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Abstract

We propose a model where the growth rate volatility of a country
is explained by structural change and the size of the economy. We test
these predictions by adopting two measures of growth volatility: the
standard deviation of growth rates and some indices based on Markov
transition matrices. Both methods lead to the same results: growth
volatility appears to (i) decrease with total GDP, (ii) increase with the
share of the agricultural sector on GDP. Trade openness can also play
a role in conjunction with total GDP. In accordance with our model,
the explanatory power of per capita GDP, a relevant variable in other
empirical works, vanishes when we control for these variables.
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1 Introduction

The relationship between income level and growth rate volatility (GRV
henceforth) has received little attention up to now. Contributions can be
divided into two main groups. The first highlights that development is ac-
companied by a sharp reduction in GRV (see Acemoglu and Zilibotti (1997)
and Pritchett (2000)), while the second refers to a negative relationship be-
tween the size of an economy and GRV (see Canning et al. (1998)).1

Since development is generally intended as an increase in per capita GDP,
a first possible empirical investigation regards the relationship between GRV
and per capita GDP. In this light, we analyze structural change, a typical
phenomenon associated to development. In fact, a plausible explanation of
the reduction in GRV as development proceeds resides in the decreasing
weight of sectors with more volatile output, like agriculture and primary
sectors, with respect to sectors with less volatile output, like manufacturing
and services.2 Differently, the increase in the number of sectors (or produc-
tive units) associated to a growing size of the economy is the most common
explanation of the relationship between the size of the economy and GRV. In
fact, a reduction in aggregate GRV may derive from averaging an increasing
number of sectoral growth rates, since idiosyncratic shocks to each sector
would tend to cancel out by the law of large numbers.

We test for the existence of these relationships in a large sample of
countries from Maddison (2001)’s dataset. In particular we focus on the
effect of three variables on GRV : (i) the level of per capita GDP (GDP
henceforth) as proxy of the level of development, (ii) the share of agriculture
on GDP (AS henceforth) as proxy of structural change and (iii) total GDP
(TGDP henceforth) as proxy of the size of the economy. We also consider a
measure of trade openness (TR henceforth), to proxy the effective dimension
of an economy which may not be entirely captured by TGDP only.

Individually, we find an inverse relationship between GRV and both
GDP and TGDP, and a positive relationship between GRV and AS as we
expected, although some nonlinearities appear in the latter case. TR shows
a nonlinear behavior, but we argue that the effect of this variable on GRV
has to be evaluated jointly with TGDP. When we consider all the variables,
TGDP explains the largest part of growth volatility. In particular, the effect
of GDP on GRV vanishes when it is considered jointly with TGDP, TR and
AS. These findings agree with the predictions of our model, in which GRV is
explained by structural change and, especially, by the extent of the economy.

1 Acemoglu et al. (2003) highlight another possible causal explanation of volatility
based on the lack of strong “institutions” (e.g. enforcement of property rights, corruption,
political instability), while Easterly et al. (2000) focus on the development of the financial
sectora as a cause for the reduction in volatility.

2So far the literature on structural change has not paid attention to this issue (see
e.g. Pasinetti (1981)).
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From the theoretical point of view, our work is also related to papers
such as Scheinkman and Woodford (1994) and Horvath (1998), which study
the emergence of aggregate fluctuations from local shocks. None of them is
however explicitly concerned with structural change. Acemoglu and Zilibotti
(1997) study an economy where an increasing number of sectors allows for
a diversification of investment, and is associated to a reduction in aggregate
GRV. A direct implication is that risk-adverse agents, by investing in more
productive and more risky sectors, determine an increase in the growth rate.3

Hence their approach differ from ours as we focus on the specificity of the
sectors (agricultural sector vs other sectors) and not only on their number.
Moreover, they do not explicitely interpret the number of sectors as a proxy
of the size of the economy.

As a first step in our empirical analysis we follow the Canning et al.
(1998)’s approach, where all observations are pooled and then partitioned
in classes. We measure GRV for each class of GDP, AS and TGDP as the
standard deviation of growth rates associated to the observations in each
class. We estimate by nonparametric methods (this is a crucial difference
with respect to Canning et al. (1998)) the relationship between GRV and
our explanatory variables, exploring in particular the effects of their interac-
tions. Here GDP appears to play no role in the explanation of GRV when
AS, TGDP and TR are included in the regression.

However, we argue that a drawback of the procedure based on pooling
is to ignore the relevant information on the dynamics of individual coun-
tries. Therefore we present a new statistical methodology based on Markov
transition matrices. In particular we propose some growth volatility indices
based the literature on mobility indices (see, e.g. Bartholomew (1982)).
We reinterpret a set of indices generally utilized to measure intergenera-
tional mobility as measures of volatility, and propose two new indices. By
applying these indices to our sample, we find a confirmation of the previous
findings. This methodology hardly allows for a rigorous statistical analysis
of the joint effect of our variables on growth volatility, because of the limited
availability of data, but we provide some intuition supporting the result that
GDP is not informative, in presence of the other variables.

The paper is organized as follows. Section 2 proposes a simple model to
explain the growth volatility of a multisector economy. Section 3 contains a
nonparametric data analysis of GRV ; Section 4 introduces the GRV indices;
Section 5 presents and discusses the results of the calculation of these indices;
Section 6 concludes.

3Here we are not interested in the link between GRV and long-run growth as in Ramey
and Ramey (1995).
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2 A Basic Analytical Framework

In this section we present a simple model to highlight the key factors which
can account for GRV in a country. In particular our focus is on the compo-
sition of output and the size of the economy.

Consider an economy with Nt sectors, where t indexes time. Sector i’s
output grows according the following rule:

yi
t = yi

t−1

(

1 + gi
tε

i
t

)

,

where yi
t is output in period t of sector i, gi

t is the exogenous growth rate of
sector i, and εt

i is a random shock.
We assume that random shocks are normally distributed with mean 1

and variance
(

σi
)2

, that is:

εi
t ∼ N

(

1,
(

σi
)2

)

.

Let Γt be the Nt × Nt covariance matrix, where γij
t is an element. Notice

that assuming a nonzero covariance among shocks is a simple way to model
sectoral interdependence.4 We assume that the autocorrelation of the shocks
is zero, that is cov

(

εi
t, ε

i
t−1

)

= 0, ∀i = 1, ..., Nt and ∀t. Finally, we assume
that σi−1 ≥ σi, i = 2, ..., Nt, that is we order sectors on the basis of GRV.5

Notice that shocks are assumed to be normally distributed for analytical
convenience. In fact, this allows us to measure aggregate GRV by the stan-
dard deviation of the aggregate growth rate. If we relax this assumption,
measuring GRV of a country can become complex. We return on this point
in the sections devoted to the empirical analysis.

Let Yt be aggregate output in period t, that is:

Yt = ΣNt

i=1y
i
t.

Therefore the aggregate growth rate is given by:

µt =
ΣNt

i=1y
i
t−1

(

1 + gi
tε

i
t

)

ΣNt

i=1y
i
t−1

− 1 = ΣNt

i=1α
i
t−1g

i
tε

i
t, (1)

where αi
t−1 =

yi
t−1

Σ
Nt
i=1

yi
t−1

is the share of output of sector i with respect to total

output, so that ΣNt

i=1α
i
t−1 = 1, ∀t.

4 Horvath (1998) shows that a multisector model with intermediate goods and id-
iosyncratic shocks to individual sectors can generate an aggregate dynamics where sectoral
outputs are correlated.

5 Grossman and Kim (1996) endogenize the different volatility of sectors on the basis
of rent-seeking theory. Here, we argue that these sectors are intrinsically more subject to
random shocks, e.g. changes in terms of trade, climatic changes and the like.
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From definition (1) we have that the expected value and variance of µt

are given by:
µ̄t = Et [µt] = ΣNt

i=1α
i
t−1g

i
t (2)

σ̄2
t = Et

[

(

ΣNt

i=1α
i
t−1g

i
tη

i
t

)2
]

, (3)

where ηi
t = εi

t − 1. Trivially, η has the same properties of ε, but its mean

is equal to 0 (that is ηi
t ∼ N

(

0,
(

σi
)2

)

). It follows that µt is normally

distributed, that is µt ∼ N
(

µ̄t, σ̄
2
t

)

. From (3) we obtain the following ex-
pression for σ̄2

t :

σ̄2
t = ΣNt

i=1

(

αi
t−1g

i
tσ

i
)2

+ ΣNt

i=1Σ
Nt

j=1,j 6=iα
i
t−1α

j
t−1g

i
tg

j
t γ

ij
t , (4)

where γij
t − 1 is the covariance between ηi

t and ηj
t .

The functional form of Equation (4) does not allow for a simple identifi-
cation of the effects of the elements on the right-hand side on σ̄2

t , except for

gi
t. An increase of gi

t, ceteris paribus, increases both µ̄t and σ̄2
t , i.e.

∂σ̄2
t

∂gi
t

> 0,

∀i. However, the effects of the other variables involved, in particular the

number of sectors Nt and of structure of economy
(

α1
t−1, ..., α

Nt
t−1

)

, may not

be so easily identifiable.
To proceed, suppose that Yt comes from the agricultural sector A (sec-

tor 1), and from the rest of economy R (sectors 2, ..., Nt), which includes
secondary and tertiary sectors (we will use this distinction in the empirical
analysis). Equation (4) becomes:

σ̄2
t =

(

αA
t−1g

A
t σA

)2
+

(

αR
t−1g

R
t σR

t

)2
+ αA

t−1α
R
t−1g

A
t gR

t γAR
t . (5)

It is plausible to assume that γAR
t = 0 because shocks to A and R are

likely to be of different nature and uncorrelated.6 Therefore we have:

σ̄2
t =

(

αA
t−1g

A
t σA

)2
+

[

αR
t−1g

R
t σR

t

]2
. (6)

Generally, a change in αA
t−1 and αR

t−1 = 1 − αA
t−1, and/or a change in the

number of sectors Nt have an ambiguous effect on aggregate variance. Let
us analyze first the role of Nt.

Number of Sectors and Growth Volatility Some authors argue
that the size of an economy, in terms of number of sectors or units of produc-
tion, may affect aggregate GRV (e.g. Scheinkman and Woodford (1994)).
In our model, the possible negative correlation between GRV and N can
derive from an inverse correlation between σR and N . We can identify sim-
ple conditions under which dσR/dN < 0. Assume that gi

t = gR, γij
t = 0,

6For a discussion of the relationship between σ̄2 and Γ see Horvath (1998).
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αi
0 = 1

N0−1 , for i, j = 2, ..., Nt and ∀t. Then, from Equation (4) written only
for R, we have:

(

σ̄R
t

)2
=

(

gR

Nt − 1

)2
[

ΣNt

i=2

(

σi
)2

]

,

that is
(

σ̄R
t

)2
is decreasing in Nt and increasing in gR, given that σi−1 ≥ σi.

Hence, the higher is the number of sectors in R, the lower is the variance
of its growth rate, if the covariance between sectors is negligible (this is
an application of the law of large numbers). If the size of an economy is
positively related to the number of sectors N , then the size of an economy
and its growth volatility are inversely related. Moreover, higher gR leads
to higher GRV but, if the output of some sectors has a strong positive
correlation with the output of others, then GRV can nonetheless increase if
the latter effect is stronger than the effect of the increase in N .7

To conclude, if σR = σR (N), where dσR/dN < 0, then from Equation
(6) we obtain:

∂σ̄2
t

∂Nt
= 2

[

αR
t−1g

R
t

]2
σR d

(

σR
)2

dNt
< 0. (7)

We show below that this relationship finds an empirical support when we
proxy for N by the dimension of the economy.

Composition of Output and Growth Volatility In a typical pro-
cess of growth and structural change, primary sectors grow less than indus-
trial and service sectors. This implies that the share of sectors with higher
variance declines over time. The overall result would be a decrease in aggre-
gate GRV, as the latter is a weighted sum of sectors’ variances, and weights
are proportional to sectors’ shares.

From Equations (1) and (6) we have:

σ̄2
t =

(

αA
t−1g

A
t σA

)2
+

[(

µt − αA
t−1g

A
t

)

σR
]2

.

Calculations lead to:

∂σ̄2
t

∂αA
t−1

> 0 ⇔ αA
t−1 >

µt

gA
t

[

1 +

(

σA
)2

(σR)2

]−1

= ᾱ. (8)

This means that for αA
t−1 < ᾱ (αA

t−1 > ᾱ) GRV is decreasing (increasing)
in the share of the agricultural sector αA. That is, the relationship between

7An example can be the emergence of a financial sector, whose output is correlated
to many sectors through the capital market. This remark could introduce the very inter-
esting question whether GRV remains stable over time given the same level of GDP. For
example, the development of a global capital market may increase the interdependence
among sectors and possibly GRV, without implying an increase in the level of GDP.
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αA
t−1 and σ̄2

t is U-shaped. Moreover, if σR = σR (N) and dσR/dN < 0, then
the threshold value ᾱ decreases in Nt.

8

To summarize our results consider the following equation, derived from
Equation (6):

σ̄2
t =

(

µtσ
R
)2

+
(

αA
t−1g

A
t

)2

[

(

σA
)2

+
(

σR
)2 − 2σR

αA
t−1g

A
t

]

. (9)

In Equation (9) aggregate variance depends on two terms: the first term
captures the effect of the variance of the “rest of the economy”, which we
argue depends negatively on the number of sectors N (see Equation (7)); the
second term represents the effect of the share of agriculture αA, whose sign
depends in a non-trivial way on the interaction with N , via σR (see condition
(8)). Notice finally that GDP does not play any role in the model. In our
empirical analysis we estimate Equation (9).

3 Nonparametric Estimation

We use data on GDP and TGDP from Maddison (2001)’s database and
data on agriculture and trade from the World Bank’s World Development
Indicators 2002. Our sample includes 119 countries for the period 1960–
1998.9 As noted, we proxy for the structure of the economy by the share
of the agricultural sector in aggregate value added, AS, and measure the
effective dimension of the economy, related to the number of sectors N in
the model, both by the total GDP (TGDP) and trade openness (TR), which
is the ratio of the sum of imports and exports on GDP. The latter, jointly
with TGDP, would provide a more exact measure of the extent of the overall
market for an economy.

We consider both the cross-country and the time-series dimension of
growth volatility. In particular, to evaluate the relation between GRV and
level of development we separate all observations on GDP and TGDP into
151 classes with a similar number of observations (approximately 30), while
to evaluate the relation between GRV and structural change we separate all
observations on AS into 109 classes. Finally, for the relation between GRV
and TR we have 125 classes of observations.

For every observation on GDP in year t we calculate the growth rate

8Notice that the U-shaped relation between αA
t−1 and σ̄2

t resembles the relation between
the variance of a portfolio and the share of the more volatile asset. In the problem of
portfolio choice, the variance of portfolio decreases with the share of the more volatile
asset until a positive threshold value is reached, then increases.

9Data on GDP and TGDP are in 1990 international dollars. Not all observations on
agriculture and trade openness were available for each country for all years. See Appendix
A for the country list.
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from t to t + 1.10 Figure 1 reports the standard deviation of growth rates,
STD, relative to the observations in a class against, respectively, the log of
the average GDP, AS, TGDP and TR in that class, and run a nonparametric
estimation of these relationships.11

Figure 1 is the counterpart of Figure 1 in Acemoglu and Zilibotti (1997),
where only cross-country variation in growth volatility is considered. They
estimate an OLS regression and find a decreasing relationship betweeen
growth volatility and development, proxied by the initial level of GDP.

In our case, we see at first glance that GRV tends to fall with GDP. The
high volatility at the lowest and, especially, highest GDP levels is associated
with a much wider variability band, meaning that there the estimate is not
precise. In Figure 1 growth volatility appears to be increasing with AS.
This relation is not monotonic, but the variability band is tighter where the
upward sloping portion is steeper, indicating that the estimation is more
precise where the curve is sharply increasing (we return on this below). In
Figure 1 GRV clearly decreases with TGDP, as the extreme portions of the
estimate have a wide variability band.

Finally, the relationship between GRV and TR in Figure 1 appears in-
versely U-shaped. In particular, the estimate of both the decreasing parts
has a wide variability band. As noted, the impact of TR on GRV does not
interest us per se, but in conjunction with TGDP when we proxy for the
effective size of an economy. In our view, the effective size of the economy
increases if it is highly integrated with other economies.

Notice that in Figure 1 we have studied the effects on GRV of the vari-
ables taken individually. However, from our model, these variables are ex-
pected to have a joint effect on GRV, that is their effect should be evaluated
given the presence of other variables and of possible interactions among
them.

To test the implications of Equation (9) we estimate the following gen-

10For data on AS, TGDP and TR we consider the corresponding observation on GDP

and calculate the associated growth rate.
11The nonparametric estimate is obtained with the statistical package included in Bow-

man and Azzalini (1997). We used the standard settings suggested by the authors (i.e.
optimal normal bandwidth). To test the robustness of this estimate, we ran an alternative
nonparametric regression using the plug-in method to calculate the kernel bandwidth, and
obtained a similar picture. We refer to Bowman and Azzalini (1997) for more details.
We report the variability bands representing two standard errors above and below the
estimate. They give a measure of the statistical significance of the estimate (see Bow-
man and Azzalini (1997), pp. 29–30 for details on variability bands vs confidence bands).
Data sets and codes used in the empirical analysis are available on the authors’ websites
(http://www-dse.ec.unipi.it/fiaschi and http://www-dse.ec.unipi.it/lavezzi).
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Figure 1: GRV estimated by STD vs, respectively, log of GDP, AS, TGDP,
and TR

eralized additive models:12

STDi = β0 +
∑

j∈P1

sj(xji)+
∑

q∈P2

∑

j∈P3,j 6=q

sj,q(xji, xqi)+ (10)

+
∑

k∈P4

∑

q∈P5

∑

j∈P6,j 6=q 6=k

sk,j,q(xki
, xji, xqi) + ǫi (11)

where STDi indicates that standard deviation in class i, Pz ⊆ {GDP,AS ,TGDP ,TR},
and sj(.), sj,q(.) and sk,j,q(.) are functions to be estimated nonparametrically.
Functions sj,q(.) and sk,j,q(.) capture the effect of the interactions among the
explanatory variables xki, xji and xqi. Here GDP is considered to check the
robustness of the results to its inclusion, and for comparison with existing
results in the literature (remember that in our theoretical model GDP does
not affect GRV ).

Estimation by generalized additive model is particularly well- suited in
this contest because it is not affected by multicollinearity, a potential prob-
lem given the high correlation between GDP, AS, TGDP and TR.13

We estimated Equation (10) alternatively with classes defined on the

12As we discussed above, in this paper we focus only on structural change and the size
of economy. Hence we do not consider in the empirical analysis the covariance matrix Γ
and growth rates of individual sectors.

13For example, the coefficient of correlation between TGDP and AS is −0.79, while for
TGDP and TR it is equal to −0.69.
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basis of GDP and TGDP. The best results obtains with TGDP, and are
reported in Table 1.14

For every estimated model we report the p-value for the approximate
significance of each individual explanatory variable, the estimated degrees
of freedom, the GCV score, and the value of R2. Model 1 in Table 1 directly
corresponds to Equation (9). From this equation we expected an effect on
GCV from the number of sectors alone and from an interaction between N
and AS. We consider the interaction between TGDP and TR as a proxy for
N . These effects are indeed highly significant, and the specification of Model
1 produces the best results, in particular for the GCV score. The interaction
between TGDP and TR and the interaction between these variables and AS
account for 65% of the variance of STD.

Models 2−6 test the robustness of this result to alternative specifications.
In Model 2 we check whether the inclusion TR affects the results. We
see that the GCV score increases while R2 decreases, although the two
variables are highly significant. Therefore we conclude that TR should be
included. In Model 3 we check for the relevance of AS, as its effect may be
completely captured by the size of the economy. For instance, it is likely
that an economy with a large agricultural share is quite underdeveloped and
has a small size. However, with respect to the results of Model 1 we see that
the exclusion of AS worsen the results.

Given that TR and AS are relevant, we check in Model 4 for the exclusion
of their interactions. We can see that the only significant variable is TGDP,
and that the results are worse than in Model 1. Hence, we conclude that the
importance of TR and AS lies in their interactions. In Model 5 we check
whether these variables are relevant when taken in one single interaction
term, and conclude in the negative. Finally, in Model 6 we add GDP to our
best specification, Model 1. We see that GDP is not significant, while the
significance of the other terms is preserved.

Therefore, we argue that the effect of “development”, when measured by
GDP, on the decrease in GRV is broadly ascribable to our variables proxing
for the dimension of the economy and structural change. Hence, it seems
that other potentially relevant factors whose effect might be captured by
GDP (e.g. the development of a financial system or of other “stabilizing”
institutions), are not actually informative in presence of our variables.15

14Results obtained when classes are defined using GDP are available upon request.
The smooth terms s (.) in Equation (10) are represented by penalized regression splines.
The smoothing parameters are chosen to minimize the Generalized Cross Validation score
(GCV ) of the model, and the estimated degrees of freedom are computed as part of the
minimization process (see Wood (2000) for details).

15In Appendices B, C and D we show that these results are largely robust to different
definitions of STD. The main differences are: i) the relevance of TR seem to depend on the
definition of STD ; ii) GDP is significant with cross-section data. However, in the latter
case the number of available data is quite low. In particular, data on many developing
countries are missing and therefore the estimation misses important phases of development
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Model 1 2 3 4 5 6

Constant 0 0 0 0 0 0

s(TR,TGDP) 0
(30.37)

- 0
(14.18)

- - 0
(30.45)

s(AS,TGDP) - 0.02
(19.99)

- - - -

s(AS,TR,TGDP) 0
(7)

- - - 0
(22.15)

0
(7)

s(TGDP) - 0
(8.52)

- 0
(4.10)

- -

s(AS) - - - 0.32
(1)

- -

s(TR) - - - 0.73
(1.02)

- -

s(GDP) - - - - - 0.42
(2.28)

GCV score(*10−4) 3.3733 3.5599 3.6217 3.6204 3.8237 3.4117

R2 0.65 0.57 0.45 0.38 0.49 0.66

Number of obs. 149 149 149 149 149 149

Table 1: Estimation of Equation (10). Dependent variable is STD, classes defined

in terms of TGDP. The p-value of the terms and the estimated degrees of freedom

(in parenthesis) are reported

Figure 2 reports the estimated effects of the individual variables on STD,
on the basis of Model 1.16

Estimation highlights that STD has a significant positive correlation
with AS ; moreover, a clear negative relationship exists between STD and
TGDP that, except for the lowest values of TGDP where the number of
observations is low. Finally, the effect of TR on STD appears to be relevant
only for low values of TR, but its sign is ambiguous.

This approach has the drawback of ignoring the information on the
growth path of individual countries, being based on the pooling of observa-

and provides a biased picture.
16To disentangle these individual effects is not an easy task. Our procedure is the

following. We start from the estimated Model 1:

STDi = β̂0 + ŝTGDP,TR (TGDPi, TRi) + ŝTGDP,TR,AS (TGDPi, TRi, ASi) .

To identify the effect of e.g. AS we estimate the following equations

TGDPi = ŝ
TGDP
AS (ASi) ;

TRi = ŝ
TR
AS (ASi) ,

from which we obtained the fitted values TGDPi and TRi. Finally we estimate the effect
of AS on STD by:

STDi = β̂0 + ŝTGDP,TR

(

TGDPi, TRi

)

+ ŝTGDP,TR,AS

(

TGDPi, TRi, ASi

)

.

The same procedure is repeated for TGDP and TR.
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Figure 2: Estimation of STD for, respectively, log of AS, TGDP, and TR

tions and on the measurement of GRV by the standard deviation within a
class. For example, consider two countries whose GDP belongs to the same
class, having constant growth rates but at very different levels. If we com-
pute the standard deviation of growth rates for that GDP class, we would
obtain a high value, wrongly indicating high GRV. On the contrary, the
method proposed in the next section, based on transition matrices, would
correctly detect low volatility.17

4 Growth Volatility Indices

In this section we propose a set of synthetic indices to measure GRV and
study their statistical properties. In particular, the measurement of GRV
requires first the estimation of a Markov transition matrix, whose states S =
{1, 2, ..., n} represent growth rate classes. A transition matrix summarizes
the information on the dynamics of growth rates (for more details see Quah
(1993)), and is the basis to calculate GRV indices.

Heuristically, the indices quantify volatility by the intensity of switches
across growth rate classes. The advantage of the approach based on transi-
tion matrices is that we can keep track of the dynamics of individual coun-
tries in the sample. To evaluate the relationship between GRV and, for

17 Canning et al. (1998) avoid this specific problem by detrending data, but their
procedure is not immune from introducing spurious volatility. At any rate we adopted
their detrending procedure in Appendix C.
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instance, GDP we calculate the values of these indices for different classes
of GDP.

To define indices of GRV we draw on studies of inter- and intragenera-
tional mobility of individuals (see, among others, Bartholomew (1982), pp.
24–30 and Shorrocks (1978)), and propose two new indices. Basically, these
indices are functions of the elements of a transition matrix. In a transition
matrix high values on the principal diagonal indicate low mobility, while the
values of off-diagonal elements refer to changes of state and, therefore, high
values of the latter are associated to high mobility.

A simple mobility index is the following, proposed by Shorrocks (1978):

IS(P) =
n − trace(P)

n − 1
, (12)

where P is a transition matrix of dimension n. The range of the index is
[0, n/ (n − 1)] and a high value means high mobility. However, IS is not
well-suited to measure growth volatility because it is not affected by the
value of off-diagonal elements, a key point for the present analysis, but we
refer to it as a term of comparison with the other indices discussed below.

Bartholomew (1982), p. 28, proposes the following index which takes
explicitly into account the distance covered by a transition from i to j,
(i, j ∈ S), when the states correspond to increasing or decreasing values of
a variable:

IB(P) =
1

n − 1

n
∑

i=1

n
∑

j=1

πipij |i − j| . (13)

In IB , pij is an element of the transition matrix P, while πi is an element
of the associated ergodic distribution.18 The range of IB is [0, 1]: a higher
value means higher mobility.

In this case only the absolute value of the difference between i and j is
taken into account. It is worth verifying the effect of increasing the weight
attached to “longer” jumps, in order to better appreciate the magnitude of
the fluctuations. Therefore we introduce the following index:

IBM (P) =
1

(n − 1)2

n
∑

i=1

n
∑

j=1

πipij(i − j)2, (14)

in which the distance of the transition enters in a quadratic form. As before
IBM ∈ [0, 1] and a higher value means higher mobility/volatility.

Indices IB and IBM weight the transitions from growth rate class i by the
corresponding mass in the long-run equilibrium (i.e. in the ergodic distribu-
tion). In other words, considering the elements of the ergodic distribution

18The ergodic distribution represents the long-run distribution of the Markov process.
For more details see Bartholomew (1982).
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as weights amounts to measuring GRV in the long-run equilibrium. How-
ever, also the volatility along the transition path can reveal very interesting
information. The following indices fill this gap:

IFL(P) =
1

A

n
∑

i=1

n
∑

j=1

pij |i − j| ; (15)

IFLM (P) =
1

A2

n
∑

i=1

n
∑

j=1

pij(i − j)2. (16)

IFL and IFLM respectively correspond to IB and IBM , except for the ab-
sence of the elements of the ergodic distribution. The constant A normalizes
both indices to the range [0, 1].19 A higher value still means higher mobil-
ity/volatility. In the next section we study the statistical properties of these
indices.

4.1 Statistical Properties

Suppose that observations of a process with state space S = 1, ..., k (k states)
are collected for more than one period. Let nij be the number of observations
in the sample corresponding to transitions from state i to state j, ni =
Σk

j=1nij the total number of observations in state i, and ~ni = (ni1, ..., nik)

the vector collecting all nij, i, j ∈ S; hence n = Σk
i=1ni is the total number

of observations.
The element pij of P represents the transition probability from state i

to state j and therefore Σk
j=1pij = 1 and 0 ≤ pij ≤ 1. Moreover, let pi be

the fraction of observations in initial state i, i.e. pi = ni

n
.

Suppose the ergodic distribution for this process exists. then, the ergodic
distribution is defined as

π = πP (17)

under the constraint
πu′ = 1,

where u is the sum vector. In the following we assume that the rows of P

are independent.

4.1.1 Consistent Estimators

The maximum likelihood (ML) estimator of P, P̂, is given by:

P̂ = [p̂ij] =

[

nij

ni

]

, (18)

19In particular:

A =

{

2Σn−1

i=
n−1

2
+1

i + n−1

2
for n odd;

2Σn−1

i= n

2

i for n even.
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where ni = Σn
j=1nij (for a proof see, e. g. Norris (1997), pp. 55-56). P̂

being the ML estimator, these estimates are consistent.
In general, take P and a function I such that I : P → ℜ. Since P is

unknown, then I (P) is unknown as well. A natural estimator is Î = I
(

P̂
)

,

which, in turn, is consistent (see Trede (1999)). I can represent any function
(linear and non-linear), i.e. each index of GRV calculated on the basis of
the transition matrix.

4.1.2 Distribution of Estimates

Stuart and Ord (1994), p. 260, show that the distribution of ~ni converges to
a n-variate normal distribution, with means nipij, variances nipij (1 − pij)
and covariances cov (nij, niq) = −nipijpiq. Thus

√
ni (p̂ij − pij) tends to-

wards the normal distribution N (0; pij (1 − pij)).
The asymptotic distribution of Î can be derived by the delta method

(DM) (see Trede (1999)). Consider the first order Taylor series expansion

of I
(

P̂
)

around I (P):

I
(

P̂
)

= I (P) + DI (P)
(

vec
(

P̂′ − P′
))

,

where

DI (P) =
∂I (P)

∂ vec (P′)′
(19)

is a 1 × k2 vector, which contains the first derivatives of I with respect to
each element of P.

Since the rows of P are independent and each row tends towards a n-
variate normal distribution, we have

√
n

(

vec
(

P̂′ − P′
))

d−→ N (0,V) ,

where

V =





V1

...
Vk



 (20)

is a block diagonal with

Vm = [vm,ij ] =

{

pmi(1−pmi)
pm

for i = j

−pmipmj

pm
for i 6= j

for m = 1, ..., k and 0 elsewhere.
Therefore the asymptotic distribution of I is given by:

√
n

(

I
(

P̂
)

− I (P)
)

d−→ N
(

0, σ2
I

)

, (21)
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where
σ2

I = (DI (P))V (DI (P))′ . (22)

Since both DI (P) and V are unknown, they are estimated by DI
(

P̂
)

and V̂ calculated on the basis of (the elements of) P̂. As P̂ is a ML-

estimator, then DI
(

P̂
)

and V̂ are consistent too and therefore the estimate

of the variance of I is given by:

σ̂2
I =

(

DI
(

P̂
))

V̂
(

DI
(

P̂
))′

. (23)

Since I (P) is normally distributed, then (1 − α)-confidence interval for
I (P) is

I
(

P̂
)

± c
σ̂I√
n

, (24)

where c is the
(

1 − α
2

)

-quantile of the N (0, 1). Alternatively,

s =
I

(

P̂
)

− I (P)

σ̂I√
n

(25)

converges towards a Gaussian distribution under the null hypothesis I
(

P̂
)

=

I (P).
Finally, given two transition matrices P̂1and P̂2, we have that:

s =
I

(

P̂1
)

− I
(

P̂2
)

√

σ̂2

I1

n
+

σ̂2

I2

n

, (26)

converges towards a Gaussian distribution under the null hypothesis I
(

P̂1
)

=

I
(

P̂2
)

.

4.1.3 Analytical derivative of the ergodic distribution

DM provides a general procedure of testing. For our aim, a potential prob-
lem can arise for calculating the derivative of I with respect to elements of
the ergodic distribution, in the computation of DI (P) for volatility indices
which include these elements. Conlisk (1985) provides an analytical formu-
lation to tackle this problem. Assume that the increase in the element j in
row i, pij , is absorbed by a decrease in the element of the last column k of
row i, pik (the row sum must sum to one). Thus, the derivative of the q− th
element of the ergodic distribution is defined as follows:

∂πq

∂pij

= πi (zjq − zkq)∀i, j, q ∈ {1, ..., k} ,

where zjq is an element of fundamental matrix Z = (I − P − bu′)−1 and b

is any 1 × k row vector such that b′u 6= 0.
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5 Empirical Results

In the following we study the relation between GRV, GDP, AS and TGDP
by calculating the values of the indices described in Section 4. As in Section
3, we first evaluate the individual effects of our variables, and then study
their interactions, with particular attention to the explanatory power of
GDP.

In particular, in a first stage: (i) we separate the observations on GDP,
AS and TGDP in four classes for each variable, from “low” to “high” values;
(ii) we calculate the transition matrix with five growth rate classes for each
class, (iii) we compute indices (12), (13), (14), (15), (16) for every transition
matrix and, finally, (iv) we make inference on these estimates. In a second
stage we evaluate the interactions of the variables in this framework.

First we define the five growth rate classes common to all three variables.
We set the central class to include the average growth rate of the sample,
equal to 2%, and define the other classes symmetrically around this central
class. With this criterion we obtain the state space:20

S = {[−∞,−2%) , [−2%, 1%) , [1%, 3%) , [3%, 6%) , [6%,+∞)} . (27)

Alternatively, the state space for the calculation of the transition matri-
ces could be based not on absolute values of growth rates, but on deviations
from the trend.

5.1 Per Capita GDP

We define four GDP classes (in logs) which contain the same number of
observations (≈ 1100), obtaining the following:

I = [0, 6.98) , II = [6.98, 7.9) , III = [7.9, 8.82) , IV = [8.82,+∞) .

For every GDP class we estimate a transition matrix relative to the state
space S.21 Table 2 contains the values of the indices calculated for each of
the four transition matrices. We observe that in all cases the value of the
index is generally decreasing with respect to the GDP class and that, in
particular, the value of the index in the first GDP class is always higher
than in the last. This result broadly agrees with Figure 1 in which volatility
is measured by the standard deviation of growth rates.

Table 3 reports the p-values of tests of a null hypothesis of equality
between the value of the index in the first GDP class versus its value in
each of the other GDP classes, for all the indices. Tests confirm that GDP
class I generally has a statistically significant higher GRV. At a conventional

20Results are not affected by slight changes of the classes’ limits.
21The four transition matrices and the four ergodic distributions (one for each GDP

class) are obtainable with the codes available on the authors’ websites.
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Index\GDP class I II III IV

IS 0.8313
(0.0195)

0.7831
(0.0192)

0.7417
(0.0193)

0.7793
(0.023)

IB 0.2583
(0.0108)

0.2474
(0.0093)

0.2272
(0.0086)

0.1983
(0.0077)

IBM 0.1548
(0.0099)

0.1382
(0.008)

0.1206
(0.0074)

0.0888
(0.0062)

IFL 0.4178
(0.0149)

0.3658
(0.0126)

0.3136
(0.0115)

0.3253
(0.0162)

IFLM 0.3199
(0.0169)

0.259
(0.0138)

0.2083
(0.0122)

0.2148
(0.0188)

Table 2: Growth volatility indices. Standard errors in parenthesis. GDP

Index\GDP class I vs II I vs III I vs IV

IS 0.04* 0* 0.04*

IB 0.22 0.01* 0*

IBM 0.10 0* 0*

IFL 0* 0* 0*

IFLM 0* 0* 0*

Table 3: Test of equality between the GRV index of GDP class I versus its value

in the other classes. * means rejection of the null hypothesis of equality at 5%

confidence level.

5% level, the null hypothesis is not rejected only in the comparison between
the value of the index in the first and in the second GDP class for indices
IB and IBM (but it is rejected at 10% for the latter).

To check if there is a monotonic decreasing relationship among the values
of the indices at different GDP levels we also tested the following hypotheses
of equality (details omitted): (i) GDP class II vs GDP class III; (ii) GDP
class III vs IV . In case (i), the hypothesis is strongly rejected for IFL and
IFLM , and is rejected at approximately 6% level for the other indices; in
case (ii) the hypothesis is rejected only for IB and IBM . However, in the
other cases we do not reject the null hypothesis that the indices in GDP
classes III vs IV are equal (note that in Table 2 the value of the index in
GDP class IV is actually higher than in GDP class III for IS, IFL and
IFLM). Hence, according to indices IB and IBM , the decrease is statistically
significant when we move from class II onwards, while with IFL and IFLM

the decrease is statistically significant from class I, but for the two higher
GDP classes the relation may be flat. Also, for IS we do not find evidence
of a monotonic decrease as the value of the index in GDP classes III and
IV may be equal.

Overall, the indices indicate the presence of a negative relationship be-
tween GRV and GDP, which may become flat in some GDP ranges. In any
case, a comparison between the first and the last GDP classes always shows
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a significantly higher volatility in the former.

5.2 Structural Change

In this section we address the relationship between GRV and structural
change proxied by AS. We first define four AS classes with the same number
of observations (≈ 784). The resulting classes’ limits are:

I = [0, 0.08), II = [0.08, 0.2), III = [0.2, 0.33), IV = [0.33, 1].

Table 4 contains the volatility indices calculated with this class definition.
Results seems to be in accordance with the pattern in Figure 2. Moving
from high to low levels of AS, that is following a typical development path,
volatility decreases from class IV to class III, then increases in class II and
decreases again in class I. However, tests of equality between the value of the
indices in class III and in class II do not allow to reject the null hypothesis
at conventional 5% level.22. Finally, volatility is significantly higher in class
IV than in class I: the hypothesis of equality between the value of the index
in class I and in class IV is strongly rejected for all indices (we omit the
details of the tests).

At this stage, we take this result as indicating the possible presence of a
more complex behavior at intermediate levels of AS, which is in accordance
with the non–monotonic pattern of STD found in Figure 1. Notice that
indices calculated for classes II and III are not significantly different at 5%
level, but only at about 15%.

5.3 The Dimension of the Economy

In this section we repeat the exercise considering TGDP to proxy for the
dimension of the economy.23 We define four TGDP classes (in logs) with

22The p-values of the tests for IS, IB , IBM , IF L, IF LM are, respectively, 0.15, 0.14,
0.17, 0.10, 0.13.

23In the next section we examine the interaction of TGDP with TR.

Index\AS class I II III IV

IS 0.7428
(0.0229)

0.8152
(0.0214)

0.7834
(0.0223)

0.8756
(0.0207)

IB 0.2297
(0.0088)

0.2735
(0.0105)

0.2576
(0.0102)

0.3199
(0.0115)

IBM 0.1105
(0.007)

0.1501
(0.0094)

0.1377
(0.0092)

0.1915
(0.0114)

IFL 0.3037
(0.0132)

0.3611
(0.0133)

0.3364
(0.0136)

0.4119
(0.0138)

IFLM 0.1905
(0.0134)

0.2478
(0.014)

0.2249
(0.0142)

0.2975
(0.0151)

Table 4: Growth volatility indices. Standard errors in parenthesis. AS
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the same number of observations (≈ 1100):

I = [0, 0.03), II = [0.03, 0.05), III = [0.05, 0.08), IV = [0.33, 1].

With this class definition, and with the same state space for growth rate
classes, we obtain the volatility indices in Table 5. In this case we observe a
monotonic decrease for indices IB, IBM and IFL across the TGDP classes,
while for IFLM the value is higher in TGDP class III than in II. Finally,
no clear relation emerges from IS .

From Table 6 we see that, with the exception of IS , the value of the
index in TGDP class I is, in most cases, significantly higher than the values
in other classes. However, (i) in neither case we can reject the hypothesis of
equality between the values in TGDP classes II and III (details omitted),
(ii) we always reject the hypothesis of equality between the values of the
indices in classes III and IV . This is in agreement with Figure 1, in which
the relation between STD and TGDP is slightly flatter at intermediate
TGDP levels.

Again, we find a broad confirmation of the existence of a negative relation
between STD and TGDP. As for the case of AS, we find a clearer negative
relation when we compare the values of the indices in the extreme classes,
while the relation appears flatter at intermediate levels.

5.4 On Conditioning

In Section 3 we reported the results of nonparametric estimations suggesting
that GDP is not informative when TGDP, TR and AS are considered. In
other words, when the latter explanatory variables are present in a regres-
sion, GDP does not provide further information on GRV.

Here we address this issue in the approach based on the Markov transi-
tion matrix. First, notice that the analysis in the previous section can be
considered as deriving from the estimation of conditioned transition matri-
ces. In fact, the basis for the calculation of each single index is a transition
matrix indicating the probabilities to observe transitions across growth rate

Index\TGDP class I II III IV

IS 0.7721
(0.0185)

0.7998
(0.0182)

0.7799
(0.0186)

0.7339
(0.0193)

IB 0.2904
(0.0104)

0.2749
(0.0085)

0.2645
(0.0088)

0.2155
(0.0072)

IBM 0.18
(0.01)

0.1524
(0.0076)

0.1462
(0.0081)

0.1001
(0.0055)

IFL 0.3682
(0.0116)

0.3478
(0.0107)

0.3449
(0.0115)

0.2846
(0.0103)

IFLM 0.2725
(0.0124)

0.2326
(0.011)

0.2375
(0.0121)

0.1679
(0.01)

Table 5: Growth volatility indices. Standard errors in parenthesis. TGDP
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Index\TGDP class I vs II I vs III I vs IV

IS 0.14 0.38 0.08

IB 0.12 0.03* 0*

IBM 0.01* 0* 0*

IFL 0.10 0.07 0*

IFLM 0* 0.02* 0*

Table 6: Test of equality between the GRV index of TGDP class I versus its value

in the other classes. * means rejection of the null hypothesis of equality at 5%

confidence level.

classes, starting from a given growth rate class and a given e.g. TGDP
class.24

The formal definition of a transition probability from growth rate class
Si to growth rate class Sj , given that the observation is in TGDP class I is:

p (gt ∈ Sj|gt−1 ∈ Si, TGDPt−1 ∈ I) =

= p (gt ∈ Sj |gt−1 ∈ Si)

[

p (TGDPt−1 ∈ I|gt ∈ Sj, gt−1 ∈ Si)

p (TGDPt−1 ∈ I|gt−1 ∈ Si)

]

. (28)

In Equation (28) the term on the left–hand side is an element of the condi-
tioned transition matrix from which we derived our indices relative to TGDP
class I. The first term on the right-hand side is an element of the uncondi-
tioned transition matrix for growth rates, and the second term reflects the
probability that that the transition starts from a state where the growth
rate is associated to a TGDP in class I.

If the conditioning variable TGDP is not relevant, p (gt ∈ Sj|gt−1 ∈ Si, TGDPt−1 ∈ I) =
p (gt ∈ Sj |gt−1 ∈ Si): any transition matrix calculated considering alterna-
tive values of TGDP would not be statistically different from the uncon-
ditioned transition matrix.25 Therefore, GRV indices calculated from the
former would not be statistically different from each other, and from those
calculated from the unconditioned transition matrix. In the same manner,
if we condition on two variables, e.g. TGDP and GDP, we have:

p (gt ∈ Sj|gt−1 ∈ Si, TGDPt−1 ∈ I,GDPt−1 ∈ I) =

= p (gt ∈ Sj |gt−1 ∈ Si, TGDPt−1 ∈ I) ∗

∗
[

p (GDPt−1 ∈ I|gt ∈ Sj, gt−1 ∈ Si, TGDPt−1 ∈ I)

p (GDPt−1 ∈ I|gt−1 ∈ Si, TGDPt−1 ∈ I)

]

(29)

24We could have estimated an unconditioned transition matrix for growth rate classes
only, which does not distinguish among the TGDP levels associated to each transition.
An example of conditioned Markov chains is in Quah (1996).

25From the condition p (gt ∈ Sj |gt−1 ∈ Si, TGDPt−1 ∈ I) = p (gt ∈ Sj |gt−1 ∈ Si) de-
rives p (TGDPt−1 ∈ I |gt ∈ Sj , gt−1 ∈ Si) = p (TGDPt−1 ∈ I |gt−1 ∈ Si), i.e. the informa-
tion on TGDPt−1 is irrelevant to know the state of gt.
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and the same reasoning for the relevance of GDP, given TGDP, applies.
Here we do not provide a complete discussion of this issue, but only some

evidence on the relevance of TR, AS and GDP in explaining GRV given
TGDP. Namely, we compare the values of two indices, IB and IFL, com-
puted for TGDP classes only, with the values obtainable when the transition
matrix is calculated for every TGDP class conditioned to each class of AS,
TR and GDP. Clearly, results are not completely comparable with those of
Section 3. In that case more variables were considered jointly, while here
we investigate pairwise relations, in which there is one principle variable,
TGDP or AS, and only another one interacting with it.

Tables 7 and 8 consider the relevance of the information provided by AS
when TGDP is the principal variable, respectively, for index IB and index
IFL.

The first column of the tables contains the volatility index obtained for
TGDP classes (see Table 5). The other columns contain the values of the
index when, for each TGDP class, we condition on each AS class. If AS
matters, then GRV should increase with AS, and the conditioned indices
should be statistically different from the unconditioned indices in the first
column.26

What we observe is that: given a TGDP level, an increase in AS is
generally associated to an increase in GRV (at least if we compare AS(I)
and AS(IV)), confirming the insight that a higher agricultural share causes
a higher GRV. However, the conditioned indices seem to be statistically
different from the unconditioned ones especially for TGDP(I). In fact, for
both IB and IFL, in three out of four cases the difference is statistically
significant at 5% level.

Tables 9 and 10 analyse the relation between TGDP and TR.

26Each conditioned indices is calculated starting from the observations belonging to
a TGDP class and an AS class. We chose to consider only indices calculated from a
minimum number of observations, at least 75. An alternative test can be conducted,
aiming at testing the joint significance of the differences between the conditioned and
unconditioned indices. We leave this issue on a side for future research.

Uncond. AS(I) AS(II) AS(III) AS(IV )

TGDP (I) 0.2904
(0.0104)

0.1923∗∗
(0.02921)

0.3079
(0.02720)

0.3510
(0.02908)

∗∗ 0.3419∗∗
(0.01852)

TGDP (II) 0.2749
(0.0085)

0.3174∗∗
(0.02348)

0.2725
(0.02304)

0.2503
(0.01817)

0.2958
(0.01962)

TGDP (III) 0.2645
(0.0088)

0.2517
(0.02355)

0.2989∗∗
(0.01961)

0.2188∗
(0.01912)

0.2876
(0.03172)

TGDP (IV ) 0.2155
(0.0072)

0.2027
(0.01091)

0.2204
(0.01741)

0.2307
(0.01859)

−

Table 7: Values of IB for TGDP conditioned on AS. ** indicates rejection of null

hypothesis of equality to the index in the first column at 5% level; * at 10% level
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Uncond. AS(I) AS(II) AS(III) AS(IV )

TGDP (I) 0.3682
(0.0116)

0.2650∗∗
(0.03750)

0.3812
(0.03108)

0.4679∗∗
(0.03331)

0.4377∗∗
(0.02014)

TGDP (II) 0.3478
(0.0107)

0.3935∗
(0.02679)

0.3641
(0.02966)

0.3532
(0.02738)

0.4010∗∗
(0.02570)

TGDP (III) 0.3449
(0.0115)

0.3216
(0.02692)

0.4099
(0.02415)

0.3037∗
(0.02582)

0.3932
(0.03876)

TGDP (IV ) 0.2846
(0.0103)

0.3330∗
(0.02834)

0.2929
(0.02299)

0.2984
(0.02618)

Table 8: Values of IFL for TGDP conditioned on AS. ** indicates rejection of null

hypothesis of equality to the index in the first column at 5% level; * at 10% level

Uncond. TR(I) TR(II) TR(III) TR(IV )

TGDP (I) 0.2904
(0.0104)

0.3494∗
(0.03658)

0.3643∗∗
(0.03172)

0.2838
(0.02427)

0.3080
(0.01845)

TGDP (II) 0.2749
(0.0085)

0.2875
(0.02191)

0.2668
(0.02064)

0.2810
(0.01773)

0.2900
(0.01771)

TGDP (III) 0.2645
(0.0088)

0.2901
(0.02303)

0.2581
(0.01893)

0.2363∗
(0.01873)

0.2399
(0.01828)

TGDP (IV ) 0.2155
(0.0072)

0.2404∗∗
(0.01331)

0.2000
(0.01275)

0.1936∗
(0.01453)

0.1825∗
(0.01903)

Table 9: Values of IB for TGDP conditioned on TR. ** indicates rejection of null

hypothesis of equality to the index in the first column at 5% level; * at 10% level

Uncond. TR(I) TR(II) TR(III) TR(IV )

TGDP (I) 0.3682
(0.0116)

0.4671∗∗
(0.03962)

0.4684∗∗
(0.03220)

0.3691
(0.02738)

0.3871
(0.02101)

TGDP (II) 0.3478
(0.0107)

0.3817
(0.02819)

0.3600
(0.02774)

0.4064∗∗
(0.02600)

0.3632
(0.02177)

TGDP (III) 0.3449
(0.0115)

0.3678
(0.02748)

0.3551
(0.02418)

0.3375
(0.02755)

0.3120∗
(0.02231)

TGDP (IV ) 0.2846
(0.0103)

0.3380∗∗
(0.01889)

0.2722
(0.02386)

0.2578
(0.02199)

0.2359∗∗
(0.02489)

Table 10: Values of IFL for TGDP conditioned on TR. ** indicates rejection of

null hypothesis of equality to the index in the first column at 5% level; * at 10%

level
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We expect that, given TGDP, an increase in TR is associated to a de-
crease in GRV. Indeed, we find that, comparing the values of the indices
for TR(I) and TR(IV), GRV generally decreases. However, the conditioned
indices are statistically different from the unconditioned ones especially for
TGDP(I) and TGDP(IV). At 5% or 10% level, the difference is statistically
significant for two or three TR classes.

5.4.1 Conditioning on GDP

We concentrate now on the role of GDP. Our hypothesis is that the infor-
mation on GDP is not relevant when we control for the dimension of the
economy and for structural change, proxied by the share of the agricultural
sector. We first evaluate GDP against TGDP in Tables 11 and 12.

We expect to find a decreasing GRV with GDP, and this tendency can
be partially found in the results.27 On the other hand, there appear to be no
TGDP class for which the inclusion of GDP produces statistically different
values for the GRV indices, with the exception of TGDP(III) for IB.

However, the most important test for the relevance of GDP is the anal-
ysis of its role in presence of AS, which is directly connected to economic
development. Tables 13 and 14 contain the results when the principal vari-
able is AS and we condition on GDP.

Results are in Tables 13 and 14 (values of the unconditioned indices in
the first column are from Table 4). First of all notice that many values are
not available for lack of data. This was predictable as it is likely to have
very few observations for, say, AS(I) and GDP(I). This can be a first hint
on the irrelevance of conditioning on GDP in presence of AS. Moreover, the
number of statistically significant differences between the unconditioned and
conditioned values is particularly low, if compared with the previous cases.

Summing up: we have attempted to identify the relative role of our vari-

27The value of 0.4427 in Table 12 is based on only 88 observations and is therefore
scarcely relevant.

Uncond. GDP (I) GDP (II) GDP (III) GDP (IV )

TGDP (I) 0.2904
(0.0104)

0.3197∗
(0.01579)

0.2956
(0.01855)

0.2493∗∗
(0.02079)

−

TGDP (II) 0.2749
(0.0085)

0.2763
(0.01673)

0.2706
(0.01468)

0.2559
(0.01424)

0.3272
(0.031413)

TGDP (III) 0.2645
(0.0088)

0.3214∗∗
(0.02679)

0.2661
(0.01948)

0.2414∗
(0.01520)

0.2378∗
(0.014905)

TGDP (IV ) 0.2155
(0.0072)

− 0.2183
(0.02001)

0.2275
(0.01546)

0.1949∗∗
(0.008536)

Table 11: Values of IB for TGDP conditioned on GDP. ** indicates rejection of

null hypothesis of equality to the index in the first column at 5% level; * at 10%

level
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Uncond. GDP (I) GDP (II) GDP (III) GDP (IV )

TGDP (I) 0.3682
(0.0116)

0.4102∗∗
(0.01731)

0.3770
(0.02158)

0.3435
(0.02594)

−

TGDP (II) 0.3478
(0.0107)

0.3939∗∗
(0.02278)

0.3584
(0.01889)

0.3257
(0.01936)

0.4427∗∗
(0.04050)

TGDP (III) 0.3449
(0.0115)

0.4263
(0.03413)

0.3507
(0.02367)

0.3074∗
(0.01851)

0.3173
(0.02052)

TGDP (IV ) 0.2846
(0.0103)

− 0.3067
(0.03041)

0.2891
(0.02013)

0.2900
(0.01776)

Table 12: Values of IFL for TGDP conditioned on GDP. ** indicates rejection of

null hypothesis of equality to the index in the first column at 5% level; * at 10%

level

Non cond. GDP (I) GDP (II) GDP (III) GDP (IV )

AS(I) 0.2297
(0.0088)

− − 0.2464
(0.01646)

0.2258
(0.01071)

AS(II) 0.2735
(0.0105)

− 0.3010
(0.02414)

0.2583
(0.01363)

0.2346∗∗
(0.02073)

AS(III) 0.2576
(0.0102)

0.2965∗
(0.02742)

0.2480
(0.013)

0.2504
(0.02061)

−

AS(IV ) 0.3199
(0.0115)

0.3260
(0.01340)

0.3091
(0.02383)

− −

Table 13: Values of IB for AS conditioned on GDP. ** indicates rejection of null

hypothesis of equality to the index in the first column at 5% level; * at 10% level

Non cond. GDP (I) GDP (II) GDP (III) GDP (IV )

AS(I) 0.3037
(0.0132)

− − 0.3133
(0.02310)

0.3103
(0.01724)

AS(II) 0.3611
(0.0133)

− 0.4176∗∗
(0.02728)

0.3349
(0.01752)

0.3327
(0.02742)

AS(III) 0.3364
(0.0136)

0.3954∗
(0.03469)

0.3213
(0.02367)

0.3350
(0.01851)

−

AS(IV ) 0.4119
(0.0138)

0.4246
(0.01615)

0.3858
(0.02735)

− −

Table 14: Values of IFL for AS conditioned on GDP. ** indicates rejection of null

hypothesis of equality to the index in the first column at 5% level; * at 10% level
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ables in the explanation of GRV in the approach based on transition matri-
ces. At this stage, we have found a partial confirmation of the hypotheses
formulated from the model in Section 2, on the relevance of the dimension
of the economy and structural change and on the irrelevance of per capita
GDP in the explanation of growth volatility. In addition, in the analysis
of conditioned GRV indices, clearer results appear more often at extreme
TGDP classes, indicating that in the transition from low to high TGDP
levels, the relations are more blurred (as resulted also from the preliminary
graphical analysis).

6 Conclusions

This paper investigates the relation between growth volatility and the level
of development, structural change and the size of the economy. Two methods
used to measure growth volatility, (i) the standard deviation of the growth
rate and (ii) a set of indices inspired by the literature on social mobility,
substantially lead to the same results. Growth volatility appears to be neg-
atively related to total GDP, proxy for the dimension of the economy. In
particular it seems appropriate to consider as an additional control for the
dimension of the economy the integration in the world markets. Moreover,
growth volatility appears to be negatively related to the share of agriculture
on GDP, proxy for structural change. Finally, per capita GDP, proxing for
the level of development, does not seem to add relevant information when
the other variables are considered. A direction for further research may be
an assessment of the explanatory power of other factors related to devel-
opment and to growth volatility, like the growth of a financial sector, in
relation to structural change.
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A Country List

B GAM estimation with cross-country data

In this Appendix we show the results of GAM estimations with cross-country
data, restricting our analysis to the period 1970 − 1998 for lack of data on
TR and AS. For each country we consider the standard deviation of growth
rates for the period as STD, the value of per capita GDP in 1970 as GDP,
the value of total GDP in 1970 for TGDP and the average value of trade
openness and the share of agriculture on GDP for the period 1970 − 1975
as TR and AS (possible missing values have been removed). The available
observations are only 87 (we would have only 58 observations if 1960 were
the initial year). Table 16 reports the results of GAM estimations.

Results for Model 1 are not reported because the routine for the likeli-
hood minimization could not reach convergence. From the other models it
results that TR is not significant, but GDP is and Model 6 is the best in
terms of GCV score. However, we remark that lack of observations is par-
ticularly notable for low-income countries, and this could bias these results.

C GAM estimation based on panel regression

Here we measure GRV by means of the standard deviation of residuals from
a panel regression of growth rates against a common component for each
period and a country fixed effect, as in Canning et al. (1998).28 As above we
calculate the residuals for all observations; after pooling and partitioning the
latter into classes on the basis of TGDP, we calculate the standard deviation
of the residuals for each class. Table 17 reports the results of estimations.

We see again that the inclusion of GDP in Model 6 is not significant.
However, we do not find a clear evidence that Model 1 is the best specifica-
tion. Model 2 provides comparable results, that is TR could be not relevant
for explaining GRV.

D GAM estimation with deviation from an au-

toregressive process

In this appendix we measure the volatility by the innovation from a second-
order autoregressive process for growth rates, as suggested by Acemoglu and
Zilibotti (1997), but we use first differences of growth rates, in the light of

28In particular we estimate the following panel:

git = µ + φt + δi + εit,

where gkt is the growth rate at time t of country k and εkt are the residuals to be calculated.
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AFRICA 1 Algeria 2 Angola 3 Benin 4 Botswana

5 Cameroon 6 Cape Verde 7 Cent. Afr. Rep. 8 Chad 9 Comoros

10 Congo 11 Côte d’ Ivoire 12 Djibouti 13 Egypt 14 Gabon

15 Gambia 16 Ghana 17 Kenya 18 Liberia 19 Madagascar

20 Mali 21 Mauritania 22 Mauritius 23 Morocco 24 Mozambique

25 Namibia 26 Niger 27 Nigeria 28 Rwanda 29 Senegal

30 Seychelles 31 Sierra Leone 32 Somalia 33 South Africa 34 Sudan

35 Swaziland 36 Tanzania 37 Togo 38 Tunisia 39 Uganda

40 Zambia 41 Zimbabwe LATIN AMERICA 42 Argentina 43 Brazil

44 Chile 45 Colombia 46 Mexico 47 Peru 48 Uruguay

49 Venezuela 50 Bolivia 51 Costa Rica 52 Cuba 53 Dominican Rep.

54 Ecuador 55 El Salvador 56 Guatemala 57 Haiti 58 Honduras

59 Jamaica 60 Nicaragua 61 Panama 62 Paraguay 63 Puerto Rico

64 Trin. Tobago OFF WESTERN 65 Australia 66 New Zealand 67 Canada

68 United States WEST ASIA 69 Bahrain 70 Iran 71 Iraq

72 Israel 73 Jordan 74 Kuwait 75 Lebanon 76 Oman

77 Qatar 78 Saudi Arabia 79 Syria 80 Turkey 81 UAE

82 Yemen 83 W.Bank Gaza EAST ASIA 84 China 85 India

86 Indonesia 87 Japan 88 Philippines 89 South Korea 90 Thailand

91 Bangladesh 92 Hong Kong 93 Malaysia 94 Nepal 95 Pakistan

96 Singapore 97 Sri Lanka 98 Afghanistan 99 Cambodia 100 Laos

101 Mongolia 102 North Korea 103 Vietnam EUROPE 104 Austria

105 Belgium 106 Denmark 107 Finland 108 France 109 Germany

110 Italy 111 Netherlands 112 Norway 113 Sweden 114 Switzerland

115 UK 116 Ireland 117 Greece 118 Portugal 119 Spain

Table 15: Country list

Model 1 2 3 4 5 6

Constant - 0 0 0 0 0

s(TR,TGDP) - - 0 - - -

s(AS,TGDP) - 0.08 - - - -

s(AS,TR,TGDP) - - - - 0 -

s(TGDP) - 0 - 0 - 0

s(AS) - - - 0 - 0.047

s(TR) - - - 0.147 - -

s(GDP) - - - - - 0

GCV score(*10−4) - 5.2677 5.5128 4.5165 5.138 3.876

R2 - 0.302 0.217 0.484 0.842 0.601

Number of obs. - 87 87 87 87 87

Table 16: Estimation of Equation (10). Dependent variable is STD. The p-value

of the explanatory variables is reported
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Model 1 2 3 4 5 6

Constant 0 0 0 0 0 0

s(TR,TGDP) 0 - 0 - - 0

s(AS,TGDP) - 0 - - - -

s(AS,TR,TGDP) 0.013 - - - 0 0.01

s(TGDP) - 0 - 0 - -

s(AS) - - - 0.15 - -

s(TR) - - - 0.59 - -

s(GDP) - - - - - 0.29

GCV score(*10−4) 3.378 3.3472 3.4398 3.451 3.641 3.394

R2 0.627 0.578 0.349 0.401 0.375 0.646

Number of obs. 149 149 149 149 149 149

Table 17: Estimation of Equation (10). Dependent variable is STD, estimated by

the residuals of a panel regression. The p-value of the explanatory variables and

the estimated degrees of freedom (in parenthesis) are reported

the non-stationarity of most of countries’ growth process (only 38 out of
119 countries pass the ADF test at 10% level). As above we calculate the
residuals for all observations; after pooling and partitioning the latter into
classes on the base of TGDP, we calculate the standard error of the residuals
for each class. Table 18 reports the results of estimations.

Here Model 2 is the best specification, that is TR is not relevant to
explain GRV. We see again that the inclusion of GDP in Model 6 (based on
the Model 2) is not significant.
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Model 1 2 3 4 5 6

Constant 0 0 0 0 0 0

s(TR,TGDP) 0.025 - 0 - - -

s(AS,TGDP) - 0 - - - 0

s(AS,TR,TGDP) 0.583 - - - 0 -

s(TGDP) - 0 - 0 - 0

s(AS) - - - 0.58 - -

s(TR) - - - 0.27 - -

s(GDP) - - - - - 0.93

GCV score(*10−4) 4.6371 4.1325 4.4941 4.5448 4.652 4.2751

R2 0.511 0.613 0.371 0.372 0.518 0.554

Number of obs. 149 149 149 149 149 149

Table 18: Estimation of Equation (10). Dependent variable is STD, estimated by

the residuals of a autoregressive model. The p-value of the explanatory variables

and the estimated degrees of freedom (in parenthesis) are reported
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