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Abstract. This note contains first thoughts on awareness of unaware-
ness in a simple dynamic context where a decision situation is repeated
over time. The main consequence of increasing awareness is that the
model the decision maker uses, and the prior which it contains, be-
comes richer over time. The decision maker is prepared to this change,
and we show that if a projection-consistency axiom is satisfied unaware-
ness does not affect the value of her estimate of a payoff-relevant condi-
tional probability (although it may weaken confidence in such estimate).
Probability-zero events however pose a challenge to this axiom, and if
that fails, even estimate values will be different if the decision maker
takes unawareness into account. In examining evolution of knowledge
about relevant variable through time, we distinguish between transition
from uncertainty to certainty and from unawareness to certainty directly,
and argue that new knowledge may cause posteriors to jump more if it
is also new awareness. Some preliminary considerations on convergence
of estimates are included.
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1. Introduction

Decisions often depend on unobserved variables, and a distinction has
been made between those whose relevance the subject is aware of and those
which are ‘totally out of her mind’. The concept of awareness was formally
introduced in Modica–Rustichini [15] where it was defined as the union of
certainty (“I know”) and ‘conscious uncertainty’ (“I do not know but I know
I do not know”). The literature has progressed significantly from [15] to
Heifetz–Meier–Schipper [9], and we briefly report on that at the end of this
section. Two issues that are still largely unexplored are time and awareness
of unawareness, the underlying question being, Does the distinction between
uncertainty and unawareness have a bearing on decisions? In particular, If
the decision maker is ‘aware of unawareness’, what should she do? This note
presents first thoughts on these matters.

In a simple setting where a decision situation occurs repeatedly we fo-
cus on the probability judgments on which decisions are based. We ask how
these judgments might be affected by the fact that awareness of relevant
aspects/variables of interest typically increases through time, this evolution
being experienced by, hence known to, the decision maker. In our model the
latter is interested at t in the value of a binary variable —one may think of
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an asset being high or low— at t+ 1. We show that under an ‘unawareness
projection’ condition, the point estimate of the relevant conditional prob-
ability is unaffected by awareness of unawareness. The result is presented
and critically discussed in section 3. Obviously, it is reasonable to think that
the dm’s confidence in this estimate is lower the less complete she thinks
her current model is; this issue is not covered by this paper.

With a dynamic model in hand we also give a first look at the learning
process, where increasing are both the set of variables which the subject
is aware of and the set of variables which she actually observes. Indeed,
if we follow the state of the subject’s knowledge about a single variable in
the course of time we may see it passing from unawareness to awareness and
then —perhaps at the same time— to certainty. Accordingly, we will look at
the two transitions: unawareness to awareness in general; and the particular
transition from unawareness directly to certainty (the latter is quite com-
mon, for often one becomes aware of something by ‘involuntarily’ observing
its effects). Concerning the former, the moment the individual becomes
aware of the relevance of facts which had previously escaped him, a different
view of the situation —past and future— materializes. We will trace the
effects of this on subjective probabilities and see how priors change on these
occasions. For priors we offer an explicit unawareness–based rationalization
of phenomena —unawareness and changing priors— which are informally
widely discussed in the statistics literature. 1 The direct transition form
unawareness to certainty must be contrasted with that from (conscious) un-
certainty to certainty: the first time a variable becomes observed, can it
make a difference on posteriors whether the subject was previously aware of
it or not? We argue that new knowledge which is also new awareness may
have a stronger impact because the latter often gives a better understanding
of the past.

Related Unawareness Literature. An extensive bibliography on un-
awareness has been collected by Burkhard Schipper [21]; we only mention
a few papers more or less directly related to the topic of the present note.
Probabilistic beliefs are introduced in Heifetz–Meier–Schipper [9] and Sadzik
[20], the former also dealing with Bayesian games. The concept of awareness
of unawareness is tackled, in the context of syntactic models of higher-order
logic, by Ågotnes-Alechina [1], Board-Chung [2], Halpern-Regô [7] and Sil-
lari [22]. Time is introduced in analysis of solution concepts for dynamic
games in Feinberg [6], Li [14], and Regô-Halpern [18].

1For instance, Hill [10] writes: “[...] one makes an initial specification of model and
prior, but certainly one knows that this does not fully represent his background knowledge,
much less the truth, and consequently when the data strongly suggest a broadening,
[...] one must feel completely open to respecify both the original model and the prior
distribution. This may seem to be too adhoc, but I believe it is the only sensible way to
do statistics. [...] The only problem is the difficulty in realistically specifying a “prior”
distribution for parameters that one hadn’t explicitly recognized before seeing the data.”
And Poirier [17], who calls these ‘post–data priors’, writes: “I believe such priors exist
before the data, but that the difficulties of formulating priors cover them up. The data
encounter that provokes the window [i.e. model] switch awakens the researcher [...] to
rediscover this latent prior.”
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Related Economics and Decision-Theoretic Literature. The broad
Economics issue to which the present discussion belongs is that of model
uncertainty. It is a deep area of growing importance — the topic was at
the center of Hansen’s 2007 Richard Ely Lecture, see [8], and at the heart
of Weitzman’s explanation of the equity premium puzzle, see [23]—, in the
context of which this note only makes a couple of marginal points, as we
explain in this paragraph. In a more specific Decision-Theoretic context,
Kilbanoff-Marinacci-Mukerji [12] axiomatize recursive preferences in a dy-
namic context (extending their atemporal results in [11]) by way of a func-
tional involving probabilities on probabilities, or ‘second order probabilities’
as they call them, which are also the central object of the present paper.

The difference between model uncertainty with and without unawareness,
and thus between the question we ask and the ones which are discussed in
the literature to which we are referring, lies in the order of uncertainty. In
that literature uncertainty concerns the models the agent can describe, in
particular the possible probabilities underlying them. In the present setting
the agent has no uncertainty about the model she can describe, in the sense
that she is able to assess uniquely probabilities governing that model; on
the other hand she is uncertain about what other models, which she is
unable to conceive, might in fact be the true ones. So our question might
be phrased thus: Beyond the uncertainty the agent may have on the models
she can describe, does the higher layer of uncertainty, about models which
she cannot describe, have a further impact on her behaviour?

In the sequel of the paper, after describing the setup in the next section,
we discuss priors and estimation in section 3, and changes of the subject’s
model following occurrence of new awareness in section 4. A concluding
comment is added in section 5.

2. The setup

Process and Agent. σt ∈ Σ is the state of the world at t ∈ T = {1, 2, . . . },
which evolves as a time–homogeneous Markov process; and yt ∈ Y = {0, 1}
is a high–or–low dividend of an asset, whose value at t + 1 depends on σt

and yt and is conditionally independent of σt+1. That is, with P denoting
the probability on (Y × Σ)T governing the process, we take

P (yt+1, σt+1 | (ys, σs)s6t) = P (yt+1 | yt, σt) · P (σt+1 | σt) .

At each t the decision maker is interested in the probability that yt+1 = 1
conditional on her information —because, say, she bets at t on the value of
yt+1.

The set Σ. There is a countable set {φ1, φ2, . . . } of ‘facts’ by which each
state can be fully described; that is, we take

Σ = {0, 1}{φ1,φ2,... }

so that at each t, σt is a sequence of zeros and ones corresponding to which
facts are true and false. For more compact notation we set

Φ = {y, φ1, φ2, . . . } and Ω = {0, 1}Φ
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so that the value of the asset is included in the description of the state, and
P is on ΩT. We may write ω = (y, σ), with σ ∈ {0, 1}{φ1,φ2,... }.

Agent Information. For each t, this is a σ–field Ft in ΩT, to describe
which we define, for L ⊆ Φ:

• ωL as the restriction of ω ∈ Ω to L;
• ω̃L

t : ΩT → {0, 1}L by (ω1, ω2 . . . ) 7→ ωL
t ; and

• for φ ∈ Φ, φ̃t = ω̃
{φ}
t , so that φ̃t((ω1, ω2 . . . )) = ωt(φ).

The function ω̃L
t just says whether the facts in L are true or false at t along

a path; and φ̃t does the same for the single φ. 2

At each t the agent observes the value of the asset yt, plus some other
coordinates of ωt, i.e. some facts; we let Lt ⊆ Φ be the set of coordinates
observed at t. She does not forget past information (e.g. if she observes at
s that φ is true, then at t > s she remembers that φ was true at s); and
Ls ⊆ Lt if s < t (if she observes the value of φ at s then she will be able to
observe it at any t > s). Then, for some Lt ⊆ Φ and tφ 6 t, φ ∈ Lt it is

Ft = σ({φ̃s : φ ∈ Lt, tφ 6 s 6 t}) ,

where σ(·) denotes here the sigma field generated by (·); with tφ denoting
the first time fact φ is observed, Ft describes which coordinates the agent
observes at t and since when (for example we are assuming that y ∈ Lt for
each t, i.e. ty = 0). Writing φs ∈ Ft (with s 6 t) will have the obvious
meaning.

A superset of Lt, denoted by At and also increasing with t, will represent
the set of variables whose relevance the subject is aware of —those which she
can list ‘by their names’. Those in At \ Lt are not observed though present
to the subject’s mind.

Estimation Goal. In the notation just introduced, the subject is interested
in P[ỹt+1 = 1 | Ft], which she has to estimate. The process law P is unknown
to her.

A benchmark case is that of full awareness, At = Φ, with lack of knowl-
edge, Lt ⊂ Φ increasing through time, which is a hidden Markov model
generalized to observing a more and more precise signal about unobserved
variables, in the infinite–dimensional binary regression setting. In this situ-
ation the Bayesian subject would start with a prior µ on ΩT (which makes
sense because A0 = Φ), update it to µ(· | Ft) and estimate the probability
of yt+1 = 1 given the data as µ[ỹt+1 = 1 | Ft].

Examples. Here are some simple examples to which we come back at the
end of section 4. The first three are simple situations where the {σt} process
is iid, and we assume that the agent begins by observing just the value of
y and is aware of nothing which may influence its evolution besides past
values of y itself.

2Here the subscript obviously refers to time; to avoid confusion with the index of φ in
the set {φ1, φ2, . . . }, in the sequel subscripts will always indicate time, and different facts
will be denoted by different letters, like φ, ψ etc.
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Example 1. The value of y at t + 1 depends deterministically on the value
of a certain φ ∈ Φ \ {y} at t:

P[ỹt+1 = 1 | ω̃t] =

{
1 if φ̃t = 1
0 if φ̃t = 0

,

and P[φ̃t = 0] = P[φ̃t = 1] = 1/2 for all t > 0 (where t is time).

Example 2. Here φt triggers change in yt+1:

P[ỹt+1 = yt | ω̃t] =

{
1 if φ̃t = 0
0 if φ̃t = 1

,

with P[φ̃t = 0] = P[φ̃t = 1] = 1/2 for t > 0 as before. Here the value of yt+1

depends also on yt.

Example 3. In this variant φ ‘acts’ only if on a pair with another ψ ∈ Φ:

P[ỹt+1 = 1 | ω̃t] =

{
1 if φ̃t = ψ̃t

0 if φ̃t 6= ψ̃t
,

and P[φ̃t = a, ψ̃t = b] = 1/4 for any a, b = 0, 1 and t > 0. In this case
P[ỹt+1 = 1 | ỹt, φ̃t] = 1/2 for any value of (ỹt, φ̃t).

In each of these cases what the agent observes are repetitions of Bernoulli
trials with probability 1/2 (which she can confirm if observations are re-
peated for long enough). How should her estimates be influenced if she
suspects that any of the three above underlying processes may govern evo-
lution of y?

Example 4 (Markov dynamics). We sketch here a ‘minimal’ non–trivial
dynamics. The subject is aware of two facts φ and ψ, and only the first
is observed; φ is thought to be negatively autocorrelated, ψ positively; and
both are thought to have positive influence on y. More uncertainty concerns
their joint effect, in that the subject thinks that: either both P[ỹt+1 = 1 |
ψ̃t = 0, φ̃t] and P[ỹt+1 = 1 | ψ̃t = 1, φ̃t] depend significantly on the value of
φ̃t; or the former does but the latter does not, and it is high; in other words
perhaps ψ = 1 has an overwhelming influence, perhaps not. Here the more
the observed relative frequency of the transition from yt to yt+1 = yt depends
on the value of yt, being higher when yt = 1, the more the hypothesis of
large impact of ψ = 1 is favored.

Related Statistical Literature. Two strands of literature treat special
cases of this model: that on nonparametric binary regression and that on
hidden Markov models. In both cases the subject is aware of everything
from the beginning, At = Φ all t.

The first, cfr. Diaconis–Freedman [4, 5], deals with the case where Lt = Φ
at all t, yt is independent of ys, s < t and the σt are independent, uniformly
distributed:

P(ωt+1 | {ωs}s6t) = P(yt+1 | σt) · λ(σt+1), (1)
with λ uniform. Writing P[ỹt+1 = 1 | σt] = f(σt), they study —and under
quite general conditions demonstrate— convergence to f of the posteriors,
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starting with a prior on f of the form
∑∞

k=0wkπk /
∑∞

k=0wk , where πk is
supported on the class of functions f which depend only on the first k
coordinates.

Hidden Markov models (HMM), cf. e.g. the recent book by Cappé-Moulines-
Ryden [3], have Lt = L ( Φ constant over time, and letting H = Φ \L have
P of the form

P(ωt+1 | {ωs}s6t) = P(ωL
t+1 | ωH

t ) · P(ωH
t+1 | ωH

t ).

The purpose there is to estimate the current value of unobserved variables
(we are interested in estimating the effect of unobserved variables on future
observed ones).

It is to be stressed that when L 6= Φ the observed process is not Markov:
P(ωL

t+1 | {ωL
s }s6t) 6= P(ωL

t+1 | ωL
t ). The simplest example to see this is the

following: there is an unobserved variable taking three possible values a, b, c
which evolves deterministically: a → b → c → a (so it is Markov) and the
observed y is with y(a) = y(b) = 1 and y(c) = 0; then y is also deterministic
but not Markov (given yt = 1, the value of yt+1 depends on yt−1).

3. Unawareness and Priors

Awareness States. At time zero our individual can list only a set A0 ⊆ Φ
of facts which may be related to the evolution of y —the initial awareness
set—, and she thinks that this A0 may not be exhaustive (recall A0 3 y).

Being aware of the relevance of the facts in A0 means having some idea
about their joint evolution, and, in the context of this Bayesian model, we
formalize this as being able to assess a prior α(0) on the paths on {0, 1}A0 .
Then, from an ex–ante point of view, being aware of k new facts, that is
forming an idea about their interaction with those already in the picture, can
be formalized as specifying a prior α(k) on the paths on {0, 1}A0∪{`1,...,`k},
where {`1, . . . , `k} is just a set of meaningless ‘labels’ —it is the specification
of α(k) which gives them meaning. At time zero uncertainty concerns k and
the meaning these labels can acquire, that is, about k and α(k); and for
each α(k), about the possible realizations of a still richer prior α(k+ k′) on
the spaces of paths on {0, 1}A0∪{`1,...,`k+k′}, for some k′ > 0. The α(k)’s are
interpreted as awareness states. Starting from α(0), realization of an α(k)
occurs when k new facts are conceived which enter the picture as specified in
α(k); the interpretation is analogous for subsequent steps. Before writing all
this more precisely we now describe the construction in a concrete situation.

Illustration. In general, estimation is complicated by the fact that as we
have seen the observation process is not Markov; and this is why we have
to speak of laws on the space of paths. In this illustration we eliminate this
problem to ease exposition by assuming that the {σt} process is independent:

P(ωt+1 | {ωs}s6t) = P(yt+1 | ωt) · P(σt+1). (2)
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It is a slightly generalized version of the Diaconis–Freedman setting, in that
yt+1 may depend on yt besides σt. Then

P(yt+1 | Ft) =
∫
{0,1}Φ\Lt

P(yt+1 | Ft, ω̃
Φ\Lt

t ) P(dωΦ\Lt

t | Ft)

=
∫
{0,1}Φ\Lt

P(yt+1 | ω̃t) P(dωΦ\Lt

t | ω̃Lt
t ) = P(yt+1 | ω̃Lt

t ).

Thus in this case estimating P[ỹt+1 | Ft] amounts to estimating the prob-
ability of success P[ỹt+1 = 1 | ωLt

t ] for each ωLt ∈ {0, 1}Lt in a Bernoulli
scheme, as in Diaconis–Freedman [4, 5].

Suppose now that A0 = {y}. In this context an α(0) specifies what the
subject thinks of the starting value of y and of the dependence of yt+1 on yt,
hence it is determined by a prior on the initial value of y and an estimated
two–by–two transition matrix linking yt and yt+1. 3 Taking A0 = {y} means
that she can think of nothing which may influence y (besides itself); still,
she can imagine that there are other forces at play; for example, she may
imagine that there is one fact `, k = 1, on which y depends (α(1) here
links yt+1 to yt and `t); and she may think she might judge this fact to be
‘crucial’, or on the contrary not very influential; that is, at time zero she
will have a prior on the possible forms α(1) will take. Similarly, she can
think of the possibility of becoming aware of two relevant facts, which as of
time zero may have any kind of joint influence on y; and this means having
a prior on the possible future priors α(2), where each α(2) is an estimate of
the dependence of yt+1 on yt, `1t and `2t. And so on. Next: the discovery of
e.g. a ‘crucial’ factor related to y may influence the (subjective) probability
of discovering further crucial elements —she may think that after a crucial
discovery it will be less likely that she will make another important one,
or perhaps she may think the opposite, that further important findings are
positively correlated with the first. In other words, each realization of α(1)
may influence the possible evolution of the subject’s ideas on the process;
for example for different α(1)’s she will have possibly different priors on
subsequent realizations of α(2) (and α(3), α(4), etc.). The same applies to
any k and k + k′.

Priors on priors. To formalize let N0 = ∅, Nn = {1, 2, . . . , n}, n ∈ N, and
N∞ = N; define a set of possible ‘formal completions’ of A0 to a candidate
Φ–set by letting, for 0 6 k 6 ∞, Φ(k) = A0 ∪ {`i : i ∈ Nk}; and let
Ω(k) = {0, 1}Φ(k) and A(k) = M

(
Ω(k)T)

—the set of probabilities on Ω(k)T.
Elements A(k) are the awareness states.

Then the subject’s view at time zero of the possible evolution of her
awareness, starting with A0 ⊆ Φ and α(0) ∈ A(0), is described by: a prior

3In this case there are iid repetitions: every time yt is, say, equal to 0 the transition
to yt+1 is governed by the same unknown probability P[ỹt+1 = 1 | ỹt = 0], which has
to be estimated. Here the subject will assess a non-degenerate prior on the value of this
probability, which she then updates as data come in. The estimate in the text should be
thought as the average of this subjective distribution (this is the usual Bayes estimate,
arising from a quadratic loss function).
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π(α(0)) ∈ M
(
∪k>0A(k)

)
, and for each α(k) ∈ A(k) a prior π(α(k)) ∈

M
(
∪k′>0A(k + k′)

)
.

Remarks. (1) π(α(k)) also contemplates the possibility of being aware of no
new facts, event represented by all priors in ∪k′>0A(k + k′) which give no
role to the coordinates in Φ(k + k′) \ Φ(k).

(2) Define the expected belief in A(k + k′) determined by a given α(k) ∈
A(k), denoted α(k + k′;α(k)), by

α(k+k′;α(k))(X) = π(A(k+k′))−1

∫
A(k+k′)

α(X)π(α(k))(dα), X ⊆ Ω(k+k′)T.

The ‘looking forward’ restriction: for X ⊆ Ω(k + k′ + k′′)T

α(k + k′ + k′′;α(k))(X) =
∫
A(k+k′)

α(k + k′ + k′′;α)(X)π(α(k))(dα)

would then imply that π(α(k)) need only be specified on A(k + 1).
(3) The realization of awareness state α(k) coincides with the subject

becoming aware of k new facts; if this occurs at time t, at that time the
labels `1, . . . `k become ‘real’ φ ’s in Φ, and the awareness set A0 is enlarged
to a corresponding At ⊆ Φ .

A Consistency Axiom. We will state an axiom concerning the subject’s
‘internal’ ex-ante consistency, analogous to the projective system of priors of
Heifetz-Meier-Schipper [9]. The idea is that if the subject thought that the
next awareness state would occur with a different average prior than current
on the variables she is already aware of, she would start using that today.
This conflict can be avoided by imposing the following ‘looking backwards’
restriction. Let the marginal of α(k + k′;α(k)) on Ω(k)T be defined in
the natural way by identifying a path x ∈ Ω(k)T with the set of paths
{z ∈ Ω(k + k′)T : ∀t ∀i 6 k zt(`i) = xt(`i)} in Ω(k + k′)T; denoting this
marginal by α(k + k′;α(k))|Ω(k)T , then the axiom requires that it be the
same as α(k):

Projection Consistency:

α(k + k′;α(k))|Ω(k)T = α(k) . (3)

Remarks. (1) Notice the case of infinite A0, or more generally of an α(∞) ∈
A(∞) realized at some later time. In this case since A(∞ + k′) = A(∞)
we get a map taking α(∞) ∈ A(∞) to π(α(∞)) ∈ M(A(∞)), i.e. a Markov
process on A(∞) (where the index is not a time index: it may take any time
to get from a state to another). Also, given α(∞), the average α(∞;α(∞))
defined as before by α(∞;α(∞))(X) =

∫
A(∞) α(X)π(α(∞))(dα) for X ∈

Ω(∞)T is again in A(∞); then (3) says that α(∞) is stationary, for it reads
α(∞;α(∞)) = α(∞), that is

α(∞)(X) =
∫
A(∞)

α(X)π(α(∞))(dα), X ⊆ Ω(∞)T.

(2) The notation being already overburdened the following point has been
postponed: any α(k), once realized and as long as ‘in use’ (i.e. before the
next awareness state materializes), is updated each period in the light of the
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incoming data; in other words it becomes an α(k)[· | ω̃Lt
t ], call it αt(k). The

consistency restriction (3) refers to the latter; that is, the α(k) appearing in
that equation should be replaced with αt(k).

Given an awareness state αt(k) at time t, the subject has average beliefs
α(k + k′;αt(k)), k′ > 0 on larger potentially relevant spaces; what use
should she make of them in estimating future values of y? The following
result shows that Projection Consistency implies that at least as far as the
value of her point estimate of the probability that yt+1 = 1 is concerned,
the answer is None —she can ignore them.

Proposition. Suppose that the subjective probability of yt+1 = 1 at t
given current awareness is arrived at by averaging over k′ > 0 the values
obtained via the expected beliefs α(k+k′;αt(k)). Under Consistency (3), the
resulting probability is the same as that obtained directly via αt(k).

Proof. Fix any k′, and let A = Φ(k) and U = {`k+1, . . . , `k+k′}. The esti-
mate based on β ≡ α(k + k′;αt(k)) given current awareness is∫

β
(
yt+1 | {ωA

s }s6t, {ωU
s }s6t

)
β

(
d{ωU

s }s6t | {ωA
s }s6t

)
,

that is β(yt+1 | {ωA
s }s6t); but axiom (3) implies that this is the same as the

value obtained via αt(k). �

The result states that he value of an estimate based on current awareness
state should be not altered by mental constructions with no ‘real’ coun-
terparts. If this is so, estimation proceeds as follows: use the initial prior
α(0) ∈ A(0) (on the paths on {0, 1}A0), and update it to get at each t the
estimate α(0)[ỹt+1 | ω̃Lt

t ], until a new awareness state occurs, say at tk, in
the form of a prior α(k) ∈ A(k), at which moment start again by using and
updating this one to get the estimate α(k)[ỹt+1 | Ft] for t > tk until another
awareness state occurs; and so on. In other words, under (3) the π system
is not needed as far as estimation is concerned.

We stress that the above proposition does not imply that the π is useless
altogether, for assessing one’s view of the possible evolution of the current
awareness state determines the degree of confidence in current estimates.
Indeed, it should be possible to use the present framework to argue that if
the decision maker has a finite amount of money to bet over time, she will
shift investments to later dates the more the larger the amount of relevant
information she feels she is currently unaware of. Of course, even for esti-
mation purposes the π system is necessary if condition (3) is violated, and
this can happen as we discuss next.

Awareness of Unawareness and Events of Probability Zero. As
pointed out by a referee to whom I remain in debt, there is an impor-
tant qualification to the above axiom and proposition. The critical point
concerns events which under the current model have zero probability. To
visualize consider an example suggested by the referee, about the possibil-
ity that some individual correctly guesses a sequence of random numbers.
To aid the discussion let y denote guessing right/wrong, and assume that
our decision maker, being aware of nothing that may influence the process,
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attaches probability zero to any y-path containing only right guesses (per-
haps after a short learning span). Let now ` be a label such that an α
including ` (besides y), say α(`), gives positive probability to right guessing.
Then axiom (3) prescribes that ex-ante, when the agent does not suspect of
anything which might possibly give rise to a non-zero probability of right
guessing, she should give zero π-probability to α(`) —which, incidentally,
would imply that she should accept to bet any amount at any odds against
right guessing. But this does not seem compelling; indeed, it does not sound
irrational to be unwilling to enter those bets on the basis of an assignment
of positive probability to unconceived worlds where events which have zero
probability in the perceived world have positive probability. If the agent
makes such probability judgments in violation of axiom (3), her subjective
π system affects estimated probabilities, and concretely the bets she is will-
ing to enter.

Whether the decision maker assigns them probability zero or not, un-
conceived worlds contradicting her initial view are sometimes the real ones,
so that evidence accumulates which challenges the current view of reality.
In the guessing example, the predictor might know the algorithm generat-
ing the sequence; then the ex-ante zero-probability event of continued right
guessing occurs. What happens to the agent’s π and/or awareness state?
Most likely, in our view, she will not have to modify her π system, for she
will soon come up with one or indeed more concrete stories which would
reasonably give rise to the observed outcome with positive probability; that
is, she will become aware of new things, and leave αt(k) for a new awareness
state. In other words, observing zero-probability events is in our view a
common route to expanded awareness states.

Convergence to P. Going back to estimation —and recalling that the
decision maker’s purpose is that of getting, over time, at the true, P-based
probability that y = 1 next period—, there are three problems specific to
the present model: (i) At ( Φ; (ii) Lt ( At; and (iii) the sets Lt and At are
not constant. As long as At ( Φ we can only talk about convergence to the
marginal of P on the paths on {0, 1}At ; as long as Lt ( At, some variables
in At will be ‘hidden’; and lastly, any convergence result relies on observing
some phenomenon (or at least its effects) for long enough, so the lack of
constancy of our observation sets is another complication.

Starting from the last point: given that Lt and At increase, all we can do
is fix, given t, L = Lt and A = At and look at the projection of the process
on L and A. Of course as time passes that L will no longer be equal to
current Lt, the latter having become presumably larger —but this problem
is unavoidable given that Lt varies with time.

Since the process on {0, 1}A is in general not Markov (by the same ar-
gument as on page 6), the HMM methods for extracting information on
variables in A \ L do not apply. One possibility is to aim at convergence in
the space of paths on {0, 1}L, for which one can appeal to existing results
on merging (‘weak merging’, given that at t we are only interested in yt+1) à
la Blackwell–Dubins, cf. Lehrer–Smorodinsky [13], which require conditions
relating the initial prior to (the projection on L of) the true P : if those
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conditions are met, we get convergence for each fixed L. An alternative, at
least for finite A, is to estimate the (marginal) Markovian dependence in
the {ω̃A\L

t } process, by HMM methods; this would be more in the spirit of
bounded rationality. Some results on convergence of maximum likelyhood
estimators are in [19].

The bottom line for convergence of estimates of observed variables seems
to be the following: if the agent is confident that Lt is approaching Φ,
then she can be also confident that her estimates become good as time goes
by. Otherwise, she can trust her estimates concerning marginals on L’ s
observed for long periods; but such estimates can only be good on average
(with respect to unobserved variables), and so their value will depend on the
environment in which the decision maker operates. Take for concreteness
example 1 on page 5, where there is a φ ∈ Φ such that yt+1 = 1 iff φt = 1 and
φ is zero or one with probability 1/2 each t; suppose the subject is aware of
nothing; then he essentially observes an iid fair coin, and after long enough
she will find this out, i.e. will estimate that next value of y will be zero or
one with probability 1/2; this is indeed correct on average; but it is not of
much help if she is betting against somebody who observes φ !

4. New Awareness and Posteriors

We now discuss how priors are updated when new knowledge and/or new
awareness actually occurs. The sigma–field Ft records the facts which get
to the stage of being observed, and when a fact unobserved at t − 1 is
observed at t we see a corresponding change in Ft. Can this change be
different according to whether the subject was aware of the given fact at
t − 1 or not? According to the usual awareness definition it cannot: there
is no distinction there between the transition from conscious uncertainty to
certainty and that from unawareness to certainty.

But, suppose we are at t and s < t. If φs 6∈ Fs, i.e. the subject did not
observe φ at s, then either she could not (although she would have wanted
to), or she could but did not (and hence she was not aware of φ at s, for if
she had been and could have observed φ, she would have). If it is for the
first reason, observing φt can give no additional information on φs, s < t
—this we will call ‘new knowledge’—; if it is for the second, then φt ∈ Ft

implies that at t she has realized the relevance of φ, and then not only will
she record φt, but also φs, s < t as far as she can —‘new awareness’, gives
hindsight. The two concepts may be then distinguished as in the following

Definitions.

(i) the subject has new knowledge of φ at t if t = min{s : φs ∈ Fs};
(ii) the subject has new awareness of φ at t if she has new knowledge of

φ at t and there is s < t such that s 6 s 6 t implies φs ∈ Ft.

Then, whether φs 6∈ Fs for one reason or the other will have consequences
the first day t > s when φt ∈ Ft: new knowledge adds just one piece of data
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to Ft; new awareness brings in a whole bunch of new data, and in this way
it may have more impact on behaviour through probability updating. 4

Priors and Posteriors in the Examples. We come back to the examples
of page 4. In the first two we supposed that the agent observes just the value
of yt, and is aware of nothing which may influence its evolution. Then, in
both versions he effectively observes repeated tosses of a fair coin: P[ỹt+1 =
1 | {ys}s6t] = 0.5 for all {ys}s6t. And as long as she does not observe φ
she can learn nothing about the underlying, hidden process. In the first for
example, even if she were aware of φ she could never distinguish, without
data on it, the true model from one where φ had no influence whatsoever
on y, as it would be for example with an arbitrary distribution for φt and
P[ỹt+1 = 1 | φ̃t] ≡ 1/2.

The contrast between new knowledge and new awareness is particularly
sharp in these situations: suppose that she is aware of φ from the outset,
and that t is the first time she observes φ (‘new knowledge’); all is as before
up to time t, and from t onwards her estimate of P[ỹs+1 = 1 | ỹs, φ̃s] is
updated as data on the dependence of yt+1 on φt start accumulating. Sup-
pose instead that she is initially unaware of φ until, at time t, not only does
she becomes aware of it, but also observes its current and past values (‘new
awareness’); this has obviously a larger impact on her estimate immediately
at t. Examples 1 and 2 are of course extreme cases, but more generally one
may argue that in some concrete situations (stock market trading for ex-
ample), some discontinuities in behaviour may be the consequence of many
agents becoming aware of some relevant variables at the same time. In the
third example ‘new awareness’ of φ alone makes no improvement at all, for
the observation process remains an iid sequence.

In the context of example 4 with Markov dynamics we can look at the
impact of new awareness without knowledge on priors and estimates. As
we observed, in that example the more the observed relative frequency of
the transition from yt to yt+1 = yt depends on the value of yt, being higher
when yt = 1, the more the hypothesis of big impact of ψ = 1 is favoured. In
that case, following long strings of y = 1, chances are that ψ = 1 and so no
weight is given to the value of φ for prediction of future y; while following
time spells with high variability of y chances are higher that ψ = 0 and
the value of φ will be more decisive. In the example the subject is aware
of φ and ψ from time 0, but consider now what would happen if she were
unaware of ψ at the beginning and became aware of it at a later time. Then
until unawareness persists the subject can make no use of her observations
on y to calibrate her estimated current influence of φ on y —which is quite
different from the picture with awareness of both φ and ψ. So in this case the
acquisition of new awareness, even without knowledge, has a sizable impact
on estimates through the change in the subject’s model which it generates.

4Terminology is imprecise in the definition in that ‘new awareness’ is really ‘new aware-
ness plus new knowledge’, but we are considering the first time a fact becomes observed
here: the situation of becoming aware of φ at t and not knowing its value implies that
then φt 6∈ Ft because she cannot observe it; and assuming that φs ∈ Fs ⇒ φt ∈ Ft (recall
s < t), it must also be φs 6∈ Fs for s < t. So the first date u such that φu ∈ Fu it will be
‘new knowledge’.
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5. Concluding Comment

The message of this note is that a decision maker in an imperfectly known
world should be prepared to change her views, i.e. her model. This will affect
her confidence in current probability estimates, but perhaps also their values.

The decision maker has been viewed in isolation, but the message would
become sharper and, more importantly, richer in an interactive context. For
when consequences depend also on others’ behaviour, changes in one’s view
typically, and often painfully, occur by observing others’ actions and payoffs.
And in that context observation of actions and payoffs often suggest precise
directions in which one’s model should be revised.
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