
Class notes on Cooperative Games1

Part I

Basic Core and Shapley

1 The Core

Recall the main de�nitions from OR chapter 13. Cooperative games model situations in which

players may cooperate to achieve their goals. It is assumed that every set of players can form

a coalition; the maximal amount that a coalition S ⊆ N can generate through cooperation

is called the worth of the coalition and is denoted by v(S). The function v is called the

characteristic function of the game. We will always assume that the game is cohesive as in

de�nition 258.1.2 For a payo� pro�le x = (xi)i∈N the total payo� to members of S is denoted

by x(S), that is x(S) =
∑

i∈S xi; a pro�le with x(N) = v(N) i.e. which allocates v(N)

among the players will be called an allocation (OR calls it a feasible payo� pro�le). The Core

of the game is the set of allocations x robust to deviations by coalitions, that is such that

x(S) ≥ v(S) for all S. We let n = #N .

We shall start by �nding the Core in simple cases. We write v1 for v({1}), v12 for v({1, 2})
etc.

1.1 The basic two-person example

This is the fundamental example. There are two partners N = {1, 2}, 0 < v1, v2 < 1, v1+v2 <

1 but v12 = 1. How to share the surplus 1− (v1 + v2) arising from cooperation? In this game

the Core gives no hints because the only restrictions on allocations (x1, x2) which it imposes

are x1 + x2 = 1, x1 ≥ v1 and x2 ≥ v2, that is v1 ≤ x1 ≤ 1− v2. In other words xi = vi + σ for

any 0 ≤ σ ≤ 1− (v1 + v2), with xj = 1− xi.

1.2 Find the Core

Owner of resource (player 1) with two potential partners

n = 3, v(N) = 3, v1 = 1, v2 = v3 = 0, v12 = 2, v13 = 3, v23 = 0.

Core: 3 ≤ x1 + x3 ≤ 3 so x2 = 0; now 2 ≤ x1 + x2 = x1 so the Core is

2 ≤ x1 ≤ 3, x2 = 0, x3 = 3− x1

1S Modica, Game Theory LM-77. Based mostly on Osborne-Rubinstein
2That is v(N) ≥

∑K
k=1 v(Sk) for any partition {S1, . . . , SK} of N .
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Shapley mechanically (for later), Sh = 1/6 ∗ (13, 1, 4). Here x2 > 0 so not in Core.

Remark: Core is really an index of power

1.3 Find the Core

There are three fund managers, �rst has 300, second 100 third 200; returns are 8% below 200,

9% from 200 to < 500 and 10% with at least 500. So

n = 3, v(N) = 60, v1 = 27, v2 = 8, v3 = 18, v12 = 36, v13 = 50, v23 = 27.

From 18 ≤ x3 = 60−x1−x2 since x1+x2 ≥ 36 you get 36 ≤ x1+x2 ≤ 42, x1 ≥ 27, x2 ≥ 8;

from x2 + x3 ≥ 27 get x1 ≤ 33 and from x1 + x3 ≥ 50 get x2 ≤ 10. In the (x1, x2) plane it is

a square with SW and NE corners chopped o�.

Shapley mechanically, Sh = (30, 9, 21). Here Sh ∈ Core; also notice that Sh ̸= propor-

tional (30, 10, 20) (which is a Core element).

1.4 The Core may be empty: expedition (OR 259.2)

Any 2 players can carry 1 piece, n ≥ 3

v(S) =

#S/2 #S even

(#S − 1)/2 #S odd

We show that the Core empty if n is odd, if n is even then it is the singleton (1/2, . . . , 1/2).

Suppose �rst n is odd; here 0 < vN = v(N \ j) so
∑

i ̸=j xi = vN whence xj = 0, for all

j, contradiction. Consider n even (then ≥ 4); if xi + xj > 1 then N \ {i, j} is blocking, so

xi + xj = 1 ∀i, j. Now �x i and take j, k ̸= i; it must be xi + xj = xi + xk = xj + xk = 1; 2nd

and 3rd give xi = xj , and then 1st gives xi = 1/2.

Exercise. Find the Core if n = 2.

1.5 The Core may be empty: 2-player coalitions too strong (OR 259.1)

In this game there are 3 players; single players are powerless, 2-player coalitions can make

α ∈ (0, 1) and v(N) = 1. So

n = 3, v(N) = 1, vi = 0, vij = α ∈ (0, 1).

Core is x(N) = 1, x(S) ≥ α if #S = 2. Must be x3 = 1 − x1 − x2; for (x1, x2) it must

be α ≤ x1 + x2 ≤ 1; from α ≤ x2 + x3 = x2 + 1 − x1 − x2 get x1 ≤ 1 − α, and similarly

2



x2 ≤ 1− α; so the Core is

α ≤ x1 + x2 ≤ 1

0 ≤ x1, x2 ≤ 1− α

x3 = 1− x1 − x2.

If α > 2/3, for x in Core if x1 = x2 = 1−α then x1+x2 = 2−2α < 2−2∗2/3 = 2/3 < α

so the Core is empty.

Shapley: by symmetry we get xi = 1/3 all i - for all α. Equal to Core if α = 2/3.

1.6 Empty Core, majority game: OR 260.3

Here there are n ≥ 3 players with n odd, and

v(S) =

1 #S ≥ n/2

0 otherwise

Core is empty by the usual argument - do it before you read the footnote.3

1.7 The apex game (Core empty again)

In this game there is a �big player� - the apex; the others are small players. Speci�cally we

take N = {1, 2, . . . , 6} where 1 is the apex and

v(S) =


1 1 ∈ S & #S ≥ 2

1 S = N \ {1}

0 otherwise.

Note in particular that v(N) = 1. Exercise: show that the Core is empty.

1.8 Outside option in exchange

There is one seller, player 1, of a good which is worth nothing to her, and two potential buyers,

players 2 and 3 who value the good at b and 100 > b respectively. Thus v(12) = b, v(13) =

100 = v(N) and the other coalitions are worthless. Clearly to realize the value of 100 the

horse should be sold at some price p to player 3, in other words the candidate allocations for

the Core are of the form (p, 0, 100 − p), because at any allocation (p, b− p, 0) with p ≤ b we

have x1 + x3 ≤ b < 100 = v13. But player 2 is fundamental to determine the lower bound of

p, intuitively because the seller can use her as a �threat� to the actual buyer. Indeed since

x2 = 0 a core allocation must be such that x1 = x1+x2 ≥ v(12) = b which means that p ≥ b.

3it must be
∑

xi = 1 and also
∑

j ̸=i xj = 1 so xi = 0 for all i which contradicts
∑

xi = 1.

3



The Core is then the set of (p, 0, 100 − p) with b ≤ p ≤ 100. It puts a lower bound on p

but does not eliminate the indeterminacy on p which re�ects the relative bargaining power of

seller and buyer.

1.9 An example from politics: veto players (this is OR Exercise 261.1)

Consider a situation where v(S) can only be zero or one - just losing or winning - and v(N) = 1.

Such games are called simple games. Say that i is a veto player if S ̸∋ i ⇒ v(S) = 0 - no

coalition can win without him. Then the situation is as follows:

(a) If there are no veto players the Core is empty. To show this suppose x ∈ Core(v); �x

i and take S with i ̸∈ S and v(S) = 1 (such an S exists since i is not a veto player); then

1 ≥
∑

j∈S xj ≥ v(S) = 1 which implies xi = 0; this should be true for all i, contradicting∑
xi = 1.

(b) If there is a non-empty set V of veto players then for any x in the Core
∑

i∈V xi = 1

(the others get nothing). To prove this we show that these allocations are in the Core and

there are no others. So suppose �rst x(V ) = 1; is x(S) ≥ v(S) for all S? Certainly so if

v(S) = 0; and if v(S) = 1 then S must contain all the veto players that is S ⊇ V which

implies x(S) ≥ x(V ) = 1 = v(S). Suppose on the contrary that xi > 0 for some i ̸∈ V ; then

there is a winning coalition S ̸∋ i getting x(S) < 1 = v(S) - so x is not in the Core.

Moral of the story here: if no player has any �power� the Core (being empty) predicts

chaos; if there are few veto players it predicts dire consequences for the others; if there are

many it has little predictive power. A richer example we shall see is the weighted majority

game.

1.10 The Core may be unreasonable: the gloves games

Consider the game with n = 2m+1 players where m players possess a left glove and m+1 a

right one. Each pair of players with di�erent gloves has a pair of gloves, worth 1. Two right

or two left gloves are worth nothing. Letting NL, NR the sets of players with left and right

gloves - where NL ∩NR = ∅ and NL ∪NR = N - we then have v(N) = m and

v(S) = min{#(S ∩NL),#(S ∩NR)}

The Core consists of the unique allocation where xi = 1 ∀i ∈ NL and xj = 0 ∀j ∈ NR.

The latter part follows because
∑

h∈N\j xh = v(N) for any j ∈ NR. Exercise: show that

xi = 1 for all i ∈ NL.

So all players in the �long� side of the market (the right gloves in this case) get zero in

the Core. The unsatisfactory aspect of this is that if we add two left gloves then all the left

glovers get zero; so the Core changes dramatically, whereas if m is large the �economics� of

the situation is essentially unchanged (there are approximately as many left as right gloves).
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Shapley. The marginal contribution of a player in a coalition is either zero - if his glove

type is redundant - or one - if there are fewer gloves of his type in the coalition. The Shapley

value is expected marginal contribution hence it assigns a left-glover the probability that in a

random coalition there are fewer left gloves than right ones; similarly for right glovers. These

probabilities can be shown to converge to 1/2 as n→ ∞.

1.11 Buyers and sellers - OR ex 260.1

In similar vein to the gloves game.

1.12 Production - OR ex. 259.3

We use the following property of a concave function. For 0 < h < h′

f(x)− f(x− h)

h
≤ f(x)− f(x− h′)

h′
.

First note, assuming the answer is correct, that by concavity xc ≥ f(w)−w [f(w)− f(w − 1)] >

0 so the capitalist gets a positive amount in any Core allocation. Next to prove the result: �rst

if xi > f(w)−f(w−1) the others would deviate since they can make f(w−1) without him. If

on the other hand xi ≤ f(w)−f(w−1) for all i we have to show that no coalition can deviate.

This is clear if S ̸∋ c or S = {c} (since the alternative is to get zero). Suppose S = Z∪{c} with
|Z| > 0; then x(S) = f(w)−

∑
i ̸∈S xi ≥ f(w)− (w− |Z|) [f(w)− f(w − 1)] ≥ f(|Z|) = v(S),

the last inequality by concavity of f . So S would not deviate.

1.13 OR exercise 261.3 pollute the lake

The main concern here is essentially collective choice. The fact that b ≤ nc implies that it is

optimal for the group that all members treat their waste. On the other hand since b ≥ c an

isolated member would �nd it optimal not to threat her waste. The problem is how to share

the cost of treating the waste among members. The not so surprising result is that a Core

way of doing this is to have everyone pay b.

You can do part a of the exercise (which asks to set up the game), and for part b just

show that the allocation (−b, . . . ,−b) is in the Core. This is its unique element when b = nc,

but proving this is a little harder.

2 The Shapley Value

The de�nitions are given in OR chapter 14 page 291. As before n = #N . Recall that

a value is a function ψ which assigns to each game ⟨N, v⟩ an allocation; so ψ(N, v) =

(ψ1(N, v), . . . , ψn(N, v)) and
∑

i ψi(N, v) = v(N).
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The Shapley value φ is de�ned by the average marginal contribution property

φi(N, v) =
1

n!

∑
R∈R

∆i(Si(R))

where R is the set of all n! orderings of N , Si(R) is the set of players preceding i in R, and

for S ̸∋ i ∆i(S) = v(S ∪ {i}) − v(S). OR Proposition 291.3 says that it is the only value

satisfying the balanced contribution condition that the contribution of j to i should be equal

to i's contribution to j:

ψi(N, v)− ψi(N \ j, vN\j) = ψj(N, v)− ψj(N \ i, vN\i).

Note that the de�nition involves subgames of ⟨N, v⟩, where for S ⊆ N a subgame ⟨S, vS⟩ is
de�ned by vS(T ) = v(T ) for T ⊆ S.

Of course one has to check that
∑

i φi(N, v) = v(N). But

∑
i
φi(N, v) =

1

n!

∑
R∈R

∑
i
∆i(Si(R)),

and
∑

i∆i(Si(R)) = v(N) for any R so the displayed sum is (1/n!) · n! v(N).4

There are alternative characterizations of the Shapley value. One which is particularly

appealing is the following, due to Peyton Young, who has shown that the Shapley value is

characterized by the following two axioms. The set of players is �xed at N .

1 (symmetry). If for all S ̸∋ i, j it is ∆i(S) = ∆j(S) then ψi(v) = ψj(v).

2 (marginalism). For games v, w, if for all S ̸∋ i v(S ∪ {i}) − v(S) = w(S ∪ {i}) − w(S)

then ψi(v) = ψi(w).

2.1 The Shapley value in two-player games

We return to the basic two-person example of Section 1.1. Recall that in that case the

Core criterion does not yield restrictions on the way the surplus should be split. On the

other hand, it is easy to see that Shapley prescribes sharing the surplus equally: φ1 =

v1 + [1− (v1 + v2)] /2, φ2 = v2 + [1− (v1 + v2)] /2. You should verify this by applying the

de�nition. In this case there is no doubt this is the �fair� solution. Also the nucleolus gives

the same result.

2.2 The Shapley allocation in the apex game

We go back to the apex game of Section 1.7, which we know to have empty Core. For Shapley

we may observe that the value of the small players must be the same by symmetry, so the

4To see that
∑

i ∆i(Si(R)) = v(N) �x R = (i1, . . . , in); then∑
i
∆i(Si(R)) = v(i1)− v(∅) + v(i1i2)− v(i1) + · · ·+ v(N)− v(i1 . . . in−1) = v(N).
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whole vector can be computed once we know the value of one of them, say player 2. She

makes a positive contribution (of value 1) only in two cases: either she comes after 1; or after

all the other small players. So

ϕ2 =
1!(6− 1− 1)!

6!
· 1 + 4!(6− 4− 1)!

6!
· 1 =

1

15
.

Therefore ϕ = 1/15 · (10, 1, 1, 1, 1, 1) = 1/45 · (30, 3, 3, 3, 3, 3). Alternatively we can compute

the big player's payo�. Her marginal contribution is 0 if he arrives �rst or last, which happens

with probability 2/6, and 1 otherwise; so he gets 4/6 = 30/45. By symmetry the others get

3/45.

Nucleolus (for later). We may assume it is of the form (1−5α, α, . . . , α) with 0 ≤ α ≤ 1/5.

The coalitions with positive value are {1, j} with j > 1 and N \ 1. In the candidate vector

the excess of the former is 1 − (1 − 5α) = 4α, of the latter 1 − 5α. These are the highest

ones, and the nucleolus has them equalized; so from 4α = 1 − 5α we get α = 1/9; so we get

1/9 · (4, 1, 1, 1, 1, 1) = 1/45 · (20, 5, 5, 5, 5, 5).

2.3 The Shapley allocation in the gloves game does not belong to the Core

Even in cases where the Core is not empty the Shapley allocation may not belong to it.

Consider a variant of the gloves game seen in Section 1.10, with n + m players where n

have a left glove and m > n have a right glove. Again a pair of gloves is worth 1 (a single

glove is worthless of course). A coalition S with n1 right gloves and n2 left ones has value

v(S) = min{n1, n2}. In particular v(N) = n (the number of pairs of gloves).

The Core contains only the allocation where the owners of the left gloves get 1 and the

others (in excess supply) get zero: any S including all players except some m−n owners of a

right glove must get n hence those owners of a right glove must get zero. That all left glovers

get 1 follows as before.

Now take the case of n = 1,m = 2; the Shapley allocation is φ = (23 ,
1
6 ,

1
6) ̸= (1, 0, 0): the

left glover's contribution is 0 if he is �rst and 1 otherwise - so he gets 2/3, and the two others

share the rest by symmetry.

Note that the Shapley allocation is not in the Core. Indeed φ1 +φ2 = 1− 1/6 so so since

v12 = 1 player 1 can team with 2 and agree for example on the splitting x1 = 2/3+1/12, x2 =

1/6 + 1/12; both are better o� that in Shapley. But Shapley, arguing on fairness grounds,

could tell player 1 �You only have a left glove; without a right one it's nothing, so do not

complain if you get a little less than 1.� And even more compellingly to player 2, �If player

1 approached 3 instead of you, you would certainly hope that 3 would not team with 1 and

leave you with zero. So do not team with 1 yourself.�
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2.4 Shapley is not equal to voting shares

Consider a game with 4 people holding 10, 30, 30, 40 votes (or shares in a company) respec-

tively where the value v(N) = 1 can be obtained by any simple majority. All coalitions

S not reaching a majority have v(S) = 0. The �voting shares� proportional allocation is

(1/11, 3/11, 3/11, 4/11). The Core is empty by Exercise 261.1 (see Section 1.9 above) since

this is a simple game with no veto player. To �nd the Shapley allocation we may observe that

the marginal contribution of player 1 is always zero so ψ1 = 0; and each of the others have

the same marginal contribution in any coalition. Therefore ψ(v) = (0, 1/3, 1/3, 1/3).

2.5 Same story, di�erent shares

Again 4 players as above but now with shares holdings 10, 20, 30, 40. The Shapley allocation

has

φi =
∑

T

(t− 1)!(n− t)!

n!

the sum extending over all coalitions T such that T is winning but T \ {i} is not winning.

In each such T there are t − 1 players preceding i and n − t are following her, and they can

be reordered in all possible ways to form orderings. As an exercise, write down the winning

coalitions and show that the Shapley allocation here is ( 1
12 ,

3
12 ,

3
12 ,

5
12).

2.6 Weighted majority game

This is a slight generalization of the apex game. There are 5 shareholders; the �rst has w1 = 8

shares, and the i = 2, . . . , 5 have wi = 3; so total of 20 shares, majority 10 (reached by either

1 and at least one i > 1 or by N \ {1}). A majority may choose to undertake a project worth

wi to each. Then the game is v(S) =
∑

i∈S wi if
∑

i∈S wi ≥ 10, zero otherwise; v(N) = 20.

It can be shown that the Core is non-empty.

We compute the Shapley value. By symmetry ϕi = α equal for all i > 1; and then

4α+ ϕ1 = 20 so it su�ces to �nd ϕ1. In the OR notation we have, letting s = #S1(R),

∆1(S1(R)) =


0 S1(R) = ∅

8 + 3s 1 ≤ s ≤ 3.

8 s = 4

There are
(
n−1
s

)
s!(n− 1− s)! orders R with s players preceding any player; and

(
n−1
s

)
s!(n−

1 − s)!/n! = 1/n. Therefore ϕ1 = 1/5 · [
∑

1≤s≤3(8 + 3s) + 8] = 50/5 = 10. In conclusion

ϕ = (10, 2.5, 2.5, 2.5, 2.5). Note the di�erence with respect to the shares vector (8, 3, 3, 3, 3).
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2.7 The production economy of OR exercise 259.3

In this game the Shapley value assigns
∑w

i=1 f(i)/(w+1) to the capitalist (to be proved); by

symmetry the workers share the rest equally. Suppose w = 2, f(1) = 1, f(2) = 1 + ϵ. Show

that for 0 < ϵ < 1/4 the Shapley allocation is not in the Core.

3 For convex games Shapley is in the Core

The aim here is to show that for convex games (a class which contains for example the

bankruptcy game and the airport game, both described below) the Core is non-empty and

contains the Shapley allocation. First, a set A ⊆ Rn is convex if x, y ∈ A⇒ αx+(1−α)y ∈ A

for 0 ≤ α ≤ 1. The point αx+ (1− α)y is in the segment joining x and y. It is easy to show

by induction that if A is convex and xi ∈ A for i = 1, . . . , n then the convex combination∑
i αixi where the αi's are non-negative and sum up to 1 also belongs to A. First we observe

Lemma 1. The Core allocations of a game v form a convex set.

Proof. If for all S we have
∑

i∈S xi ≥ v(S) and
∑

i∈S yi ≥ v(S) then α
∑

i∈S xi + (1 −
α)

∑
i∈S yi ≥ v(S).

A game v over N is convex if for all S, T ⊆ N we have v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩
T ). We always use the convention v(∅) = 0. To interpret this take disjoint sets: it says

that cooperation is bene�cial. The next lemma gives an equivalent de�nition of convexity

- reminding of convexity in the sense of increasing marginal contribution - which is usually

easier to check.

Lemma 2. v is convex if and only if for all S ⊂ T not containing i

v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T ).

Proof. Suppose v(S)+v(T ) ≤ v(S∪T )+v(S∩T ) for all coalitions, equivalently v(S0)−v(S0∩
T0) ≤ v(S0 ∪ T0) − v(T0) for all S0, T0 ⊆ N . For S ⊂ T not containing i, with S0 = S ∪ {i}
and T0 = T we get the inequality in the lemma. Conversely, assume the inequality. Take �rst

S ⊂ T , let R = N \ T ≡ {i1, . . . , ik} and consider R′ = {i1, i2} ⊂ R. By hypothesis

v(S ∪ {i1})− v(S) ≤ v(T ∪ {i1})− v(T )

v(S ∪ {i1, i2})− v(S ∪ {i1}) ≤ v(T ∪ {i1, i2})− v(T ∪ {i1})

so by summation we get

v(S ∪R′)− v(S) ≤ v(T ∪R′)− v(T ).
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Since we can do the same with any subset of R the above inequality holds for any R′ ⊆ R.

Now take arbitrary sets S0, T0 ⊆ N , set S = S0 ∩ T0 and T = T0 and apply the inequality

just proved. The �gure below

S0
T0 = T

S
R′

T ∪R′ = S0 ∪ T0, T = T0

S ∪R′ = S0, S = S0 ∩ T0

makes it clear that we get v(S0)− v(S0 ∩ T0) ≤ v(S0 ∪ T0)− v(T0) as wanted.

Now we can prove the result we were after:

Proposition. If v is convex the Core is non-empty and contains the Shapley allocation.

Proof. We show that for any given order {i1, . . . , in} ofN the corresponding vector of marginal

contributions

xik = v({i1, . . . , ik})− v({i1, . . . , ik−1}), k = 1, . . . , n

is in the Core. This implies that the Shapley allocation is in the Core since it is a convex

combination of marginal contribution vectors. We have to show that for any S we have∑
ik∈S xik ≥ v(S). This is most easily seen in a special case; the general argument then only

involves setting up the appropriate notation. Suppose #N = 7 and that the order and S are

as in the �gure below:

N : 5 1 4 7 3 2 6

S : 4 3 6

If the game is convex then by the inequality in Lemma 2 we get

v({4})− v(∅) ≤ v({5, 1, 4})− v({5, 1}) = x4

v({4, 3})− v({4}) ≤ v({5, 1, 4, 7, 3})− v({5, 1, 4, 7}) = x3

v({4, 3, 6})− v({4, 3}) ≤ v({5, 1, 4, 7, 3, 2, 6})− v({5, 1, 4, 7, 3, 2}) = x6

and by summing the three inequalities we obtain v(S) ≤ x4 + x3 + x6. The result follows

because the argument is valid for any S.

Example 1 (The airport/elevator game). In this case the game is most naturally de�ned in

terms of costs: the cost to the ith �oor is ci, with c1 < c2 < · · · < cn, and c(S) = ci for the

highest i in S (Mr. i lives on the ith �oor). To check convexity we have to de�ne the value

of a coalition, and this is just the opposite of cost: v(S) := −c(S). Then convexity of v (in

the formulation of Lemma 2) is equivalent to c(S ∪ {i}) − c(S) ≥ c(T ∪ {i}) − c(T ) for all

S ⊂ T not containing i. It is left as exercise to check convexity for the case n = 3 where we

compute all quantities of interest, for i = 1, 2, 3. For example for i = 2: a pair S ⊂ T with T
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not containing 2 must have #T ≤ 2 so #S ≤ 1; thus we have to check the cases listed in the

table below:

S T

a ∅ {1}, {3}, {1, 3}
b {1} {1, 3}
c {3} {1, 3}

for example in case b we have to check that c({1, 2}) − c({1}) ≥ c(N) − c({1, 3}); this is

c2 − c1 ≥ 0 which we know to be true. The other cases are analogous.

Example 2 (The bankruptcy game). This is de�ned by an estate E and n creditors with

claims ci such that
∑
ci > E. Letting c(S) =

∑
i∈S ci the value is de�ned as

v(S) = max{0, E − c(N \ S)}

= max{0, α+ c(S)}, α = E − c(N) < 0.

Observe that max{0, a}+max{0, b} = max{0, a, b, a+ b}. Using Lemma 2, to show convexity

of the game it su�ces to show that for i ̸∈ S ⊂ T we have v(S∪{i})+v(T ) ≤ v(T ∪{i})+v(S).
But using the above observation we have

v(S ∪ {i}) + v(T ) = max{0, α+ c(S) + ci, α+ c(T ), 2α+ c(S) + c(T ) + ci}

v(T ∪ {i}) + v(S) = max{0, α+ c(T ) + ci, α+ c(S), 2α+ c(S) + c(T ) + ci}

which clearly implies the wanted inequality since α+c(T )+ci is larger than both α+c(S)+ci

and α+ c(T ).

4 Other examples/exercises

4.1 A street lights game

Three persons (families, communities...) 1, 2, 3 living at the vertices of a triangle can build

one or two street lights A,B, as in the �gure below:

1

2

3

A

B

Each light costs 40 Euros. Utilities are as follows: one adjacent light gives 30, two give

45, none gives zero. So for example if only light A is built then the utility vector is (0, 30, 30),
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which net of cost gives 60 − 40 = 20; if both lights are built utilities are (30, 30, 45) and net

surplus is 105 − 80 = 25. Since no lights give no utility the group should build both lights.

The problem is how much each should pay.

We can formulate the situation as a cooperative game, where from the above we know

that v(N) = 25. Complete the speci�cation of the value function (for example v(2, 3) = 20;

solution in footnote, do it before you look at it).5 Note that a payo� vector (x1, x2, x3)

with sum v(N) = 25 is a vector of net surpluses, so the implied cost allocation (c1, c2, c3)

with sum 80 is given by ui − ci = xi where u1 = u2 = 30 and u3 = 45. For example

(x1, x2, x3) = (2, 2, 21) means (c1, c2, c3) = (28, 28, 24).

Compute the set of Core allocations and the Shapley allocation in terms of xi and then

translate them in terms of ci (Hint: for the Core the answer is that 1 and 2 should pay

between 25 and 30 each, with 3 left to pay between 20 and 30; the Shapley allocation in this

case is an extreme point of the Core).

4.2 Sharing the cost of a public good 6

A community of individuals i = 1, 2, . . . , n may acquire a public good at cost K (Euros, say).

To �x ideas we shall imagine that the public good is a bridge. Individual i has Wi Euros

and
∑

iWi > K so they can build the bridge if they want. Also, i derives utility Ui from the

bridge and
∑

i Ui > K - so it would be in the common interest to build it. The problem is

to determine how much each must pay, that is to �nd a vector t = (t1, . . . , tn) of taxes such

that
∑

i ti = K. Given such a vector the individual surplus is Ui − ti, and the total surplus

is
∑

i(Ui − ti) =
∑

i Ui −K.

We specify the characteristic function of this game as

v(S) =

max{
∑

i∈S Ui −K, 0} if
∑

i∈SWi > K

0 otherwise.

This is obviously monotone in the sense that larger coalitions have greater worth. Note that

v(N) =
∑

i Ui −K. We may use the Shapley value as a fairness criterion to determine the

tax system. Player i's contribution to coalition S ̸∋ i is

v(S ∪ {i})− v(S) =


Ui if v(S) > 0∑

j∈S∪{i} Uj −K if v(S) = 0 and v(S ∪ {i}) > 0

0 if v(S ∪ {i}) = 0.

Letting φ denote the Shapley allocation, since
∑

i φi = v(N) =
∑

i(Ui − ti) we may write

φi = Ui − t∗i , where the asterisk denotes that t∗i = Ui − φi is determined by the Shapley

5v(i) = v(1, 2) = 0; v(1, 3) = v(2, 3) = 20
6From Aliprantis and Chakrabarti, Games and decision making
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allocation.

To see what this involves consider the case where there are 4 players, with K = 10, 000

and wealth end utilities given by

W1 = 50, 000 W2 = 75, 000 W3 = 100, 000 W4 = 200, 000

U1 = 5, 000 U2 = 4, 000 U3 = 6, 000 U4 = 8, 000.

Here v(N) = 13, 000. As an exercise, write down the characteristic function and compute

the Shapley allocation via an online software. For the characteristic function note that the

condition
∑

i∈SWi > K has strict inequality. You should get

φ = (2833.33, 2166.67, 3333.33, 4666.67)

t∗ = (2166.67, 1833.33, 2666.67, 3333.33)

Part II

Shapley vs Nucleolus Examples

The de�nition of the Nucleolus, due to David Schmeidler, is in OR page 286; the formal

statement we read from there. As in OR we let e(S, x) = v(S) − x(S); this is the �sacri�ce�

S makes at x. The idea of the Nucleolus is based on minimizing the maximum sacri�ce.

Since coalitions with maximum sacri�ce are presumably those who make the highest pressure

against x, the nucleolus represents a �stability� criterion: nucleolus allocations are �the least

unstable�. Figure 1 illustrates the minimization involved.

Figure 1: In the horizontal axis there are coalitions; in the vertical axis the height of a red line
measures the sacri�ce of the corresponding coalition; the sacri�ces are in descending order. If
the allocation giving rise to the diagram on the left is the nucleolus then if you try to lower
the highest sacri�ce some other coalition will end up with an even higher sacri�ce, as in the
left panel.

S S

13



5 Nucleolus starting from Shapley

5.1 A three-person game

We compute the nucleolus starting from the Shapley allocation. This three-person game is

de�ned by7

v(∅) = 0, v(1) = −6, v(2) = 0, v(3) = 6, v(12) = 18, v(13) = 24, v(23) = 12, v(123) = 30

So player 1 has negative value on her own but 2 and 3 get the most if they team with her.

The Shapley value is easily computed to be Shapley = (10, 7, 13). To �nd the Nucleolus let us

again start from the Shapley allocation. The usual table is the following, where in the third

column there is the excess vector at x = Shapley and the step from that to the next column

is explained after the table:

S e(x, S) = v(S)−
∑

i∈S xi Shapley (16, 4, 10)

1 −6− x1 −16 −22

2 −x2 −7 −4

3 6− x3 −7 −4

12 18− (x1 + x2) = x3 − 12 1 −2

13 24− (x1 + x3) = x2 − 6 1 −2

23 12− (x2 + x3) = x1 − 18 −8 −2

Clearly we should lower the excesses of {1, 2} and {1, 3} and we can do it together by

lowering x3 and x2 by the same amount. Note that by so doing ∆x1 = −2∆xi, i = 2, 3 since

the sum is constant 30. Excesses of 2, 3, 23 go up but that of 23 goes faster. Equality of

excesses of 12, 13 and 23 is reached when ∆x2 = ∆x3 = −3 (and ∆x1 = 6). At this point

the highest excesses are all equal and x = (16, 4, 10) is fully determined. This is then the

Nucleolus.

5.2 4-player weighted majority game (OR exercise 289.2)

We consider the case of Example 294.1: w = (1, 1, 1, 2) and q = 3. We will start from the

Shapley allocation (16 ,
1
6 ,

1
6 ,

1
2). The �rst three players play identical roles in any coalition so

they must have the same payo�. Any one or two of them will be denoted by i or i, j. In

obvious notation we then have

v(i) = v(ij) = 0, v(i4) = v(ij4) = v(123) = v(N) = 1

therefore their excesses at the Shapley allocation are

e(i) = −1

6
, e(4) = −1

2
, e(i4) =

1

3
=

10

30
, e(ij4) =

1

6
, e(123) =

1

2
=

15

30
.

7Adapted from Thomas Ferguson Game Theory
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We must lower the last one by raising the three xi's by the same amount - thereby lowering

x4 by three times as much as xi since
∑

∆xi = 0 (the sum
∑
xi is �xed at 1) - so that

∆e(4) = −∆x4 = 3∆xi = −∆e(123). ∆e(4) goes up from −1/2, but the excess which

halts the fall in e(123) is e(i4). We have ∆e(i4) = −∆(xi + x4) = 2∆xi and that goes

up from 1/3. For ∆xi = 1/30 we have ∆e(123) = −3/30 and ∆e(i4) = 2/30 so that

e(123) + ∆e(123) = e(i4) + ∆e(i4) = 12/30. And we have no more freedom since ∆xi

determines the whole ∆x and we get

x+∆x = (
1

6
+

1

30
,
1

6
+

1

30
,
1

6
+

1

30
,
1

2
− 3

30
) = (

1

5
,
1

5
,
1

5
,
2

5
).

This is the Nucleolus of the game. Of course it is a special case of the general formula

xi = wi/
∑
wj . Compared to the Shapley allocation the Nucleolus takes something away

from the strong player 4 to distribute it to the other, weaker players in the game. It seems

that Shapley is more in the spirit of a measure of �power� and the Nucleolus a �fair� allocation

of v(N).

For the sake of curiosity, observing that ∆e(ij4) = ∆xi, the resulting excess vector in the

Nucleolus is

e(i) = −1

5
, e(4) = −2

5
, e(i4) =

2

5
, e(ij4) =

1

5
, e(123) =

2

5
.

6 The airport Game

We compute the Shapley allocation, and for n = 3 Nucleolus and Core.

The game is usually described in terms of the cost of runaways of various lengths in an

airport. We phrase it in terms of the more familiar elevator cost. The cost to �rst �oor is c1,

cost to i-th �oor is ci and so on up to the cost cn to last n-th �oor; so c1 < c2 · · · < cn and

the elevator costs cn. The problem is how this cost is to be shared among the families living

in the building (one for each �oor), that is we look for cost allocations x = (x1, . . . , xn) with∑
i xi = cn.

Shapley

A �reasonable� solution is that since every family uses the stretch from ground to �rst �oor

then everybody should share that; families from 2 to n use the second stretch so they should

share the increment c2 − c1, and so on up to the last stretch from n− 1 to n which only the

uppermost family should pay for.

That is: letting xi the share payed by i, where
∑

i xi = cn, and letting also δi = ci − ci−1

(with c0 ≡ 0), the proposal is x1 =
δ1
n , x2 =

δ1
n + δ2

n−1 and so on, that is

xi =
∑i

j=1

δj
n− (j − 1)

=
δ1
n

+
δ2

n− 1
+ · · ·+ δi

n− (i− 1)
i = 1, . . . , n
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where notice that n−(j−1) = #{j, j+1, . . . , n} (the number of families who share δj). Since

all terms contain δ1/n, all except the �rst (that is a total of n− 1 terms) contain δ2/(n− 1)

and so on we get
∑

i xi =
∑

i δi = cn as it should be.

We next show that this is actually the Shapley allocation of the corresponding cooperative

game. This is de�ned in terms of costs, where for S ⊆ N we have c(S) = ci with i the highest

index in S. The argument is the following (adapted from a book by H. Moulin).8 Consider a

randomly ordered N , say (2, 1, 3, 5, 7, . . . ); here 2 pays δ1 + δ2, 1 pays nothing, 3 pays δ3, 5

pays δ4 + δ5 and 7 pays δ6 + δ7; looking at 5, if 3 was not before it as in (2, 1, 5, 7, . . . ) then

5 should pay δ3 as well (with a total of δ3 + δ4 + δ5); in general, for j ≤ 5 family 5 must

pay δj if in the given order there is nobody in {j, j + 1, . . . , n} appearing before it. So in

(2, 1, 3, 5, 7, . . . ) it pays δ4 since it is the �rst family in {4, . . . , n} appearing in the order and

δ5 since it is the �rst family in {5, . . . , n}; and in (2, 1, 5, 7, . . . ) it also pays δ3 because it is

also the �rst in {3, . . . , n} appearing in the order. Since in a random order family i is the

�rst in {3, . . . , n} with probability 1/(n − 2), and in general it is the �rst in {j, . . . , n} with

probability 1/[n − (j − 1)] we get that i pays δj with probability 1/[n − (j − 1)], for j ≤ i.

This is the formula displayed above.

Nucleolus (n = 3)

For n = 3 the Shapley allocation is

x1 =
δ1
3
, x2 =

δ1
3

+
δ2
2
, x3 =

δ1
3

+
δ2
2

+ δ3.

The �problem� with this is that coalition 23 has a total net gain of c(23)− (x2 + x3) = δ1/3

while family 1 gets more: c(1) − x1 = 2δ1/3. As we shall see by avoiding this potential

�complaint� we arrive at the Nucleolus.

To work with positive numbers we let η(x, S) = c(S) −
∑

i∈S xi (the gain of S) and

successively try to maximize the lowest value. We start from the Shapley allocation xSh =

( δ13 ,
δ1
3 + δ2

2 ,
δ1
3 + δ2

2 + δ3), as in the table below.

S c(S) η(x, S) η(xSh , S) (12δ1,
1
4δ1 +

1
2δ2,

1
4δ1 +

1
2δ2 + δ3)

1 c1 δ1 − x1
2
3δ1 x1 =

1
2δ1

2 c2 δ1 + δ2 − x2
2
3δ1 +

1
2δ2

3
4δ1 +

1
2δ2

3 c3 δ1 + δ2 + δ3 − x3
2
3δ1 +

1
2δ2

3
4δ1 +

1
2δ2

12 c2 δ1 + δ2 − x1 − x2
1
3δ1 +

1
2δ2

1
4δ1 +

1
2δ2

13 c3 δ1 + δ2 + δ3 − x1 − x3
1
3δ1 +

1
2δ2

1
4δ1 +

1
2δ2

23 c3 δ1 + δ2 + δ3 − x2 − x3
1
3δ1

1
2δ1

Coalition 23 has the lowest gain so we raise it by lowering x2 + x3 - which means raising

x1 - until the gain of 23 becomes equal to that of 1; this gives x1 = δ1/2. We are left with an

8Axioms for Cooperative Decision Making, Cambridge University Press 1988
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the extra δ1/6 to divide between 2 and 3; and we divide it evenly between between them (by

lowering their xi) since both have the same excesses; this results in the allocation in the 5th

column. And that is the nucleolus, since there 2 and 3 have the same excesses so we cannot

touch either. Therefore the di�erence compared to the Shapley allocation is in this case that

the cost to the �rst �oor is shared equally between 1 and 23. Thus the Nucleolus is given by

x1 =
δ1
2
, x2 =

δ1
4

+
δ2
2
, x3 =

δ1
4

+
δ2
2

+ δ3.

Core (n = 3)

Observe that ci =
∑i

j=1 δj for all i. The inequalities de�ning the Core are the following:

∑
i
xi =

∑
i
δi xi ≤

∑i

j=1
δj

x1 + x2 ≤ δ1 + δ2 x1 + x3, x2 + x3 ≤
∑

i
δi

Now given
∑

i xi =
∑

i δi: x2+x3 ≤
∑

i δi implies x1 ≥ 0, and x1+x3 ≤
∑

i δi implies x2 ≥ 0.

Since x3 may be computed as the di�erence c3 − (x1 + x2) we can draw the Core in (x1, x2)

space, where it is characterized by the inequalities 0 ≤ x1 ≤ δ1, 0 ≤ x1 + x2 ≤ δ1 + δ2. Note

that the Core is large, in particular it contains the allocation where x1 = x2 = 0 and 3 pays

the whole cost and at the other extreme also the point where 3 pays only δ3; and also the

distribution of costs between 1 and 2 has virtually no restrictions.

Comparison in a diagram

We visualize the three solutions in the �gure below (for x1 and x2). The Core is the yellow

region; Shapley and Nucleolus allocations are the marked points.

x1

x2

δ1

δ2

δ1 + δ2
Shapley

Nucleolus

7 The bankruptcy game

The estate is E and claims are ci, i = 1, . . . , n with
∑
ci > E. The game is de�ned by

v(S) = max{0, E −
∑

i ̸∈S
ci}.
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Notice that v(N) = E. We assume to �x ideas that c1 < c2 < · · · < cn.

Aumann and Maschler9 report that the Babylonian Talmud consider the case of 3 players

with claims �xed at c1 = 100, c2 = 200 and c3 = 300 and three possible values of E, namely

100, 200, 300. The allocations prescribed in the Talmud are in the following table, and the

surprising fact is that these prescriptions are exactly the nucleolus allocations in the three

cases.

Claims

100 200 300

E

100 33 1
3 33 1

3 33 1
3

200 50 75 75

300 50 100 150

The Nucleolus of the general bankruptcy game can be computed as follows:10

� If E ≤
∑
ci/2 then give equal incremental increases to all i such that xi < ci/2

� If E >
∑
ci/2 then above

∑
ci/2 distribute equally to all i such that ci − xi is highest.

This is most easily done with the help of the following picture:

cn

cn/2

cn−1/2

c1/2

nn− 11

Pour ”liquid money”

these are supposed to be containers of width 1; the rightmost has height cn so to �ll it up it

takes a quantity cn of �water�, and it is divided in two equal parts; the next one on its left has

total height cn−1 and it is also divided in two equal parts. Observe that the total area of the

cylinders is
∑
ci. Water poured from above freely passes through the di�erent halves of the

containers, as indicated by the orange lines and the vertical pipes are supposed to have width

zero. So if you pour water from above into any container the desired allocation is realized.

An example is visualized in the �gure below:

9Journal of economic Theory 1985
10Aumann-Maschler JET 1985
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cn

cn/2

cn−1/2

c1/2

nn− 11

We consider the simple case of n = 3 players. The Shapley value is computed as usual.

So we can compare allocations for di�erent values of E (for the Nucleolus you should draw

the appropriate pictures). We do so for a few cases in the table below; claims are �xed at

c1 = 100, c2 = 200, c3 = 300.11

11For exempli�cation we �nd the Shapley value for E = 200; in this case v(N) = 200, v(2, 3) = 100 and

otherwise v(S) = 0. Then the usual procedure gives the following table:

orderings ∆i(Si(R))

i = 1 i = 2 i = 3
1 2 3 0 0 200

1 3 2 0 200 0

2 1 3 0 0 200

2 3 1 100 0 100

3 1 2 0 200 0

3 2 1 100 100 0

Shapley 33 1
3

83 1
3

83 1
3

We compute the Nucleolus for E = 400 using the appropriate picture. Note that the colored area is 400.

150

50

300

225

100
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x1 x2 x3

E = 200
Shapley 33 1

3 83 1
3 83 1

3

Nucleolus 50 75 75

E = 300
Shapley 50 100 150

Nucleolus 50 100 150

E = 350
Shapley 58 1

3 108 1
3 183 1

3

Nucleolus 50 100 200

E = 400
Shapley 66 2

3 116 2
3 216 2

3

Nucleolus 50 125 225

E = 500
Shapley 66 2

3 166 2
3 266 2

3

Nucleolus 66 2
3 166 2

3 266 2
3

There is not much we can learn from these numbers really. That is why axioms are needed.

One more point about bankruptcy and Nucleolus

There is a a fairly strong argument in favor of the Nucleolus in the bankruptcy game, which

we now present. Letting vi = v({i}) we �rst show the following

Lemma 3.
∑
vi ≤ E.

Proof. First observe that vi < ci. For if
∑

j ̸=i cj ≥ E then vi = 0 < ci; otherwise vi =

E −
∑

j ̸=i cj <
∑
ci −

∑
j ̸=i cj = ci. Next proceed by induction. Take n = 2. If ci ≥ E then

v1+v2 = vi ≤ E; if on the other hand c1, c2 ≤ E then v1+v2 = 2E− (c1+c2) < 2E−E = E.

Now assume the inequality is true for n − 1; then for n: if c1 ≥ E then
∑
vi = v1 ≤ E; if

c1 < E then ∑n

2
vi =

∑n

2
max{0, (E − c1)−

∑n

j ̸=i,≥2
cj} ≤ E − c1

by the induction hypothesis (on the game with the n−1 players from 2 to n and estate E−c1);
therefore

∑
vi < c1 +

∑n
2 vi ≤ E (using v1 < c1).

Now consider the special case of n = 2 and the following so-called �Contested Garment

Rule� on estate E:

xi = vi +
1

2
[E − (v1 + v2)] (CGR)

This is pretty compelling: each player is granted her value and the non-negative excess

E−(v1+v2) is split equally between the two.12 It is easy to check directly from the de�nitions

that both Shapley and the Nucleolus agree with the rule in the two-player case. For Shapley

the usual table is

orderings allocations

12 v1 E − v1

21 E − v2 v2

Shapley v1+E−v2
2

v2+E−v1
2

12Note that xi ≥ vi by the previous lemma.
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and the solution is the one we want; for the Nucleolus, the excesses of the two players at the

given allocation are equal: e(i, x) = vi − xi = − [E − (v1 + v2)] /2.

In the general n-player game the two solutions may di�er. We say that the allocation x is

consistent with the Contested Garment Rule if for any pair of players i, j the rule over estate

xi + xj (and credits ci and cj) gives (xi, xj). And the result is the following:

Theorem (Aumann and Maschler (JET 1985)). In the bankruptcy game the only allocation

consistent with the Contested Garment Rule is the nucleolus.

This is a fairly strong point in favor of the Nucleolus in this game. In fact, with Shapley

there is also another problem: it is not �population monotonic�. The idea is that if each player

is replicated and the estate is doubled then in the resulting game the allocation should give

each the same payo� as in the original game; and Shapley (but not the Nucleolus as is easy

to check) fails this test. Consider this example13: c1 = 200, c2 = 300, E = 300. Then Shapley

is x = (100, 200); but if there are two players with credit 100 and two with credit 200 and the

estate is 600 the Shapley allocation is not (100, 100, 200, 200) - in fact you can check that it

is (1162
3 , 116

2
3 , 183

1
3 , 183

1
3). The Nucleolus give in both cases 100 to the �rst type and 200 to

the second type.

Remark. Going back to the two-player case: the model also applies to the division of surplus

v(N) = v(12) between two partners, each of which can make vi ≥ 0 on her own and v1+ v2 ≤
v(12). In this case the (CGR) formula - here xi = vi + [v(12) − (v1 + v2)]/2 - can be useful

in practice if vi can be reliably assessed.

8 The heritage game14

There are �sisters� i = 1, . . . n who inherit �houses� hj , j = 1, . . .m. We assume for simplicity

that m ≤ n. Sister i has utility ui(hj) ≥ 0 for house hj . If m < n some sisters are assigned

no house; in this case we say they are assigned house h0 and take ui(h0) = 0 for all i. Money

transfers t1, . . . , tn with t1 + · · ·+ tn = 0 are allowed. Suppose sister i is assigned house ς(i);

then overall utility of i is ui(hς(i)) + ti.

8.1 One house, n sisters

Here we can simplify notation and let ui sisters i's utility for the house. Assume u1 < u2 <

· · · < un. The cooperative game is de�ned by v(S) = ui for the highest i ∈ S. The value

v(N) = un is obtained by assigning the house to the sister who values it most. Of course

she will have to compensate her sisters as we shall see. Observe that the game has the same

structure as the airport game, the only di�erence being that it is formulated in terms of

13Taken from Young, Equity, p.71
14Adapted from H. Moulin Cooperative Microeconomics.
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utilities instead of costs. Therefore letting u0 = 0 and δi = ui − ui−1 we know that the

Shapley allocation is given by

xi =
∑i

j=1

δj
n− (j − 1)

=
δ1
n

+
δ2

n− 1
+ · · ·+ δi

n− (i− 1)
i = 1, . . . , n

that is x1 = δ1
n , x2 = δ1

n + δ2
n−1 and so on up to the highest utility sister who gets δ1

n + · · · +
δn−1

2 + δn. Since the house goes to the n-th sister the xi's for i < n are to be interpreted as

transfers ti from her, while since
∑

i xi = v(N) = un sister n has xn = un −
∑n−1

1 xi that

is her utility from getting the house minus the compensations paid to her sisters. Using the

more natural notation xi = ti for i < n we may and will write any allocation in this game as

(t1, . . . , tn−1, un −
∑n−1

i=1
ti).

The case n = 3: Shapley versus Nucleolus

In the n = 3 case Shapley prescribes that sister 3 pays

t1 =
u1
3
, t2 =

u1
3

+
u2 − u1

2

while we know from the airport game that the Nucleolus prescribes

t1 =
u1
2
, t2 =

u1
4

+
u2 − u1

2

that is more to the sister who value the house the least and less to the other. The total

transfer from sister 3 is higher in the Nucleolus.

8.2 Envy

As it happens, a common problem in heritage situation is envy. Are the allocations we have

considered envy-free? The answer for n > 2 is clearly no because in both cases sisters 1 and 2

get no house and in general t1 ̸= t2. In particular Shapley has t2 > t1 so sister 1 surely envies

at least sister 2. In the Nucleolus envy is less pronounced. In the case n = 2, in an allocation

(t1, u2 − t1) sister 1 does not envy 2 if she prefers t1 to having the house and paying t1 that

is t1 ≥ u1 − t1 or t1 ≥ u1/2; and similarly sister 2 does not envy 1 if u2 − t1 ≥ t1 that is

t1 ≤ u2/2. So the no-envy conditions in this case are

u1
2

≤ t1 ≤
u2
2
.

In the n = 2 case Shapley has t1 = u1/2 < u2/2 so no-envy obtains; and since excesses in this

allocation, v1 − x1 = u1/2 and v2 − x2 = u2 − (u2 − u1/2) = u1/2, are equal the Nucleolus

coincides with Shapley.

Which allocations (t1, . . . , tn−1, un −
∑n−1

1 ti) are envy-free in the general case? Sisters

22



1 to n − 1 get (no house and) ti so to avoid envy among them we must impose t1 = · · · =
tn−1 ≡ t. Avoiding envy between sister n and the others then gives un − (n − 1)t ≥ t and

t ≥ un−1 − (n− 1)t (if n− 1 does not envy n nor will the others since un−1 is highest among

them). Thus we get the no-envy conditions

t1 = · · · = tn−1 = t and
un−1

n
≤ t ≤ un

n
.

Consider for example the case n = 3 with u1 = 0, u2 = α, u3 = 100 with 0 < α < 100.

In this simple example Shapley and the Nucleolus coincide because t1 = 0. In both cases 1

envies both 2 and 3. No envy of 3 on the part of 2 gives t2 ≥ u2 − t2 − t1 that is t2 ≥ α/2

which is satis�ed with equality. The condition that 3 should not envy 2 is u3 − t2 − t1 ≥ t2

that is t2 ≤ u3/2 which is satis�ed strictly. Notice that in this case full no envy gives t1 = t2

and α
3 ≤ t ≤ 331

3 which is not very plausible. We should mention that in practice the utilities

ui are not easy to pin down, so that the model may be di�cult to apply.

8.3 General case

Generalizing the case of one house we de�ne v(N) to be the highest sum of utilities over all

possible assignments ς:

v(N) = max
ς

∑
i
ui(hς(i)).

To take a concrete case consider the following case where n = m = 3 and utilities are

in the following table and the optimal assignment is in boldface and gives total utility of

v(N) = 27 (check that it is indeed the highest possible sum):

u1 u2 u3

h1 3 9 9

h2 12 6 6

h3 9 6 3

An allocation x is determined by an optimal assignment ς and a vector of zero-sum trans-

fers t = (t1, . . . , tn) giving xi = ui(hς(i)) + ti. No envy can be de�ned for any (not necessarily

optimal) assignment and transfer set: a pair (ς, t) is envy-free if no i envies any i′, that is if

ui(hς(i))+ ti ≥ ui(hς(i′))+ ti′ for any i, i
′. It is remarkable that in any envy-free pair (ς, t) the

assignment ς is automatically optimal. The proof is in footnote.15

Given an optimal assignment ς we can �nd the set of transfers which make the pair (ς, t)

15Consider n = m �rst, assume (ς, t) is envy free and consider any other assignment ς̃; sister i in ς does not
envy the i′ who gets her house in ς̃ - that is the i′ such that ς(i′) = ς̃(i). So ui(hς(i)) + ti ≥ ui(hς̃(i)) + ti′

- and by summing up these inequalities we get
∑

ui(hς(i)) ≥
∑

ui(hς̃(i)) for the transfers sum to zero; this

shows that ς is optimal. If m < n this argument breaks down because if i gets the empty house in ς̃ there are
more than one who get this in ς; but the �x is just to consider the lowest i′ who gets the empty house in ς,
and the rest of the argument is the same.
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envy free. In the above example we get the following inequalities:

no envy by 1 : 12 + t1 ≥ 9 + t2 12 + t1 ≥ 3 + t3

no envy by 2 : 6 + t2 ≥ 9 + t3 6 + t2 ≥ 6 + t1

no envy by 3 : 9 + t3 ≥ 6 + t1 9 + t3 ≥ 3 + t2

You can check that the three inequalities in the last column are implied by the other three,

and since t3 = −(t1 + t2) we end up with the following conditions on (t1, t2):

t2 ≤ 3 + t1 3 ≤ t1 + 2t2 2t1 + t2 ≤ 3

which we can draw in the (t1, t2) plane. It is the triangular region in the �gure below:

t1

t2

−1 1

2

3

1

Shapley=Nucleolus

We have also drawn the transfers implied by Shapley allocation, which we can easily

compute. In the same spirit as in the bankruptcy game the v function is obtained here by

taking for any S ⊆ N the sum of the utilities resulting from an optimal assignment within the

coalition after the others are given their optimal assignment; for example sister 1 may leave

houses 1 and 3 to the others (who could do no better on their own) so that v(1) = u1(2) = 12;

the other values are obtained similarly and the result is the following (besides v(N) = 27):

v(1) = 12 v(2) = 6 v(3) = 3

v(12) = 18 v(13) = 15 v(23) = 15

The Shapley allocation of this game is x = (12, 9, 6). These are the overall utilities, which

means the implied transfers are t1 = 0, t2 = 3, t3 = −3 (sister 3 pays 3 to sister 2). In this

case it happens that Shapley prescribes an envy-free allocation of houses and transfers. By

writing down the excesses it is easy to see that the Shapley allocation is in this case also equal

to the Nucleolus.

The Core of this game also is easily computed: it is the set of x such that

x1 = 12 6 ≤ x2 ≤ 12 3 ≤ x3 ≤ 9 x2 + x3 = 15

In terms of transfers this is t1 = 0, 0 ≤ t2 ≤ 6, t3 = −t2. Shapley and Nucleolus select

the midpoint of the admissible (x2, x3) pairs in the Core.
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