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Introduction

Introduction
Issues

Durlauf, Johnson and Temple (DJT)’s chapter in the Handbook
of Economic Growth is entitled: “Growth econometrics”. Why?

Because, besides many issues that are common in econometric
analysis (measurment error, omitted variables, etc.), the
empirical analysis of economic growth has specific problems.

The first is that there are few observations. “Large samples”
include around 100 countries for approximately 50 years. Longer
time series are available for only a subset of industrialized
countries (Baumol, 1986, studies the period 1870-1979 for 16
countries)
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Introduction

Introduction
Issues

This has implications not only for the precision of the estimates
but also for more specific issues. For example, if we consider a
policy issue such as: “should we export western democracy to
poor countries?”, then the number of observations we can count
on is quite limited

Moreover, documented growth experiences show remarkable
heterogeneity in the cross-section and in time (especially for
developing countries)

This represents a problem when we try to reconcile empirical
evidence with theories, and when we try to use standard
concepts for empirical analysis such as “trend” (Pritchett, 2000)
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Introduction

Introduction
Issues

The main issues are:

Convergence: will currently poor countries catch up with the
richest?

Model uncertainty: what significantly explains economic growth?

Search for interesting patterns in data: parameter heterogeneity
seems to be particularly important in the study of economic
growth. This has led to the consideration of other statistical
tools besides “standard” econometrics (for example:
nonparametric methods, clustering algorithms)
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Stylized Facts

Stylized Facts
Twin peaks/Polarization

“Twin peaks”: tendency for countries to “polarize” into “rich”
and “poor”, middle income group vanishing
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Stylized Facts

Stylized Facts
Stability in relative positions

Most countries lie around the 45◦ line; “growth miracles” (above
the 45◦ line); “growth disasters” (below the 45◦ line)
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Stylized Facts

Stylized Facts
Growth miracles

Best 15 performers in the period: 1960-2000. Annual growth
rate and ratio of GDP per worker in 2000 over its value in 1960.
Mostly from East and Southeast Asia
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Stylized Facts

Stylized Facts
Growth disasters

Worst 15 performers in the period: 1960-2000. Annual growth
rate and ratio of GDP per worker in 2000 over its value in 1960.
Mostly from Sub-saharan Africa
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Stylized Facts

Stylized Facts
Convergence?

“Triangular shape” of the relation between growth rate and
initial income. There is no negative relation
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Stylized Facts

Stylized Facts
Diversity of growth

Diversity of growth experiences. Focus on regional variation
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Stylized Facts

Stylized Facts
Growth volatility

Growth volatility is higher at low income levels. Focus on
regional variation
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Stylized Facts

Stylized Facts
Summary

Growth disparities remain remarkable;

Convergence in income does not seem to be strong

Variety of growth experiences:

i growth miracles
ii growth disasters
iii regional disparities
iv differences in growth volatility
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Theoretical models of growth and convergence The Solow model: absolute convergence

Theoretical models of growth and convergence
The Solow model (no technological progress): absolute convergence

.

k = sf (k)− (n + δ)k

.
k
k

= γk = sf (k)
k
− (n + δ)

k
k∗k0rk0p

sf (k)/k

n + δ

Poor countries grow faster than rich countries (in the transition)
Absolute convergence: per capita income of countries converge to one another in the
long run, independently of their initial conditions (Galor, 1996)
Transitory shocks on capital/income have no permanent effects
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Theoretical models of growth and convergence The Solow model: absolute convergence

Theoretical models of growth and convergence
The Solow model (exogenous technological progress g): absolute convergence
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Theoretical models of growth and convergence The Solow model: absolute convergence

Theoretical models of growth and convergence
Figure from Temple (1999)
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Theoretical models of growth and convergence The Solow model: conditional convergence

Theoretical models of growth and convergence
The Solow model: conditional convergence

Cl. Conv.2

.
k
k

= γk,r = sr f (k)
k
− (n + δ)

.
k
k

= γk,p = spf (k)
k
− (n + δ), sr > sp

k
k∗rk0rk0p

spf (k)/k

n + δ

srf (k)/k

k∗p
Rich countries can grow faster than poor countries (in the transition)

Conditional convergence: per capita incomes of countries that are identical in their
structural characteristics (e.g. preferences, technologies, rates of population growth,
government policies, etc.) converge to one another in the long run independently of their
initial conditions (Galor, 1996)

Rejection of absolute convergence does not imply rejection of the Solow Model!

But ... observing persistent differences in income requires an explanation of persistent
differences in structural parameters
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Theoretical models of growth and convergence The AK model: endogenous growth

Theoretical models of growth and convergence
AK Model (endogenous growth)

Y = AK
y = Ak

.
k
k

= γk = sA− (n + δ)

k
k0r

n + δ

sA

γk > 0 for all k

k0p

No transitional dynamics

No absolute convergence

No conditional convergence
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Theoretical models of growth and convergence Multiple equilibria

Theoretical models of growth and convergence
Multiple equilibria model

k
k∗hk∗mk∗l

n + δ

sf (k)/k

Club convergence (polarization, persistent poverty and clustering): per capita incomes of
countries that are identical in their structural characteristics converge to one another in
the long run provided that their initial conditions are similar as well, e. g. they are in the
same basin of attraction (Galor, 1996)

Rich countries can grow faster than poor countries (in the transition)

Transitory shocks on capital/income can have permanent effects

The issue is the existence of an intermediate range of capital in which the relation growth

rate/capital level is increasing Cond. Conv.
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Theoretical models of growth and convergence Multiple equilibria

Theoretical models of growth and convergence
Multiple equilibria model

Possible explanations:

Technological spillovers: after a threshold level of capital, the
average product of capital grows with k . In other words,
technological progress depends on the stock of physical (and
human) capital (Ex. in Azariadis and Drazen, 1990,
technological externalities with a threshold property:
discontinuity in the aggregate production function)
Structural transformation of the economy (Rostow, 1960): in
early stages (low k), the economy is essentially based on
agriculture (subject to diminishing returns), then it
industrializes (take-off), then it reaches a stage of maturiry.
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Structural transformation of the economy (Rostow, 1960): in
early stages (low k), the economy is essentially based on
agriculture (subject to diminishing returns), then it
industrializes (take-off), then it reaches a stage of maturiry.
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1 Growth regressions

2 Nonparametric methods
1 distribution dynamics
2 nonparametric regressions
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Methods of empirical analysis Growth regressions

Growth regressions
Derivation of a growth regression

Let Yi ,t be the output, Li ,t the labour force and Ai ,t the level of
technology of country i at time t

Assume that Li ,t and Ai ,t grow exogenously at rates ni and gi ,
that is: Li ,t = Li ,0e

ni t ; Ai ,t = Ai ,0e
gi t

The generic one-sector growth model implies, to a first-order
approximation, that:

log(yE
i ,t) = (1− e−λi t)log(yE

i ,∞) + e−λi t log(yE
i ,0), (1)

where yE
i ,∞ is the steady-state value of yE

i ,t (income in efficiency
units), and the parameter λi measures the rate of convergence
(Mankiw et al, 1992, p. 423, Barro and Sala-i-Martin, 2004, p.
58).
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Methods of empirical analysis Growth regressions

Growth regressions
Derivation of a growth regression

Eq. (1) is expressed in terms yE
i ,t , which is unobservable. So

rewrite Eq. (1) in terms of income per unit of labor, yi ,t :

log(yi,t)− gi t − log(Ai,0) = (1− e−λi t)log(yE
i,∞) + e−λi t (log(yi,0)− log(Ai,0))

(2)

From which:

log(yi,t) = gi t + (1− e−λi t)log(yE
i,∞) + (1− e−λi t)log(Ai,0) + e−λi t log(yi,0)

(3)
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Methods of empirical analysis Growth regressions

Growth regressions
Derivation of a growth regression: Mankiw et al. (1992)

Define γi = t−1[log(yi ,t)− log(yi ,0)] and βi = −t−1(1− e−λi t),
and subtract log(yi ,0) from both sides of Eq. (3) then:

γi = gi − βi log(yE
i ,∞)− βi log(Ai ,0) + βi log(yi ,0). (4)

Finally, assuming parameter constancy across countries (i.e.
gi = g , λi = λ ∀i) we obtain:

γi = g − βlog(yE
i ,∞)− βlog(Ai ,0) + βlog(yi ,0). (5)

Eq. (5) is the starting point for a cross-country growth
regression, after appending a random error term, that is:

γi = g − βlog(yE
i ,∞)− βlog(Ai ,0) + βlog(yi ,0) + νi . (6)
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Methods of empirical analysis Growth regressions

Growth regressions
Derivation of a growth regression: Mankiw et al. (1992)

In order to implement Eq. (6) it is necessary to empirically
determine yE

i ,∞ and Ai ,0. Mankiw et al. (1992) show how to do
this.

Consider a three-factor Cobb-Douglas production function for
aggregate output:

Yi ,t = Kα
i ,tH

φ
i ,t(Ai ,tLi ,t)

1−α−φ, (7)

where physical and human capital are accumulated following:

K̇i ,t = sK ,iYi ,t − δKi ,t ; (8)

Ḣi ,t = sH,iYi ,t − δHi ,t , (9)

in which sK ,i and sH,i are the saving rates for physical and
human capital respectively.

Mario Lavezzi (UniPA) Applied Economic Growth Pisa, June 2013 25 / 110



Methods of empirical analysis Growth regressions

Growth regressions
Derivation of a growth regression: Mankiw et al. (1992)

In order to implement Eq. (6) it is necessary to empirically
determine yE

i ,∞ and Ai ,0. Mankiw et al. (1992) show how to do
this.
Consider a three-factor Cobb-Douglas production function for
aggregate output:

Yi ,t = Kα
i ,tH

φ
i ,t(Ai ,tLi ,t)

1−α−φ, (7)

where physical and human capital are accumulated following:

K̇i ,t = sK ,iYi ,t − δKi ,t ; (8)
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Methods of empirical analysis Growth regressions

Growth regressions
Derivation of a growth regression: Mankiw et al. (1992)

Equations (8)-(9) (with the parameter constancy assumptions)
imply that economy converges to the steady-state value of
output per effective worker:

yE
i ,∞ =

(
sαK ,is

φ
H,i

(ni + g + δ)α+φ

) 1
1−α−φ

. (10)

Substituting for yE
i ,∞ in Eq. (6) we obtain:

γi = g + βlog(yi ,0) + β
α + φ

1− α− φ log(ni + g + δ)−

− β
α

1− α− φ log(sK ,i)− β
φ

1− α− φ log(sH,i)−

− βlog(Ai ,0) + νi (11)
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Methods of empirical analysis Growth regressions

Growth regressions
Derivation of a growth regression: Mankiw et al. (1992)

Mankiw et al. (1992) assume that Ai ,0 is unobservable while
g + δ is known

In particular, Ai ,0 should reflect not only technology, assumed to
be constant across countries, but also country-specific
differences which vary randomly (like climate, institutions, and
so on), that is:

log(Ai ,0) = logA + ei , (12)

where ei is a country-specific shock independent of ni , sK ,i and
sH,i .
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Methods of empirical analysis Growth regressions

Growth regressions
Derivation of growth regression in Mankiw et al. (1992)

Then, Eq. (11) can be rewritten as:

γi = g − βlog(A) + βlog(yi ,0) + β
α + φ

1− α− φ log(ni + g + δ)−

− β
α

1− α− φ log(sK ,i)− β
φ

1− α− φ log(sH,i) + εi , (13)

where εi = νi − βei .

The canonical cross-country growth regression, may be seen as
the “unconstrained version” of Eq. (13) where the
cross-coefficient restrictions are ignored, that is:

γi = βlog(yi ,0) + ψXi + εi , (14)

i = 1, ...,N

where Xi = (1, log(ni + g + δ), log(sK ,i), log(sH,i)).
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Methods of empirical analysis Growth regressions

Growth regressions
Derivation of growth regression in Mankiw et al. (1992)

The variables log(yi ,0) and those in Xi represent the growth
determinants suggested by the Solow growth model (augmented
in the case of Mankiw et al., 1992).

However, many cross-country studies added additional control
variables besides “Solow” variables. With respect to Mankiw et
al. (1992), we can interpret this attempt as allowing for
predictable heterogeneity in the steady-state growth rate gi and
the initial technology term Ai ,0
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Methods of empirical analysis Growth regressions

Growth regressions
Derivation of growth regression in Mankiw et al. (1992)

In other words, gi − βlog(Ai ,0) in Eq. (4) is not substituted with
g − βlog(A)− βei , but with g − βlog(A) + πZi − βei . From
this assumption we obtain:

γi = g − βlog(A) + βlog(yi ,0) + β
α + φ

1− α− φ log(ni + g + δ)−

− β
α

1− α− φ log(sK ,i)− β
φ

1− α− φ log(sH,i) + πZi +

+ εi , (15)
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Methods of empirical analysis Growth regressions

Growth regressions
Derivation of growth regression in Mankiw et al. (1992)

Notice, however, that regression in Eq. (15) does not identify
whether controls Zi are correlated with the steady-state level gi
or the initial level of technology Ai ,0 (see DJT, p. 580, for a
discussion).

The baseline cross-country growth regressions found in many
studies (sometimes defined: “Barro regressions”), may be seen
as the “unconstrained version” of Eq. (15) where the
cross-coefficient restrictions are ignored, that is:

γi = βlog(yi ,0) + ψXi + πZi + εi , (16)

i = 1, ...,N

where log(yi ,0) and variables in Xi represent the “Solow” growth
determinants, and Zi represents other growth determinants
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Methods of empirical analysis Growth regressions

Growth regressions
Model specification

To sum up: three possible types of equations can be estimated:

1 No growth determinants:

γi = a + byi0 + εi

In this case: If b̂ < 0 → absolute convergence.
2 Solow growth determinants only:

γi = a + byi0 + ψXi + εi

Xi : Solow growth determinants.If b̂ < 0 → conditional
convergence.

3 “Barro regression”

γi = a + byi0 + ψXi + πZi + εi

Zi : growth determinants not in the Solow model.If b̂ < 0 →
conditional convergence.
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Methods of empirical analysis Growth regressions

Growth regressions
Some remarks

General comment: Xi and Zi are typically referred to as
indicators of structural heterogeneity, which would imply
conditional convergence, as something different from the effect
of initial conditions, which could include the (initial) stock of
physical and human capital, etc.

One problem: the variables taken as proxy for structural
characteristics may be endogenously determined by initial
conditions (ex. low initial income → low level of democracy, low
investment rates, etc.).

Which variables should be included in Zi?
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Methods of empirical analysis Growth regressions

Growth regressions
β-convergence

1 β-convergence:

1 unconditional: economies with lower levels of per capita income
tend to grow faster in per capita terms

2 conditional: economies with lower levels of per capita income
(expressed relative to their steady-state levels of per capita
income) tend to grow faster in per capita terms
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Methods of empirical analysis Growth regressions

Growth regressions
A remark on β-convergence

Recall the definitions:

1 β-convergence:
b̂ < 0 without controls → unconditional β-convergence
b̂ < 0 with controls → conditional β-convergence

2 Bernard and Durlauf (1996) show that:

1 b̂ < 0 is not sufficient to conclude that there is β-convergence.

2 The coefficient b̂ is a weighted average. Some countries in the
sample may follow the Solow model, some may not. The data
can be generated from a model with multiple equilibria but the
regression on the misspecified model can nonetheless return a
negative b̂. In the sample, some countries may be converging
some may not: “the test is ill-designed to analyze [this]”
(Bernard and Durlauf, 1996, p. 167)
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Methods of empirical analysis Nonparametric methods

Nonparametric models
Introduction

In general, nonparametric analysis allows for more flexibility in
the estimated relationships

This is obtained by carrying out the estimation locally, i.e. by
using the information “near” the point where the estimation of a
relationship should be made

Suggested readings: Bowman and Azzalini (1997) and Härdle et.
al (2004)
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Methods of empirical analysis Nonparametric methods

Nonparametric models
Density estimation

Density estimation. Problem: to estimate the probability density
function of a continuous random variable Densities

In particular, we will consider Kernel density estimation: a
generalization of histograms

It is called “kernel” because the estimation of the density at
point x is based on a kernel function that weights the
observations around x . Typically, decreasing weights are
attached to points further away from x
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Methods of empirical analysis Nonparametric methods

Nonparametric models
Histograms. Härdle et. al, 2004, Ch. 2

Histograms are nonparametric estimates of an unknown density
function, f (x)

Procedure to build a histogram.
we have n observations X1,X2, ...,Xn

select an origin x0 on the real line and divide it into “bins” Bj of
width h:

Bj = [x0 + (j − 1)h, x0 + jh], j ∈ Z;

Count the observations in each Bj : nj ;
for each bin divide the numbers nj by the sample size n to
obtain the relative frequencies

nj
n

then divide by h, so that the
area under the histogram equals 1.
Each bin of a histogram has height fj =

nj
nh

and base h, so the
area of bin Bj equals nj/n
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Histograms. Härdle et. al, 2004, Ch. 2

Histograms are nonparametric estimates of an unknown density
function, f (x)
Procedure to build a histogram.
we have n observations X1,X2, ...,Xn

select an origin x0 on the real line and divide it into “bins” Bj of
width h:

Bj = [x0 + (j − 1)h, x0 + jh], j ∈ Z;

Count the observations in each Bj : nj ;
for each bin divide the numbers nj by the sample size n to
obtain the relative frequencies

nj
n

then divide by h, so that the
area under the histogram equals 1.
Each bin of a histogram has height fj =

nj
nh

and base h, so the
area of bin Bj equals nj/n

Mario Lavezzi (UniPA) Applied Economic Growth Pisa, June 2013 38 / 110



Methods of empirical analysis Nonparametric methods

Nonparametric models
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Methods of empirical analysis Nonparametric methods

Nonparametric models
Histograms. Härdle et. al, 2004, Ch. 2

Basically, a histogram assigns the same estimate f̂h(x) to each x
in a bin, based on the number of observations that fall in the bin
containing x .

formally, for x ∈ Bj ,

f̂h(x) =
1

nh

n∑
i=1

∑
j

I (Xi ∈ Bj)I (x ∈ Bj),

where I are indicator functions.

Notice that, since observations in each Bj are counted, they
receive the same weight in the estimation
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Nonparametric models
Histograms

Denoting by mj the centre of Bj = [mj − h
2
,mj + h

2
], we can also

say that a histogram assigns the estimation f̂h(mj) to every x in
Bj

Approximation of a density by histogram
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Nonparametric models
Histograms

Their crucial parameter is the binwidth h. A higher binwidth
produces smoother estimates. It can be shown that the estimate
is biased. The bias is positively related to h, while the variance
of the estimate is negatively related to h

h ↑⇒ BIAS ↑. Intuition: increasing h makes more and more
difficult for the “bin” to approximate well the area under the
smooth function f (x)

h ↑⇒ VARIANCE ↓. Intuition: increasing h implies using more
and more information to build the histrogram.
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Methods of empirical analysis Nonparametric methods

Nonparametric models
Histograms

Problem: it is not possible to choose h in order to have a small
bias and a small variance. Hence we need to find the “optimal”
binwidth, which represents an optimal compromise.

Two useful terms:

oversmoothing : obtained when h is large, reduction of variance
but high bias;

undersmoothing : obtained when h is small, increase of variance
but low bias;
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Nonparametric models
Histograms

Problems with the histogram

1 each observation x in
[
mj − h

2 ,mj + h
2

]
is estimated by the

same value, f̂h(mj).
2 f (x) is estimated using the observations that fall in the interval

containing x , and that receive the same weight in the
estimation. That is, for x ∈ Bj ,

f̂h(x) =
1

nh

n∑
i=1

I (Xi ∈ Bj)

where I is the indicator function
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Nonparametric models
From histograms to kernel density estimation

In histograms: f (x) is estimated by 1/nh times the number of
observations into a small interval containing x

with kernels: f (x) is estimated by 1/nh times the number of
observations into a small interval around x

In particular: kernels give more weigth in the estimation to points
close to x (i.e. where the estimation should be carried out)
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Nonparametric models
Kernel density estimation

Uniform kernel function: assigns the same weight to all
observations in an interval of length 2h around observation x ,
[x − h, x + h]

That is, the estimate:

f̂h(x) =
1

2hn
# {Xi ∈ [x − h, x + h]}

can be obtained by means of a kernel function K (u)

K (u) =
1

2
I (|u| ≤ 1)

where I is the indicator function and u = (x − Xi)/h

Mario Lavezzi (UniPA) Applied Economic Growth Pisa, June 2013 45 / 110



Methods of empirical analysis Nonparametric methods

Nonparametric models
Kernel density estimation

Uniform kernel function: assigns the same weight to all
observations in an interval of length 2h around observation x ,
[x − h, x + h]

That is, the estimate:

f̂h(x) =
1

2hn
# {Xi ∈ [x − h, x + h]}

can be obtained by means of a kernel function K (u)

K (u) =
1

2
I (|u| ≤ 1)

where I is the indicator function and u = (x − Xi)/h

Mario Lavezzi (UniPA) Applied Economic Growth Pisa, June 2013 45 / 110



Methods of empirical analysis Nonparametric methods

Nonparametric models
Kernel density estimation

Uniform kernel function: assigns the same weight to all
observations in an interval of length 2h around observation x ,
[x − h, x + h]

That is, the estimate:

f̂h(x) =
1

2hn
# {Xi ∈ [x − h, x + h]}

can be obtained by means of a kernel function K (u)

K (u) =
1

2
I (|u| ≤ 1)

where I is the indicator function and u = (x − Xi)/h

Mario Lavezzi (UniPA) Applied Economic Growth Pisa, June 2013 45 / 110



Methods of empirical analysis Nonparametric methods

Nonparametric models
Kernel density estimation

It assigns weight 1/2 to each observation Xi whose distance
from x , the point where we want to estimate the density, is not
bigger than h.

so we can write:

f̂h(x) =
1

hn

n∑
1

K (
x − Xi

h
) (17)

=
1

hn

n∑
1

1

2
I (|x − Xi

h
| ≤ 1)

Mario Lavezzi (UniPA) Applied Economic Growth Pisa, June 2013 46 / 110



Methods of empirical analysis Nonparametric methods

Nonparametric models
Kernel density estimation

A Kernel function (in general), assigns higher weights to
observations in [x − h, x + h] closer to x , e.g. Epanechnikov,
Gaussian, etc.

A kernel density estimation appears as a sum of bumps: at a
given x , the value of f̂h(x) is found by vertically summing over
the “bumps”
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Nonparametric models
Kernel density estimation

In this case, we can write:
f̂h(x) =

n∑
i=1

1

nh
K

(
x − Xi

h

)
=

=
1

n

n∑
i=1

Kh(x − Xi)

where Kh(·) is called “rescaled kernel function”
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Nonparametric models
Kernel density estimation: Statistical properties of kernel density estimators

Same problems found for the histogram

Bias

Bias
{
f̂h(x)

}
= E

{
f̂h(x)

}
− f (x)

It can be shown that bias depends positively on h

Variance

Var
{
f̂h(x)

}
= Var

{
1

n

n∑
i=1

Kh(x − Xi)

}

It can be shown that variance depends negatively on h
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Nonparametric models
Kernel density estimation: Statistical properties of kernel density estimators

Choosing h

Define MSE (mean squared error)

MSE
{
f̂h(x)

}
= E

[{
f̂h(x)− f (x)

}2
]

MSE = VAR
{
f̂h(x)

}
+
[
Bias

{
f̂h(x)

}]2

Hence minimizing MSE may solve the trade-off, but the
MSE -minimizing h depends on f (x) and f ′′(x), which are
unknown.
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Nonparametric models
Kernel density estimation: Statistical properties of kernel density estimators

Define MISE (mean integrated squared error). MISE is
preferable because it is a global measure of the error of the
estimate.

MISE
{
f̂h(x)

}
= E

[∫ ∞
−∞

{
f̂h(x)− f (x)

}2

dx

]
=

=

∫ ∞
−∞

MSE
{
f̂h(x)

}
dx (18)

Define AMISE (an approximation of MISE ) and obtain the
formula for hopt . The problem is that hopt still depends on the
unknown f (x), in particular on its second derivative f ′′(x).
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Nonparametric models
Kernel density estimation: Statistical properties of kernel density estimators

One possibility is a plug-in method suggested by Silverman, and
consists in assuming that the unknown function is a Gaussian
density function (whose variance is estimated by the sample
variance). In this case hopt has a simple formulation, and can be
defined as a rule-of-thumb bandwidth.

hopt =

(
4

3n

) 1
5

σ
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Nonparametric models
Nonparametric regressions

Parametric regression:

E(Y |X1,X2) = X1β1 + X2β2

Nonparametric regression:

E(Y |X1,X2) = m(X1,X2)

Only assumption: m(.) is a smooth function

Additive model (semiparametric regression):

E(Y |X1,X2) = α+ m1(X1) + m2(X2)

Advantages of nonparametric methods: i) allow for estimation of more general functional
forms; ii) useful when nonlinear effects are important

Disadvantages: i) precision of estimates
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Methods of empirical analysis Nonparametric methods

Nonparametric models
Nonparametric regressions

Study the relation between X (independent variable) and Y (dependent variable)

yi = m(xi ) + εi , i = 1, .., n

E(Y |X = x) = m(x)

Kernel regression

m(x) = E(Y |X = x) =

=

∫
yf (y |x)dy =

∫
y
f (x , y)

fX (x)
dy =

∫
yf (x , y)dy

fX (x)
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Methods of empirical analysis Nonparametric methods

Nonparametric models
Nonparametric regressions

To estimate m̂(x) I need to estimate f (x , y) and fX (x). One can obtain the
Nadaraya-Watson estimator:

m̂(x) =
n−1

∑n
i=1 Kh(x − Xi )Yi

n−1
∑n

i=1 Kh(x − Xi )

where Kh(x − Xi ) is a kernel function

This estimator can be defined as local mean estimator (see Bowman and Azzalini, 1997,
p. 49). It can be obtained by solving the following problem:

minα

n∑
i=1

{yi − α}2 Kh(x − Xi )

The interpretation is that the values of the dependent variable are replaced by a local
mean, that is based on observations “close” to the point of estimation, where the weight
that other observations have in determining the mean increases with their proximity to
this point.
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Methods of empirical analysis Nonparametric methods

Nonparametric models
Nonparametric regressions

It is also possible to fit a local linear regression. In this case, the problem to solve is:

minα,β

n∑
i=1

{yi − α− β(x − Xi )}2 Kh(x − Xi )

It is also possible to fit a local polynomial regression (See Härdle at al., 2004, p. 94)

Notice that the Nadaraya-Watson estimator is a weighted sum of observations.
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Methods of empirical analysis Nonparametric methods

Distribution dynamics
Preliminary: σ-convergence

σ-convergence: the dispersion of real per capita income across a
group of economies tends to fall over time. That is,
σ-convergence holds between times t and t + T if:

Dlog y ,t > Dlog y ,T

the sample dispersion of (log) incomes decreases over time.
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Distribution dynamics
β-convergence vs σ-convergence

β-convergence does not imply σ-convergence! (Barro and Sala-i-Martin, 2004, pp. 50-51)

Consider:

log(yi,t) = a + (1− b)log(yi,t−1) + ui,t

0 < b < 1 implies absolute convergence, as the annual growth rate, log(yi,t/yi,t−1) is
inversely related to log(yi,t−1).

Sample dispersion follows:

Dt ≈ (1− b)2Dt−1 + σ2
u

which implies a steady state dispersion equal to:

D∗ = σ2
u/[1− (1− b)2]

Even if b > 0, D∗ > 0 as long as σ2
u > 0.

The evolution of Dt follows:

Dt = D∗ + (1− b)2t · (D0 − D∗)

Dt rises over time and converges to D∗ if D0 < D∗, even if b > 0.
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Methods of empirical analysis Nonparametric methods

Distribution dynamics
The distribution dynamics approach

Starting point: to analyze the evolution of the whole income
distribution

Motivation: dissatisfaction with the standard approach based on
cross-section regressions

σ-convergence alone is informative on the dispersion of the
distribution but non, for example, on within-distribution mobility

The distribution dynamics approach aims at highlighting
convergence, divergence, intradistribution dynamics, catching up
and falling behind
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Distribution dynamics
The distribution dynamics approach
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Distribution dynamics
The distribution dynamics approach

An example

Data from Maddison (2001), 122 countries, 1950-1998

Estimates of density in 1950 and in 1998 IntroDensity
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Distribution dynamics
The distribution dynamics approach
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Note the emergence of “twin peaks”

This is considered as evidence of polarization: the distribution becomes thinner in the
center and thicker in the tails

Remark on data: i) absolute values; ii) relative to sample average; iii) relative to US

The distribution dynamics of European regions also displays two peaks (Fiaschi and
Lavezzi, 2007)
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Methods of empirical analysis Nonparametric methods

Distribution dynamics
Markov Chains

A possible way to look at the evolution of the cross-country income distribution is to
represent it as a Markov Chain

The cross-country distribution is represented by a vector: any element is an income
interval and its value indicates the fraction of countries in that interval in a given period

Example: 3 income levels.

State space of the process: S = (1, 2, 3)
qt = [q1t , q2t , q3t ], 0 ≤ q1t , q2t , q3t ≤ 1,∑3

i=1 q1t = 1

Dynamics is given by:

qt+1 = qtP

where P is a transition matrix
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Methods of empirical analysis Nonparametric methods

Distribution dynamics
Markov Chains

Transition matrix:

P =

 p11 p12 p13

p21 p22 p23

p31 p32 p33


0 ≤ pij ≤ 1,

∑3
j=1 pij = 1, ∀i

An element of P is a transition probability. It is a conditional probability:

p11 = P(Xt+1 = 1|Xt = 1)

where Xt is the state of the process at time t, i.e. the income class of a country at time t

Markov property: the state of the process at time t + 1 only depends on the state of the
process at time t, and not on other past periods, e.g. we do not have that:

p...,1 = P(Xt+1 = 1|Xt = 1,Xt−1 = ...,Xt−2 = ..., ...)

In this case the Markov Chain is stationary, that is the transition matrix is the same in
every period. If the process is non-stationary, the transition matrix would be indexed by
t, i.e. as Pt
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Methods of empirical analysis Nonparametric methods

Distribution dynamics
Markov Chains

Long-run dynamics:

q1 = q0P

q2 = q1P = q0P
2

...

qn = q0P
n

Under “regularity” conditions (see, e. g. Isaacson and Madsen, 1978):

q = qP

and the process is ergodic.

q is defined as stationary, invariant or ergodic distribution of the process.
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Methods of empirical analysis Nonparametric methods

Distribution dynamics
Markov Chains

A numerical example:

A transition matrix such as:

P =

 0.4 0.3 0.3
0.3 0.6 0.1
0.7 0.2 0.1


has as invariant distribution:

q = [0.41, 0.40, 0.18]

This is obtained by solving:

q = qP

s.t.
∑3

i=1 qi = 1
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Methods of empirical analysis Nonparametric methods

Distribution dynamics
Quah (1993)

From Quah (1993)

Data on real GDP per capita (relative to world average)

#obs 1/4 1/2 1 2 ∞
456 0.97 0.03 0 0 0
643 0.05 0.92 0.04 0 0
639 0 0.04 0.92 0.04 0
468 0 0 0.04 0.94 0.02
508 0 0 0 0.01 0.99

Ergodic 0.24 0.18 0.16 0.16 0.27


Results by Quah: emergence of twin peaks

A more optimistic view is in Jones (1997)

Empirically, transition probabilities can be estimated by frequencies of transitions:

p̂ij =
nij

ni

where nij is the number of transitions from state i to state j and ni is the number of
observations in state i . These estimates are the maximum likelihood estimates of the
true (unknown) transition probabilities.
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Methods of empirical analysis Nonparametric methods

Distribution dynamics
Fiaschi and Lavezzi (2003): distribution dynamics and the shape of the growth
process

A possible extension of the distribution dynamics approach is in
Fiaschi and Lavezzi (2003)

Idea: to extend the approach to the study of the shape of the
growth process: the state space is defined in terms of income
levels and growth rates.
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Methods of empirical analysis Nonparametric methods

Distribution dynamics
Fiaschi and Lavezzi (2003): distribution dynamics and the shape of the growth
process

First step: run a nonparametric regression of growth rates
against income levels
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Methods of empirical analysis Nonparametric methods

Distribution dynamics
Fiaschi and Lavezzi (2003): distribution dynamics and the shape of the growth
process

Definition of the state space

Income\Growth rate < 0.8% 0.8%− 2.8% > 2.8%
0− 0.3µI I- I+ I++

0.3µI − 0.9µI II- II+ II++
0.9µI − 2.5µI III- II+ III++
> 2.5µI IV- IV+ IV++
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Methods of empirical analysis Nonparametric methods

Distribution dynamics
Fiaschi and Lavezzi (2003): distribution dynamics and the shape of the growth
process

Table: Transition Matrix
Obs States I- I+ I++ II- II+ II++ III- III+ III++ IV- IV+ IV++
423 I- 0.54 0.14 0.32 0 0 0 0 0 0 0 0 0
118 I+ 0.42 0.20 0.37 0 0 0 0 0 0 0 0 0
337 I++ 0.39 0.12 0.45 0.02 0 0.01 0 0 0 0 0 0
470 II- 0.03 0.01 0.01 0.47 0.14 0.34 0 0 0 0 0 0
221 II+ 0 0 0 0.35 0.22 0.42 0 0 0 0 0 0
593 II++ 0 0 0 0.26 0.16 0.53 0.01 0 0.04 0 0 0
202 III- 0 0 0 0.06 0.01 0.04 0.46 0.16 0.26 0 0 0
132 III+ 0 0 0 0 0.01 0 0.23 0.17 0.55 0.01 0.02 0.02
445 III++ 0 0 0 0 0 0 0.16 0.16 0.65 0 0 0.02
93 IV- 0 0 0 0 0 0 0.05 0.02 0.02 0.29 0.30 0.31

125 IV+ 0 0 0 0 0 0 0 0.02 0.01 0.23 0.34 0.39
201 IV++ 0 0 0 0 0 0 0 0 0 0.16 0.27 0.56
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Methods of empirical analysis Nonparametric methods

Distribution dynamics
Fiaschi and Lavezzi (2003): distribution dynamics and the shape of the growth
process

Distribution dynamics and ergodic distribution

I II III IV
1960 0.20 0.47 0.22 0.11
1989 0.31 0.34 0.19 0.16
Ergodic 0.41 0.28 0.18 0.14

Normalized ergodic distribution

- + ++
I 0.48 0.14 0.38
II 0.38 0.17 0.45
III 0.27 0.17 0.56
IV 0.22 0.31 0.47
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Methods of empirical analysis Nonparametric methods

Distribution dynamics
Continuous state space

See Johnson, 2005, and Johnson’s webpage

Problem: discretization of state space may distort the underlying
dynamics, especially in the long run

Possible solution: avoid discretization

Repeat the analysis with continuous GDP space:

ft(y): density of cross-country income distribution at time t

ft+τ (y): density of cross-country income distribution at time
t + τ
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Methods of empirical analysis Nonparametric methods

Distribution dynamics
Continuous state space

Under the assumptions: i) the transition process is time-invariant; ii) the process is
first-order, we can write the distribution dynamics as:

ft+τ (x) =

∫ ∞
0

gτ (x |z)ft(z)dz

where x = yt+τ , z = yt .

gτ (x |z) is the τ -period ahead density of x conditional on z

it is the continuous analog of a transition matrix. It maps the distribution of time t into
the distribution at time t + τ

it is denoted as stochastic kernel

If the ergodic distribution implied by gτ (x |z) exists, f∞(x), it satisfies:

f∞(x) =

∫ ∞
0

gτ (x |z)f∞(z)dz
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Methods of empirical analysis Nonparametric methods

Distribution dynamics
Continuous state space

Figure: from Durlauf and Quah (1999)

Mario Lavezzi (UniPA) Applied Economic Growth Pisa, June 2013 76 / 110



Methods of empirical analysis Nonparametric methods

Distribution dynamics
On the determinants of distribution dynamics

Once we observe polarization, we can ask ourselves what are the
explanatory variables

Attempts to tackle this issue in the literature are: Quah (1996
and 1997) in a “classic” distribution dynamics framework
Quah (1996 ) computes conditioned stochastic kernels based on
residuals from two-sided regressions of labor productivity on
human capital, physical capital, and country dummies
Quah (1997) defines conditioned stochastic kernels as operators
mapping unconditioned income levels into conditioned income
levels, that is incomes normalized: “on the basis of incomes
relative to one’s neighbours appropriately weighted” (p. 47)
where weights are calculated with respect to one of the variables
affecting the income dynamics
Beaudry et al (2005) and Fiaschi et al (2013), instead, utilize
counterfactual analyis
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Methods of empirical analysis Nonparametric methods

Distribution dynamics
On the determinants of distribution dynamics: Quah (1996)

“Comparing unconditional and conditional kernels (Figures 5 and 6) one
sees that fine details differ, but the global dynamics of the distribution
remain roughly unchanged. There are the same polarization, persistence,
and immobility features in both. While the conditioning variables do affect
the behavior of productivities in each country, they do not affect the
dynamics of the entire distribution” (p. 114)
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Distribution dynamics
On the determinants of distribution dynamics: Quah (1997)

“The most prominent change comparing stochastic kernels in Figure 7.1 (conditioned)
and Figure 5.1 (unconditioned) is the counterclockwise shift in mass to parallel the
Original axis. Put differently, spatial factors account for a large part of the distribution of
incomes across countries: rich economies are typically close tointeract more withother rich
ones; similarly poor economies are typically close to other poor ones ... — S displayed in
Figure 7.2 and Figure 7.3 no longer show emerging twin-peaks features. In summary, it
appears that the polarization earlier identified in the unconditional distribution-dynamics
of cross-country incomes is well explained by physical geography” (p. 48-49)
“For space, Figure 7.4 shows a marked improvement in convergence possibilitiesthe poor
catching up with the richexcept at the very highest income levels: the stochastic kernel is
concentrated parallel to the Period t axis on the average value of 1”
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Distribution dynamics
On the determinants of distribution dynamics: Quah (1997)

“Here, the counterclockwise twist in the kernel towards the vertical is even more
pronounced than in Figure 7.1: rich countries trade mostly with other rich ones; and,
interestingly, the very poorest countries, mostly with rich ones again.”

“For trade, however, that increase in convergence dynamics is most obvious only for
middle-income countries”
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Distribution dynamics
On the determinants of distribution dynamics: Beaudry et al. (1995)

Beaudry et al. (2005) consider two periods: 1960-1978 and
1978-1998: the second is characterized by a tendency for
polarization

They define an actual and a counterfactual growth rate:

g 78−98
i = β78−98

0 + β78−98
y y 78

i + X 78−98
i β78−98

x + ε78−98
i

gβxi = β78−98
0 + β78−98

y y 78
i + X 78−98

i β60−78
x + ε78−98

i

and the related counterfactual income in 1998 (given
y 98
i = y 78

i + 20g 78−98
i :

yβx = y 78
i + 20gβxi = y 98

i + 20X 78−98
i (β60−78

x − β78−98
x )
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Methods of empirical analysis Nonparametric methods

Distribution dynamics
On the determinants of distribution dynamics: Beaudry et al. (1995)

Their result is that, had the coefficients on physical capital and
labor force remained the same, the distribution in 1998 would
have been single-peaked
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Distribution dynamics
On the determinants of distribution dynamics: Fiaschi et al. (2013)

Labour productivity: yi(T ) = yi(0)egiT .

Growth rate gi :

gi = m(Xi) + υi = α +
K∑

k=1

µk(Xi ,k) + υi

i.e. we use a semiparametric specification
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Methods of empirical analysis Nonparametric methods

Distribution dynamics
On the determinants of distribution dynamics: Fiaschi et al. (2013)

Define Xi ,k = (Xi ,1, ...,Xi ,(k−1),Xi ,(k+1), ...,Xi ,K ). Substituting:

yi(T ) = yi(0)e [α+µk (Xi,k )+
∑

j 6=k µj (Xi,j )+υi ]T =

= yi(0)e [α+
∑

j 6=k µj (Xi,j )]T︸ ︷︷ ︸
yi,k (T )

eµk (Xi,k )T︸ ︷︷ ︸
e
gM
i,k

T

eυiT︸︷︷︸
e
gR
i
T

, (19)

where yi ,k(T ) = yi(0)e [α+
∑

j 6=k µj (Xi,j )]T is the level of productivity
in period T obtained by “factoring out” the effect of Xi ,k ;

gM
i ,k = µk(Xi ,k) is the part of the annual growth rate of yi

explained by Xi ,k , capturing the “marginal” effect of Xi ,k on gi ;

gR
i = υi is the annual “residual growth”, not explained by the

variables in Xi
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Methods of empirical analysis Nonparametric methods

Distribution dynamics
On the determinants of distribution dynamics: Fiaschi et al. (2013)

The counterfactual productivity at time T , yCF
i ,k (T ) is defined as:

yCF
i ,k (T ) ≡ yi(0)eg

CF
i,k T = yi(0)e [α+

∑
j 6=k µj (Xi,j )+µk (X̄k )+υi ]T

where X̄k = N−1
∑N

i=1 Xi ,k .

Counterfactual productivities are those that would have been
obtained had all the countries had the same value of the variable X
(supposed equal to its mean)

Counterfactual productivities are the bases to compute
counterfactual stochastic kernels.
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Methods of empirical analysis Nonparametric methods

Distribution dynamics
On the determinants of distribution dynamics: Fiaschi et al. (2013)

The actual stochastic kernel φ(·) maps the distribution of
(relative) productivity in period 0 into the distribution of
(relative) productivity in period T .

The counterfactual stochastic kernel φCF (·), instead, maps the
distribution of (relative) productivity in period 0, into the
distribution of counterfactual relative productivities in period T .
Therefore, the counterfactual stochastic kernel shows, for every
initial productivity level, the probability distribution over
productivity levels at time T had the cross-country heterogeneity
in the variable k been absent.
This implies that the possible differences with respect to the
probability distribution based on the actual stochastic kernel
depends on the k-th variable, in particular on its distribution
across countries.
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across countries.
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Methods of empirical analysis Nonparametric methods

Distribution dynamics
On the determinants of distribution dynamics: Fiaschi et al. (2013)
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AD 1960 AD 2008 CD 2008
Gini 0.42 0.42 0.52
s.e. (0.029) (0.026) (0.030)
BIPOLNI NA 0.69 0.62
s.e. (-) (0.087) (0.329)
Unimodality Test
p-value 0.271 0.009 0.092

AED CED
Gini 0.46 0.57
s.e . (0.335) (0.457)
BIPOLNI 0.70 0.69
s.e . (0.102) (0.560)
Unimodality Test
p-value 0.006 0.092
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Some relevant papers

Some relevant papers
Barro (1991), “Economic Growth in a Cross Section of Countries”, QJE

98 countries observed in 1960-1985

Method of analysis: cross-section regression

γi,T = a + byi0 + ψXi + πZi + εi

Dependent variable: average annual growth rate

Explanatory variables (sign of the estimated coefficient in parenthesis):

1 initial GDP (-)
2 initial human capital (sec/prim) (+)
3 government consumption (-)
4 indicators of political/social stability (should negatively affect property rights and

reduce investments) (revolutions/ assassinations) (-)
5 investment (+)
6 population growth (-)
7 index of political institutions (socialist/mixed)

SOC (-)
8 continental dummies (Africa/Latin America) (-)
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Some relevant papers

Some relevant papers
Barro (1991), “Economic Growth in a Cross Section of Countries”, QJE

Interpretation of results

A positive coefficient means that, holding fixed the other
variables an increase in that variable has a positive marginal
effect on the dependent variable

Examples of the result on human capital: among countries with
similar initial human capital (and the other variables), a higher
initial income level is associated to lower growth. Among
countries with similar initial income (and the other variables), a
higher initial level of human capital is associated to higher
growth.

There is evidence of conditional convergence. The coefficient of
initial income is negative, the set of controls includes the
variables from the Solow model and other variables.
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Some relevant papers

Some relevant papers
Mankiw, Romer and Weil (1992), “A Contribution to the Empirics of Economic
Growth’, QJE

The estimated equation is:

γi = α+ βlog(yi,0) + πnlog(ni + g + δ) + πK log(sK ,i ) + πH log(sH,i ) + εi
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Some relevant papers

Some relevant papers
Pritchett (2000). ”Understanding patterns of economic growth: Searching for hills
among plateaus, mountains, and plains.” The World Bank Economic Review.

111 countries observed in 1985/1992

Aim: emphasizing diversity in growth experiences

Steep Hills: “These 11 countries had growth rates higher than 3
percent in both periods ... In these countries the trend is
everything”
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Some relevant papers

Some relevant papers
Pritchett (2000). “Understanding patterns of economic growth: Searching for hills
among plateaus, mountains, and plains.” The World Bank Economic Review.

Hills: “These 27 countries had growth rates higher than 1.5
percent in each period ... Like the United States, most of the
OECD countries are hills” (but also Costa Rica and Pakistan)
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Some relevant papers

Some relevant papers
Pritchett (2000). ”Understanding patterns of economic growth: Searching for hills
among plateaus, mountains, and plains.” The World Bank Economic Review.

Plateaux: “These 16 countries had growth rates higher than 1.5
percent before their structural break, but afterward growth fell
to less than 1.5 percent ... the classic case is Brazil”

Mario Lavezzi (UniPA) Applied Economic Growth Pisa, June 2013 93 / 110



Some relevant papers

Some relevant papers
Pritchett (2000). ”Understanding patterns of economic growth: Searching for hills
among plateaus, mountains, and plains.” The World Bank Economic Review.

Mountains: “These 33 countries had growth rates higher than 1.5 percent
before their trend break, but negative rates afterward (figure 4d). This
category includes most of the oil-exporting countries (Algeria, Gabon,
Nigeria, Saudi Arabia), a number of commodity exporters that experienced
positive commodity price shocks followed by negative shocks (Cote d Ivoire,
Guyana, Jamaica, Zambia), and Latin American countries affected by the
debt crisis (Argentina, Bolivia, Paraguay)”
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Some relevant papers

Some relevant papers
Pritchett (2000). ”Understanding patterns of economic growth: Searching for hills
among plateaus, mountains, and plains.” The World Bank Economic Review.

Accelerators: “These 7 countries did not have growth rates above 1.5
percent before their structural break, but did afterward . This class includes
a number of clear successes, like Indonesia after 1966 and Mauritius after
1970, as well as less clear-cut successes, like India)”
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Some relevant papers

Some relevant papers
Liu and Stengos (1999), “Non-linearities in Cross-Country Growth Regressions: a
Semiparametric Approach” J. Appl. Econometrics

86 countries observed in 1960-1990

Dependent variable: average annual growth rate

Explanatory variables:

1 initial GDP
2 human capital
3 investment (+)
4 population growth (-)

Method of analysis: semiparametric regression

γi = α+ fβ(log(yi,0)) + πnlog(ni + g + δ) + πK logsK ,i + fπH (log(sH,i )) + εi

where fβ(.) and fπH (.) are arbitrary functions. The effect of log(ni + g + δ) is estimated
parametrically, the effects of logyi,0 and logsH,i are estimated nonparametrically (this
choice follows previous studies).
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Some relevant papers

Some relevant papers
Liu and Stengos (1999), “Non-linearities in Cross-Country Growth
Regressions: a Semiparametric Approach” J. Appl. Econometrics

First finding: the effect of log(yi,0) is negative only for incomes above $1800

Mario Lavezzi (UniPA) Applied Economic Growth Pisa, June 2013 97 / 110



Some relevant papers

Some relevant papers
Liu and Stengos (1999), “Non-linearities in Cross-Country Growth
Regressions: a Semiparametric Approach” J. Appl. Econometrics

Second finding: the effect of secondary school enrollment (empirical proxy for log(sH,i )) on
growth is more pronounced when the variable is above 15% and weaker when the variable is
above 75%. The relation may be linear for countries with a human capital level up to the
intersection of the linear relation line and the confidence interval.

Mario Lavezzi (UniPA) Applied Economic Growth Pisa, June 2013 98 / 110



Some relevant papers

This approach is useful to study nonlinearities, whose presence
indicates parameter heterogeneity: “What do Thailand, the
Dominican Republic, Zimbabwe, Greece and Bolivia have in
common that merits their being put in the same regression
analysis’?” (Harberger 1987, quoted in Durlauf et al., 2004)

Parameter heterogeneity may appear as a nonlinearity. A
nonlinear effect simply means that the marginal effect of X on
Y is different at different levels of X . If different countries have
different levels of X , then the estimated coefficient on Y will
differ.
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Some relevant papers

Some relevant papers
Durlauf and Johnson (1995), “Multiple Regimes and Cross-Country Growth
Behaviour”, J. Appl. Econometrics

96 countries observed in 1960-1985

Dependent variable: average annual growth rate

Explanatory variables:

1 initial GDP
2 initial human capital
3 investment
4 population growth

Method of analysis: 1) clustering of countries; 2) cross-section regression

The aim of the paper is to determine: “whether the data exhibit multiple regimes in the
sense that subgroups of countries identified by initial conditions obey distinct Solow-type
regressions”
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Some relevant papers

Some relevant papers
Durlauf and Johnson (1995), “Multiple Regimes and Cross-Country Growth
Behaviour”, J. Appl. Econometrics

I generate exogenous partitions of countries according to initial income and initial human
capital and then run cross-section regression for each group. Result: the estimated
coefficients are (very) different across the subgroups.

II check that the evidence of multiple regimes is not due to omitted variables (e.g. variables
not included in the Solow model: country dummies, political variables, etc.). Run
regressions in subgroups using additional variables. Results: adding controls does not
change the previous result; countries with different initial conditions have different
coefficients for the Solow variables

III generate an endogenous partition of countries in subgroups. In this case an algorithm
(regression tree) is utilized. It produces four subgroups: 1) low income (mostly African);
2) intermediate income/low literacy (some African, Asian); 3) intermediate income/high
literacy (far East, Latin); 4) high income (OECD). Results show that the linear models
estimated on the subgroups have very different coefficients, and probably obey different
production functions
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Durlauf and Johnson (1995), “Multiple Regimes and Cross-Country Growth

Behaviour”, J. Appl. Econometrics
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Some relevant papers

Some relevant papers
Durlauf and Johnson (1995), “Multiple Regimes and Cross-Country Growth
Behaviour”, J. Appl. Econometrics

On results: 1) the coefficient on initial income is negative and significant only for groups
1) and 3) implying convergence within them. 2) The human capital share is positive and
significant only for groups 2) and 4). It may indicate the existence of technologies for
which human capital is important (or simply that using only secondary school enrollment
is inappropriate).

Durlauf and Johnson (DJ) results vs the conditional convergence hypothesis (CCH):
according to CCH countries with identical structural characteristics must converge to the
same steady state independently of initial conditions. According to DJ, initial conditions
determine structural characteristics, and therefore it cannot happen that one country
may have some structural characteristics and any set of initial conditions.

See also Desdoigts (1999) and Tan (2010)
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Some relevant papers

Some relevant papers
Durlauf et. al (2001), “The Local Solow Growth Model”, Eur. Ec Rev

98 countries observed in 1960-1985
Dependent variable: growth rate

Explanatory variables:

1 initial GDP
2 human capital
3 investment
4 population growth

Method of analysis: estimation of a growth equation of the form:

γi = α(y0) + πn(y0)log(ni + g + δ) + πK (y0)log(sK ,i ) + πH(y0)log(sH,i ) + εi

that is: the parameters are assumed to vary locally, i.e. to depend on initial income.
The method is implemented through the estimation of a local linear model in which the
observations near the point where the marginal effect is estimated are weighted by a
kernel function.
Results: high parameter heterogeneity for poorer countries. In particular: the estimated
coefficient for the intercept, population growth, and human capital stabilizes after a
threshold income level; the parameter for investment is highly unstable.
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Some relevant papers

Durlauf et. al (2001), “The Local Solow Growth Model”, EER
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