by σ′′
1 we obtain (th1 , t̃2, t3, . . . , λk, µk, . . .).

Since t1t2t3 · · · tn = ug = th1 t̃2t3 · · · tn we must have t̃2 = (t−1
1 )h. This proves

(t1, t
−1
1 , t3, . . .) ∼ (th1 , (t

−1
1 )h, t3, . . .) with h = uk−1λku

−1
k . One extends this braid

equivalence to every adjacent pair (ti, ti+1) with titi+1 = 1 by moving first the pair
to the front, applying the braid equivalence we have just proved and moving the
obtained pair back to the original position.

Step 4. For every k = 1, . . . , g the element h = uk−1µ
−1
k u−1

k belongs to H1. The
proof is the same as that of Step 3. One uses the braid move τ ′′1k instead of ρ′1k.

Step 5. By the preceding steps it remains to verify that λk, µk for ∀k belong
to the subgroup H2 ⊆ H1 generated by tj , uk−1λku

−1
k , uk−1µ

−1
k u−1

k where j =
1, . . . , i − 1, i + 2, . . . , n and k = 1, . . . , g. We prove this by induction on k.
We have λ1u

−1
1 ∈ H2, u1µ1 = (µ−1

1 u−1
1 )−1 ∈ H2, so λ1µ1 ∈ H2. Further-

more H2 ∋ u1µ1 = [λ1, µ1]µ1 = λ1µ1λ
−1
1 . So λ

±1

1 ∈ H2 and µ
±1

1 ∈ H2. Let
k ≥ 2. Suppose, by inductive assumption, that λ1, µ1, . . . , λk−1, µk−1 belong to

H2. Then uk−1 =
∏k−1

ℓ=1 [λℓ, µℓ] ∈ H2. We have uk−1λku
−1
k ∈ H2, ukµku

−1
k−1 =

(uk−1µ
−1
k u−1

k )−1 ∈ H2, so uk−1λkµku
−1
k−1 ∈ H2 and therefore λkµk ∈ H2. Fur-

thermore H2 ∋ ukµku
−1
k−1 = uk−1[λk, µk]µku

−1
k−1. Therefore λkµkλ

−1
k ∈ H2, so

λ
±1

k ∈ H2 and µ
±1

k ∈ H2.

The proposition is proved. �
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