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Issue

In the models by Glosten–Milgrom [2] and Kyle [4] of a stock mar-
ket with heterogeneous information, informed and uninformed agents
trade with uninformed price-making dealers. The latter face an adverse
selection problem arising from insiders, and to protect themselves they
quote larger bid-ask spreads than they would otherwise (in [2]), or
make the market less liquid (in [4]); thus the uninformed traders bear
a negative externality exerted by the informed.

The above traders–dealers model does not apply to european stock
markets, because there informed and uninformed agents trade among
themselves, with no dealers’ intermediation (cfr. [7]): in practice, the
single trader posts his buying or selling order after actually observing
all the oustanding ones on a computer screen. For the blue chips —the
only ones the uninformed really consider trading— there is virtually
no price difference between the lowest sellers and the highest buyers,
in other words there is a single buy–or–sell price. The present paper
is concerned with equilibria of these markets. The idea is that the
uninformed enter them because although they realize that the price
makers are effectively the informed, they deduce from the presence, at
the going price, of informed buyers and informed sellers, that the price
correctly reflects available information about the asset (which effec-
tively eliminates information asymmetry). Incidentally, in equilibrium
the uninformed will be indifferent between buying and selling at the
going price. 1 The structural difference between the present setting
and that of Glosten–Milgrom and Kyle is thus that the price maker
here is the informed trader. As in their models we shall presume (un-
modeled) external competition among informed price-makers, which in
our setting forces the informed to make zero bid–ask–spread proposals,
as in the story just told. The paper analyses existence and structure
of revealing equilibria of a (signalling) game which models the interac-
tion between an informed price–making agent and an uninformed one,
which may be informally described as follows:

Some exogenous non-negative benefits (the dividends net of
opportunity costs of cash) accrue to two individuals I and II
if they engage in a bet on an event (i.e. if they trade), and
I knows the probability of the event occurring. Since this
information is worthless if there is no trade, he would want to
propose terms of trade which Mr. II can accept; the latter on
the other hand must be sure he is treated fairly, otherwise he
would refuse to trade; and given that he accepts I’s proposal,
the latter should have no incentive to be unfair.

1Dually, the uninformed do not enter markets with large bid–ask spreads and
relatively few traders because there they are not sure which side to take and refrain
from trading.
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Given the external competitive pressure on the informed side, it
seems reasonable to consider the adaptation of the simple cake–splitting
rule of fair division theory under which ‘One divides, the other chooses’
(cfr. e.g. Brams–Taylor [1]), which in our setting becomes ‘The in-
formed proposes a trading price, the uninformed chooses whether to
be a buyer or a seller’. We study conditions under which this kind of
arrangement is an equilibrium, and identify the price distortions and
utility losses that the lack of information may produce.

In the game the informed is assumed risk neutral, and the trade–off in
the problem faced by the uninformed is between losing smaller amounts
with higher probability and losing larger amounts with lower probabil-
ity. This balance is governed by downside risk aversion (positive third
derivative of vNM utility function). Asymmetric information and risk
aversion notwithstanding, the downside–risk neutral uninformed (qua-
dratic vNM utility) always gets a fair price on the bet he enters in the
revealing equilibrium, corresponding to the expected value of the asset
conditional on full information. On the other hand, the downside–risk
averse uninformed is worse off: he always enters the ‘cheaper’ bet, but
paying more than the above expected value.

This conclusion is our counterpart of that reached by Glosten–Milgrom
[2] and Kyle [4] (in the relevant institutional setting): there the unin-
formed traders bear a negative externality exerted by the informed
traders; here they enter unfair bets because of their own downside risk
aversion.

We next describe the economic environment where the agents op-
erate, and isolate the strategic problem involved. The resulting two–
person game is then analysed, with particular attention to existence
and structure of revealing equilibria, and an economic interpretation
of the equilibrium is given. Finally an alternative, perhaps more nat-
ural game is examined where the informed agent faces a population of
uninformed, and it is found that the same type of equilibria exist.

Underlying Economy

Uncertainty. There are two periods: in the first agents trade; in the
second uncertainty, represented by a two–state space S = {s1, s2}, is
resolved, s1 occurring with probability θ. There are two (types of)
agents, the informed who is risk neutral and knows θ, and the un-
informed who is risk averse and does not know θ. θ is drawn in a
pre–trade stage according to a given probability distribution, which is
common knowledge.

Markets. To justify the two person trading game analyzed in the fol-
lowing section, we make the following two ’special’ assumptions on
the underlying market structure: (i) only the informed have access to
risk–free interest on cash; and (ii) there are two negatively correlated
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assets, which yield a sure dividend (equal to the risk–free interest on
investment) plus a capital risk of a smaller order of magnitude. In
the intended interpretation the two assets are stock and bond, and the
capital risk on the bond reflects the fact that the uninformed can never
remove all uncertainty from their portfolios. The higher interest earned
on cash by the informed can be interpreted as modelling better access
to credit for professional investors than for the general public.

So let us assume that the informed has access to a risk–free interest
r on cash; the uninformed gets zero interest on cash. In addition to
cash there are two assets in zero net supply, each being the sum of a
risk–free bond plus an Arrow–security; precisely, asset i = 1, 2 yields
(1 + r)k 1S + 1{si}, where 1A is the indicator of A ⊆ S. It is assumed
that rk > 1. Also, in any asset trade the quantity is fixed at 1 unit.
To simplify notation we employ the following timing convention on
payments: if an asset is bought at price k + p, then k is paid at the
time of trade, while p is paid (if due) when uncertainty resolves.

Remark.We may notice the following implications. (i) The uninformed
would never sell any asset, for any k + p with p 6 rk: indeed, since
he has no interest on money the sale would result in a net loss of rk +
(1− p) > 0 in one state and of rk− p > 0 in the other; analogously, he
would be ready to buy any asset at any such price, for it would result in
a non-negative net–gain vector equal to the above loss vector. (ii) The
informed, on the other hand, is indifferent between k today and (1+r)k
tomorrow, and therefore his willingness to trade depends only on the
terms concerning the risky part of the asset; pressed by competition,
he will sign any contract ensuring him nonnegative expected net gains.

Equilibrium. As anticipated, the informed is the price maker. He will
quote selling prices for the two assets, and the uninformed may buy
one unit of one asset. 2 Equilibrium obtains if agents agreee to trade at
those prices, or not to trade. Of course the trading equilibria Pareto–
dominate the no–trade outcome, because in the former case the in-
formed gets non-negative expected profits (otherwise he would refuse
to trade), and the uninformed earns interest on cash, albeit at a cost
(remember that for him the only way to get interest on cash is to buy
risky assets from the informed).

Competition. With no competition on the informed side, the only trad-
ing equilibrium would have the informed offering, at all θ, both assets
at the highest prices the uninformed can accept, and the uninformed
agreeing to buy. But as already said competition forces the informed
to make zero bid–ask–spread offers. To see what this means in the
present setting, note that for any given θ, selling the Arrow–security
1{s1} at price p is the same as buying 1{s2} at price 1− p: both trades

2Since in equilibrium the uninformed will be indifferent between buying and
selling, the unit–trade restriction is not relevant.
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result in the random variable (p− 1, p) on S; 3 symmetrically, buying
1{s1} at price p is the same as selling 1{s2} at price 1 − p. Therefore,
a buy–or–sell offer in the present context is a pair of selling prices for
the two assets of the form (k + p, k + 1 − p). These must then be the
informed agent’s feasible offers (besides the no–trade option), for any
given θ.

Strategic Interaction. We claim that attention may be focused on the
p–part of the (k+p, k+1−p)–offer. In fact, it has already been noticed
that the informed will be content with making non-negative expected
gains on the risky part of the asset, so for him the only strategic choice
is p (p(θ) in fact, one for each θ). Incidentally, it is also clear that
he will always quote a price pair with p ∈ [0, 1], for otherwise the
uninformed would clearly choose to buy the asset with price lower than
k, and the informed would make a sure loss. The uninformed facing
a (k + p, k + 1 − p)–offer, on the other hand, will only have to choose
which asset to buy, if any (but given (k+ p, k+1− p), trading for him
is always better than refusing to trade, because of the interest rk > 1);
and this also depends only on p.

Game Reduction. On the risk–free interest part of the assets, we know
that the informed makes zero profit (he gets k to pay (1 + r)k the
period after, which is exactly what he makes out of the initial k), while
the uninformed makes a sure profit of rk (he pays k to get (1 + r)k,
instead of the same k he would end up with if he did not buy any asset).
Therefore we can eliminate this aspect altogether from the the payoffs
and concentrate the analysis on trade in the Arrow–securities, provided
we posit that if the uninformed does not trade he gets a penalty of rk
—which we shall do.

At this point we are left with the informed proposing a pair of selling
prices (p, 1− p) for the two Arrow–securities. But given the aforemen-
tioned byuing–selling symmetry in these two assets, such an offer is
clearly equivalent to a buy–or–sell price p for the Arrow–security 1{s1}

(by which the informed quotes p and leaves the uninformed the choice
whether to buy or sell the asset at that price). Thus we can also elim-
inate asset two from the picture, and analyse a game with just one
asset, where the informed quotes buy–or–sell prices (or makes no offer,
if no price gives him non-negative expected profits). To this we now
turn.

The Two–person Game

The game studied in this section (a signalling game, cfr. Kreps–Sobel
[3]) is the following. There are two players, I and II , and nature, and
the game is played in three stages. In the first one nature selects a

3We are denoting a function f : S → R by (f(s1), f(s2)); given θ, the resulting
r.v. will also be called a lottery.
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number θ according to a given common–knowledge probability distri-
bution on Θ ⊆ [0, 1] and communicates the selected θ to player I only
(player II knowing this). In stage three, a state of the world from
S = {s1, s2} will be selected, with probability (θ, 1 − θ), and payoffs
collected. In stage two player I moves first, and either refuses to trade,
in which case the game enters stage three; or quotes a price p ∈ [0, 1];
in the latter case player II either buys from player I, or sells to him,
the lottery 1{s1} on S at price p.

As to payoffs, let ui be player i ’s weakly concave, smooth vNM
utility, i = I, II . If in stage two player I refuses to trade, then inde-
pendently of θ ∈ Θ and s ∈ S, he gets u

I
(0) and II gets u

II
(−rk).

Otherwise, if θ is selected and players trade at price p, the expected
utility that player i gets from buying, resp. selling is

Bi(θ, p) = θui(1− p) + (1− θ)ui(−p),

Si(θ, p) = θui(p− 1) + (1− θ)ui(p).

Equilibrium. Motivated by the underlying economy described in the
previous section, we are interested in Nash revealing equilibria where
player I plays a pure strategy and never refuses to trade, i.e. plays a
one–to–one function θ 7→ p(θ) where p(θ) is the proposed price (this
requires that for any θ he should get more than u

I
(0)). Player II will

play a behavioural strategy, β(p) denoting the probability that he buys.
So: an equilibrium is a pair of functions θ 7→ p(θ) from Θ to [0, 1],
and p 7→ β(p) from [0, 1] to [0, 1], such that

• for all p such that p−1(p) 6= ∅, β(p) solves

maxβ E
[

β BII(θ, p) + (1− β)SII(θ, p) | p−1(p)
]

,

where E is with respect to the common prior on Θ; and

• for all θ ∈ Θ, p(θ) solves

maxp (1− β(p))BI(θ, p) + β(p)SI(θ, p), (1)

the maximum being larger than u
I
(0) for all θ. An equilibrium is

revealing if p is one–to–one.

A simple candidate agreement in the game described above would
be the following: the informed proposes to trade at p = θ, the true
probability, leaving the uninformed the choice as to which side of the
market to take; and the latter tosses a fair coin to decide whether to
buy or sell at that price. This is not viable except in special cases
(propositions 1 and 3), but variations of it, with consequent price dis-
tortions and utility losses, will constitute the central equilibria of the
paper (propositions 2 and 4).

Assumption and Notation. As anticipated, we will assume throughout
that u

I
(x) = x. We then also let u := u

II
in the sequel.
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Quadratic Case. Here we assume that player II , the uninformed,
is downside–risk neutral, i.e. has quadratic vNM u. This is the one
case where the simple arrangement mentioned in the introduction is
indeed an equilibrium. The economic content of the result is that
although the uninformed is risk averse and the informed is the price
maker, competition on the informed side is enough to guarantee that
the uninformed enter fair bets.

Proposition 1. Assume Θ = [0, 1], and that u is quadratic. Then the
following “fair–bet agreement” is an equilibrium:

∀θ p(θ) = θ, and ∀p β(p) = 1/2.

Proof. Given β ≡ 1/2, for any θ all p–offers give the risk–neutral player
I zero expected profits. And given that I makes his proposal at the true
θ, player II is indifferent between buying and selling. Indeed he gets
θ u(1−θ)+(1−θ) u(−θ) from buying and θ u(−(1−θ))+(1−θ) u(θ) from
selling; these expressions are equal to u(0) for θ = 0, 1, and for θ ∈ (0, 1)
they are equal because being quadratic, u satisfies [u(θ)− u(−θ)]/θ =
[u(1− θ)− u(−(1− θ))]/[1− θ] for such θ. �

Given player I’s indifference, in this case there is a weak incentive
for him to reveal the true θ (indeed, to be in the game altogether). In
the case considered next revelation will be strictly beneficial for player
I.

Downside–risk Averse Uninformed. We have seen that if θ is the
true probability, a player with quadratic utility is indifferent between
buying and selling at p = θ. This is not true for more general utility
functions, and what happens depends on the third derivative.

Downside–risk Aversion in the Model . Recall that at p = θ, ‘buying’
is the lottery which takes value 1 − θ with probability θ and −θ with
probability 1−θ; ‘selling’ gives the opposite in each event. Of these two
lotteries, as is tedious but elementary to check, neither first– or second–
order stochastically dominates the other, but buying third–order dom-
inates selling for θ < 1/2, and the opposite occurs for θ > 1/2. There-
fore, by a result of Menezes, Geiss and Tressler [5], an individual whose
utility function has positive third derivative would prefer buying for
θ < 1/2 and selling for θ > 1/2; in other words such an individual
would always prefer to put down (and stand to lose) the minimum be-
tween θ and 1−θ; and the opposite occurs if he has u′′′ < 0; the u′′′ = 0
quadratic utility is indifferent between buying and selling at p = θ for
all θ. Empirical evidence is in favour of this u′′′ > 0 kind of behaviour,
called ‘downside–risk aversion’ (cfr. [5]; axioms for a measure of this
kind of risk aversion are e.g. in Modica–Scarsini [6]).

We note here the following immediate consequence of assuming that
player II is downside–risk averse: define p

II
(θ) as the price which makes



7

II indifferent between buying and selling given θ —that is, define p
II
(θ)

by
BII (θ, p

II
(θ))− SII (θ, p

II
(θ)) = 0; (2)

then p
II
(θ)− θ has the sign of 1/2− θ.

The magnitude of p
II
(θ)−θ reflects the strength of player II ’s down-

side risk effect; we may imagine it goes up for small values of θ (it is
zero at 0, 1/2, 1), then decreases to zero as θ → 1/2; its behavior on
the right of 1/2 is symmetric, because p

II
(θ) = 1 − p

II
(1 − θ) —from

the equality BII (1− θ, 1− p) = SII (θ, p), valid for all (θ, p).
Note also that p

II
(·) is increasing. To see this differentiate (2) with

respect to θ to get p′
II
(θ) =

(

BII

θ − SII

θ

)

/
(

SII

p − BII

p

)

, where subscripts

denote partial derivatives (BII

θ = ∂BII /∂θ, etc.), or more explicitly
(recall u = u

II
)

p′
II
(θ) =

u(1− p)− u(p− 1) + u(p)− u(−p)

θu′(p− 1) + (1− θ)u′(p) + θu′(1− p) + (1− θ)u′(−p)
, (3)

where all derivatives are taken at (θ, pi(θ)); it is immediate to check
that numerator and denominator are positive.

Equilibrium. Coming back to our game, note that since u
I
(x) = x,

player I’s problem (1) reads

maxp 2(p− θ)(β(p)− 1/2) . (4)

We shall look for an equilibrium with a β(·) such that for each θ player
I ’s problem is solved by p

II
(θ) and the solution ensures him positive

expected profits for almost all θ.
The last condition is relevant, because an equilibrium with player I

making zero profits is easily found:

p = p
II
, β ≡ 1/2. (5)

This is a Nash equilibrium, because given I’s strategy all β–functions
give II the same payoff, and given β ≡ 1/2 all p–functions give I utility
zero; and it is revealing because we have seen that p

II
is one–to–one. Of

course this equilibrium is unattractive for player I, and in fact for him
it is payoff–equivalent to the following one, where he does not bother
to fine–tune his proposal function p:

p ≡ p , β ≡ 1/2,

where p makes II a priori indifferent between buying and selling. Are
there better equilibria than the one in (5)? Yes: in fact, with player
II downside–risk averse, any equilibrium with p = p

II
and β 6≡ 1/2

Pareto dominates the one in (5). 4

4Proof : Player II ’s position is unchanged; and I has strictly positive utility at
any θ such that β(p

II
(θ)) 6= 1/2, because: he could surely propose θ and get zero

utility, so in equilibrium his utility must be non–negative; but then if his optimum
is at p

II
(θ) 6= θ and β(p

II
(θ)) 6= 1/2, his utility (p

II
(θ) − θ)(β(p

II
(θ)) − 1/2) 6= 0

must be positive.
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We now show that there is an equilibrium of the kind just described,
provided the support of θ is strictly contained in [0, 1]. In this equi-
librium, player I has positive utility for all θ 6= 1/2; and player II , al-
though he always ‘buys cheap’, in the sense that β(p) > 1/2 iff p < 1/2,
he still buys high and sells low at all (θ,p(θ)) with θ 6= 1/2, in the sense
that β(p(θ)) > 1/2 iff p(θ) > θ.

Proposition 2. If player II is downside–risk averse (u′′′ > 0) and
Θ = [θ, θ] ⊆ (0, 1), then there is an equilibrium with p = p

II
and β(p)

decreasing, with β(p) 6= 1/2 for all p 6= 1/2.

Proof. It has to be shown that a function β as in the statement can
be constructed so that at each θ ∈ Θ player I’s problem is solved by
p
II
(θ). We do it in two steps.
First: find a (smooth) β–function with the property that for each

θ 6= 1/2 the first and second order conditions for the maximum of
player I’s problem (4) are satisfied at p

II
(θ), i.e. such that

β(p
II
(θ))− 1/2 + (p

II
(θ)− θ)β′(p

II
(θ)) = 0 (6)

2β′(p
II
(θ)) + (p

II
(θ)− θ)β′′(p

II
(θ)) < 0, ∀ θ ∈ Θ \ {1/2}. 5 (7)

To find such a function: letting

z(θ) = β ◦ p
II
(θ)− 1

2
and π(θ) =

p′
II
(θ)

p
II
(θ)− θ

, θ ∈ (0, 1) \ {1/2}

and multiplying equation (6) by π(θ), we get the following first-order,
linear homogeneous differential equation in θ, well defined for θ ∈
(0, 1) \ {1/2}:

z′ + π(θ) z = 0, θ ∈ (0, 1) \ {1/2}. (8)

On each of the subintervals (0, 1/2) and (1/2, 1), the solution to this
equation satisfying z(θ0) = z0, with θ0 an interior point, is

z(θ) = z0 E
(

−
∫ θ

θ0
π(t)dt

)

. (9)

Let z1 be the solution to this on (0, 1/2) such that z1(θ) = 1/2, and z2
the solution on (1/2, 1) such that z2(θ) = −1/2; and define the function
z on Θ by: z1 on [θ, 1/2), z2 on (1/2, θ], and z(1/2) = 0. Given that
π(θ) has the sign of 1/2 − θ, it is readily verified that this function
z has itself the sign of 1/2 − θ and is decreasing (hence in particular
with range in [−1/2, 1/2]); incidentally, we shall verify that it is also
continuous on Θ.

Then the function p 7→
(

z + 1
2

)

◦ p−1
II
(p), decreasing with range [0, 1],

satisfies (6) on Θ \ {1/2} (elementary check). It is still defined only on

5That these conditions are sufficient for a global maximum will follow from
uniqueness of the p satisfying the first order condition at θ.
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p
II
(Θ), but we extend it to all of [0, 1] by setting

β(p) =

{

(

z + 1
2

)

◦ p−1
II
(p) p ∈ p

II
(Θ)

1/2 p ∈ [0, 1] \ p
II
(Θ).

(10)

This function satisfies (6) on Θ\{1/2} by construction. And for (7): the
condition is (p

II
− θ)β ′′ < −2β ′ (at p

II
(θ)); but (6) implies β ′ · (2p′

II
−

1) + p′
II
· (p

II
− θ) β ′′ = 0, so that β ′′ · (p

II
− θ) = −β ′ · (2− 1/p′

II
); and

the latter is < −2β ′ iff p′
II
> 0, which we know to be true.

Second step: the function defined by (10) satisfies our requirement.
Indeed, observe that player I’s utility at (θ, p

II
(θ)) is positive for Θ \

{1/2}, because β − 1/2 has the same sign as 1/2 − θ whence also as
p
II
(θ) − θ. But then for such θ’s p

II
(θ) solves I’s problem, for by

choosing p = 1/2 or p 6∈ p
II
(Θ) he gets zero. And for θ = 1/2: he

cannot get more than zero, which he obtains by setting p = 1/2.
The assertion about the players’ payoffs is true because β(p(θ))−1/2

and p(θ)− θ both have the sign of 1/2− θ. �

Economic Interpretation. Remember that ‘buying’ means buying asset
1 in the two–asset underlying economy we started with, while ‘selling’
means buying asset 2. Thus the interpretation of the equilibrium just
found is that the uninformed buys with higher probability the asset
with less downside risk —which is asset 1 iff θ < 1/2. The ‘real’
economy this model intended to capture, we said, is one with an equity
and a bond market. In the interpretation of this economy, a sluggish
or falling stock market index is associated with high downside risk on
the equities, while a rising trend goes with low downside risk on equity.
For in the latter case, stock prices reflect the optimistic expectations on
future appreciation, and little unexpected further rise is left out (which
in our terms, if equity is asset 1, means θ, hence also p/(k+ p), small);
in the former case on the contrary, a more substantial part of the price
paid goes to cover hopes of future gains (θ and p/(k+ p) higher). The
empirical prediction of the model is therefore that the uninformed tend
to enter the stock market in bullish periods, while resort to the bond
market in more quite times.

Continuity of β at p =1/2. This follows from the fact that any solution
to (8) on either half of the unit interval tends to zero as θ → 1/2.
We verify this on (0, 1/2) (other half same story): it is clear from (9)

that our claim is equivalent to limθ↑1/2

∫ θ

θ0
π(t) dt = ∞. Now (cfr. (3))

p′
II
(1/2) = [u(1/2) − u(−1/2)]/[u′(1/2) + u′(−1/2)] > 0, so for some

θ1 > θ0, δ > 0 it will be p′
II
(θ) > δ on (θ1, 1/2); also, pII

(θ)−θ < 1/2−θ;
therefore

∫ θ

θ0

π(t)dt >

∫ θ

θ1

π(t)dt ≡

∫ θ

θ1

p′
II
(t)

p
II
(t)−t

dt > δ

∫ θ

θ1

dt
1
2
−t

→ ∞ as θ ↑ 1
2
.



10

Non–existence with Θ = [0, 1]. The above equilibrium does not seem to
survive with Θ = (0, 1); the source of the problem is that any solution to
(8) is unbounded. To see this look again at (9) on (0, 1/2) (the situation

is analogous on the other half): we will prove that
∫ θ0
0+

π(t)dt = ∞,
which implies the claim. To this end observe that from (3) we have
limθ→0 p

′
II
(θ) = [u(1) − u(−1)]/2u′(0) < ∞; hence for θ sufficiently

small: p′
II
is bounded, and there exists a k > 1 such that p

II
(θ) < kθ,

i.e. p
II
(θ)−θ < θ(k−1); so for θ′ sufficiently small we have

∫ θ′

θ
(p

II
(t)−

t)−1dt > (k − 1)−1
∫ θ′

θ
t−1dt, which goes to infinity as θ ↓ 0. This and

boundedness of p′
II
easily imply

∫ θ0
0+

π(t)dt = ∞. Unboundedness of all
solutions to (8) clashes of course with the requirement that β be in
[0, 1]. Concentrating once again on the left half of the unit interval,
the only remedy to the fact that limp→0 β(p) = ∞ seems to consist in
fixing an arbitrarily small p0, taking the solution to (8) which generates
the β–function with β(p0) = 1, and trying to define β for p < p0
appropriately. But there is no way to do this, the argument being that,
letting θ0 such that p0 = p

II
(θ0), for any θ < θ0 player I would propose

at least p0 for any specification of β for p < p0, and this would destroy
informativeness of the proposed p for p > p0, i.e. upset equilibrium for
θ > θ0.

A Different Formulation: Uncertainty Over u

In the setup used so far player II ’s utility u ≡ u
II
was fixed. We now

assume that u is selected according to some probability distribution ν,
and that this is all player I knows about II . Our Bayesian game (e.g.
Osborne–Rubinstein [8], section 2.6) is in this case the tuple

〈

N, Ω, (Ai)i∈N , (Ti)i∈N , (τi)i∈N , (πi)i∈N , (<i)i∈N
〉

,

where N = {I , II}, the type sets are TI = (0, 1) (the domain of θ) and
TII = U (a set of possible u’s with a suitable measurable structure);
Ω = TI × TII ; the signaling functions τi are the relative projections
(uninformative about the other’s type); AI = AII are as in the previous
section (p-BOS proposals to make or accept/reject); the prior on Ω
will be a common product πi = µ × ν, where µ and ν are measures
on TI and TII respectively; and finally, <i is i ’s vNM preference over
AI × AII × Ω; more precisely: each element of this set, call it z for a
moment, gives rise (independently of the TII coordinate actually) to a
monetary lottery, and player i ’s payoff at z is the expected utility of
this lottery according to his vNM ui on money.

Equilibrium. Again we are interested in revealing equilibria. This is
then a one–to–one function θ 7→ p(θ) such that
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• for any p, each type u solves, with θ = p−1(p),

max
β

[

βBII (θ, p) + (1− β)SII (θ, p)
]

, (11)

where for definiteness we may assume that the ones indifferent between
buying and selling toss a fair coin to decide; and

• for all θ, p(θ) solves the problem in equation (4) page 7, that is

maxp 2(p− θ)(β(p)− 1/2) ,

where now β(p) is defined as the fraction of types of player II for whom
the solution to the problem in (11) above is to buy.

At any given (θ, p) pair (where θ is the true value and p is the proposed
price), the fraction of players II who buy, which will be denoted by

β̂(θ, p), depends on ν. We start as in the previous section with the
simple case where the ‘fair–bet agreement’ is an equilibrium.

1. Another ‘Quadratic’ Case. Here we assume that for any θ it
is β̂(θ, θ) = 1/2; that is, half of the type-II agents are downside-risk
averse, half are downside-risk prone, or they all have quadratic utility.
In this case again there is an equilibrium with p(θ) = θ, analogous to
that of proposition 1:

Proposition 3. Assume that for any θ it is β̂(θ, θ) = 1/2. Then the
function p(θ) = θ is an equilibrium.

Proof. Given the assumed function p, whatever p is proposed is be-
lieved to be equal to the true θ, and this and our assumtpion about β̂
then imply that the β in the definition of equilibrium is just β(p) ≡ 1/2.
On the other hand since player I is risk neutral, given this β he has no
better proposal at θ than p = θ. �

The Distribution ν. To go beyond the previous case one needs a
plausible form of the function p 7→ β̂(θ, p) for each fixed θ. This de-
pends on ν, and to be in accordance with the empirical evidence men-
tioned before we assume in the sequel that the support of ν is made of
u ’s with positive third derivative.

This implies that for θ < 1/2 it is β̂(θ, p) = 1 for all p 6 θ, and

for θ > 1/2 β̂(θ, p) = 0 for all p > θ. Let us also assume that there
are types with u′′′ arbitrarily small. Then, considering first the case of
θ < 1/2, at any p > θ there are some types of player II who would sell

(and there will be more as p goes up), i.e. β̂(θ, ·) will start decreasing

at θ; also, at p = 1/2 selling first–order dominates buying, so β̂(θ, ·)
will reach zero somewhere between θ and 1/2 (and remain zero up to

p = 1). Analogously, for θ > 1/2 β̂(θ, ·) must be 1 up to some point
between 1/2 and θ, then decrease to reach zero at p = θ.

For θ → 1/2, both from right and left the families of functions β̂(θ, ·)
should approach a jump function equal to 1 for all p < 1/2 and zero
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for p > 1/2, which is the shape of β̂(1/2, ·) implied by any increasing
u; indeed it is immediate to check that for θ = 1/2, for any increasing
u buying is better than selling if p < 1/2 and worse if p > 1/2. For the

sake of definiteness we may set β̂(1/2, 1/2) = 1/2.

Downside–risk Averse Player II . If player II types assume player
I plays the invertible strategy p, the latter’s problem at θ becomes
maxp[β̂(p

−1(p), p)−1/2][p−θ]. The strategy p is an equilibrium if this
problem is solved by p(θ) for each θ.

An equilibrium where player I’s utility is identically zero is easily
found, but it is not satisfactory for the same reasons as in the previous
section. 6

We show next that an equilibrium where player I exploits player
II s’ downside risk aversion and gets positive payoff at each θ (except
perhaps in a neighborhood of θ = 1/2) also exists.

Proposition 4. Assume Θ = [θ, θ] ⊆ (0, 1). Then exists an equilib-

rium with β̂ 6= 1/2 (and player I ’s utility strictly positive), except pos-

sibly in a neighborhood of θ = 1/2. A sufficient condition for β̂ 6= 1/2
for all θ 6= 1/2 is the following:

∀(θ̃, p̃) s.t. β̂(θ̃, p̃) = 1
2
& θ̃ 6= 1

2
lim

(θ,p)→(θ̃,p̃)

β̂θ(θ, p)

β̂p(θ, p)
= 0. (12)

Remarks. (i) Analogously to proposition 2, in this equilibrium the ma-
jority of uninformed buy high —for θ < 1/2— and sell low —for
θ > 1/2.

(ii) Assumption (12) says that when (θ̃, p̃) splits evenly the player II
population between buyers and sellers, improving things (θ going up)
has an effect of smaller order of magnitude than worsening (p increas-
ing).

Proof. We find it easier to work with the inverse function θ(p); then

player I ’s problem at θ is maxp[β̂(θ(p), p) − 1/2][p − θ], and θ is
the inverse of the equilibrium price function if the solution p is so-
lution for θ = θ(p); thus we require that the first and second or-

der conditions at θ(p) are satisfied by p. FOC is β̂(θ(p), p) − 1
2
=

(θ − p)
[

β̂θ(θ(p), p) · θ
′(p) + β̂p(θ(p), p)

]

, and requiring that this be
satisfied with θ = θ(p) means requiring that the function θ solve the
following differential equation:

β̂(θ(p), p)− 1
2
= (θ(p)− p)

[

β̂θ(θ(p), p) · θ
′(p) + β̂p(θ(p), p)

]

. (13)

6For each θ let p(θ) be such that β̂(θ,p(θ)) = 1/2. Given this (increasing)
p, for each fixed θ player I gets zero payoff for all p’s because by construction

β̂(p−1(p), p) = 1/2, and because of this he can do no better than proposing the
given p(θ).
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We shall as always work in the half-interval θ < 1/2; on the other
half the construction is entirely analogous. Let p0 be such that 1/2 <

β̂(θ, p0) < 1, and consider the solution to (13) such that θ(p0) = θ.

Then LHS(13) > 0 at p0 and θ(p0) < p0, so [β̂θ(θ(p), p) · θ
′(p) +

β̂p(θ(p), p)] ≡ dβ̂(θ(p), p)/dp < 0 at p0. We want to show —Step 1—

that as p → 1/2 the function β̂(θ(p), p) decreases to 1/2, which it may
reach at some p < 1/2 if (12) is not satisfied. This will imply —Step
2— that this solution θ(·) also satisfies the second order conditions for
I ’s problem. From this the conclusion will follow that its inverse is the
equilibrium we are after.

Step 1. By construction dβ̂/dp < 0 in a (right) neighborhood of p0;

and β̂ decreasing from β̂(θ(p0), p0) < 1 implies that θ(p)− p < 0 and

—via (13)— β̂ > 1/2.

If β̂ keeps decreasing for all p < 1/2, then as p → 1/2 θ(p) → p

(otherwise β̂ → 1, which we are assuming not being the case); hence

in this case β̂ → 1/2 as p → 1/2, and θ(p) → 1/2.

Otherwise, there is p̃ < 1/2 such that β̂(θ(p̃), p̃) = 1/2; in this case

β̂ must remain constant as p → 1/2. Proof of this: Suppose β̂ crossed
the 1/2 value downwards at p̃; then in a right neighborhood of p̃ there

would be some p with: β̂ < 1/2, θ(p) < p, and dβ̂/dp < 0; but this

contradicts (13). Suppose on the other hand that β̂ came back above

1/2; then on the right of p̃ there would be a p with β̂ > 1/2, θ(p) < p,

and dβ̂/dp > 0, again contradicting (13).

To finish step 1 we must show that if (12) holds, then β̂ > 1/2 for

all p < 1/2; so assume (12). If β̂ reached 1/2 at some p̃ < 1/2 (to

remain constant after p̃), then limp→p̃ β̂ = 1/2 and limp→p̃ dβ̂/dp = 0;
but this is impossible under (12), because: in any compact [p0, p1], θ′

is bounded, so (12) implies that for β̂ close to 1/2, dβ̂/dp is bounded
away from 0.

Step 2. First notice that β̂ non–decreasing implies that θ′ > 0. This,
incidentally, implies that the equilibrium whose existence we are about
to show is revealing. Now: the second order condition for player I ’s
problem is that for all p, at (θ(p), p)

2(β̂θ · θ
′ + β̂p) + (p− θ)

[

θ′(β̂θθθ
′ + β̂θp) + β̂θ · θ

′′ + β̂θp · θ
′ + β̂pp

]

< 0.

But by differentiating (13) with respect to p we see that the left hand

side of the last displayed relation is just equal to θ′ · (β̂θ · θ
′ + β̂p); and

we know that θ′ > 0, so the second order condition holds since we also
know that β̂(θ(p), p) is decreasing. To be precise, it is decreasing and
then perhaps constant in a right neighborood of θ = 1/2, in which case
the second order inequality becomes an equality on that neighborhood;
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but that part of strategy which makes β̂ constant at 1/2 we know is
(weakly) optimal from the previous proposition. �
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