Example of sequential equilibrium

Find the sequential equilibria of the three-player game represented below. Actions are always left or right, we just write behavioral probabilities for simplicity; π is the probability attached to the left node of 3 's information set. As usual we also write \succcurlyeq_{i} for i 's preferences. So we look for pairs of strategies (α, β, γ) and belief π which are sequentially rational and consistent. (Answer: (α, β, γ) with $\alpha=\beta=0$ and $\gamma \geq 3 / 4$ and $\pi \leq 1 / 3$)

Solution. First we show that it cannot be $0<\alpha<1$ (that is the first player cannot mix). By contradiction, suppose it were so. Then 1 must be indifferent between L and R so that $3(1-\gamma)$ must equal $1-\beta+4 \beta(1-\gamma)$ that is $2-3 \gamma=\beta(3-4 \gamma)$. Also, given $1-\alpha>0$ it is $L \succcurlyeq_{2} R$ iff $4(1-\gamma) \geq 1$ that is $\gamma \leq 3 / 4$. But then as you can easily check for no value of γ can the equality $2-3 \gamma=\beta(3-4 \gamma)$ be satisfied (for example if $\gamma<3 / 4$ then $\beta=1$ so..). Whence either $\alpha=0$ or $\alpha=1$.

Suppose $\alpha=1$. Then $\gamma=0$; but then it should be $\beta<1$ (otherwise 1 would deviate to R and get 4) which implies $R \succcurlyeq_{2} L$ that is $\gamma \geq 3 / 4$ - contradiction.

Therefore in equilibrium it must be $\alpha=0$. Given this, if $\beta>0$ then $\gamma=1$ which implies $\beta=0$ - another contradiction. Hence also $\beta=0$. To sustain the play R, R we need $R \succcurlyeq_{1,2} L$ and this is possible if γ is such that $\gamma \geq 3 / 4$. That is we need $L \succcurlyeq_{3} R$ which means $1-\pi \geq 2 \pi$ or $\pi \leq 1 / 3$.

The conclusion so far is that the sequentially rational systems are strategies (α, β, γ) with $\alpha=\beta=0$ and $\gamma \geq 3 / 4$ and beliefs $\pi \leq 1 / 3$. To finish we show that these π 's are consistent. We need sequences of fully mixed $\left(\alpha_{n}, \beta_{n}, \gamma_{n}\right) \rightarrow(\alpha, \beta, \gamma)$ and $\pi_{n} \rightarrow \pi$ with

$$
\pi_{n}=\frac{\alpha}{\alpha+(1-\alpha) \beta}
$$

Note that $\pi \leq 1 / 3$ is equivalent to $(1-\pi) / \pi \geq 2$ so it suffices to have ($1-$ $\left.\pi_{n}\right) / \pi_{n}=\left(1-\alpha_{n}\right) \beta_{n} / \alpha_{n} \geq 2$. To this end we may take $\gamma_{n}=\gamma, 0<\alpha_{n} \rightarrow 0$ and $\beta_{n}=c \alpha_{n} /\left(1-\alpha_{n}\right)$ with any $c \geq 2$ (of course $\beta_{n} \rightarrow 0$).

