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1 De�nition of Bayesian Game and Bayesian Equilibrium

In Bayesian games - like Battle of Sexes with uncertainty - payo�s depend on action pro�les

a = (a1, . . . , an) ∈ A1×· · ·×An = A but also on type pro�les t = (t1, . . . , tn) ∈ T1×· · ·×Tn =

T . So ui = ui(a, t); and for reasons clear in a moment ui is assumed to be a vNM utility. Note

that each t determines a game on A (with payo�s ui(a, t)). Type pro�les are also referred

to as states. The sets A and T are assumed �nite; and we write a = (ai, a−i), t = (ti, t−i)

with obvious meaning. On T there is a commonly known prior distribution P , which assigns

positive probability to each ti, formally P (ti) := P ({ti} × T−i) > 0 for all ti. Player i is

informed of her type ti and updates probabilities on T−i by conditioning on ti; thus she may

use probabilities P (t−i | ti) = P (t)/P (ti). A pure strategy of player i is a function si : Ti → Ai

from types to actions, that is ti ∈ Ti 7→ si(ti) ∈ Ai. A pro�le of pure strategies is denoted

by s : T → A where t 7→ s(t) = (s1(t1), . . . , sn(tn)). The payo� of i under s is taken to be

expected utility:

ui(s) :=
∑

t
ui(s(t), t)P (t). (ex-ante)

So the game is de�ned by strategies si : Ti → Ai and payo�s as above. A pure-strategy

Bayesian equilibrium is a Nash equilibrium of this game, that is a pro�le s∗ such that ui(s
∗) ≥

ui(si, s
∗
−i) for all i, si. The idea is always the same: mutual best responses.

Write s(t) = (si(ti), s−i(t−i)). Then

ui(s) =
∑

ti
P (ti)

∑
t−i

ui(si(ti), s−i(t−i), ti, t−i)P (t−i | ti).

Since P (ti) > 0 for all i this expression shows that, given s−i, the strategy si which maximizes

ui from the ex-ante perspective (as in (ex-ante) above) is such that for each ti the chosen si(ti)

maximizes, with respect to ai, the conditional expectation
∑

t−i
ui(ai, s−i(t−i), ti, t−i)P (t−i |

ti) relevant after observing ti. This is the usual way to look for and compute equilibria: s∗ is
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an equilibrium if for all i for each ti the action s∗i (ti) solves

max
ai

∑
t−i

ui(ai, s
∗
−i(t−i), ti, t−i)P (t−i | ti).

Notice that we can view the game as being played by the T1+ · · ·+Tn players (i, ti), where

(i, ti) has action set Ai and payo�
∑

t−i
ui(ai, s

∗
−i(t−i), ti, t−i)P (t−i | ti).

Remark. In some examples further down the line we are going to have a continuum of types.

In those cases expectations are integrals, but they will mostly be elementary.

2 First examples

2.1 Simplest Battle of Sexes with uncertainty

The game is described in Osborne: player 1, the boy, is uninformed of the type of player 2,

the girl, who has two types, say l and r for left and right. The relevant payo� matrices are

the following:

B S

B 2, 1 0, 0

S 0, 0 1, 2

B S

B 2, 0 0, 2

S 0, 1 1, 0

and each has, from the point of view of player 1, probability 1/2. Let us look for pure

equilibria. If the boy plays S then l plays S and r plays B (best responses of course), that is

the girl plays SB ; but then the payo� of 1 under S is 0.5 ∗ 1 + 0.5 ∗ 0, while by playing B he

would get 0.5 ∗ 0 + 0.5 ∗ 2; so there is no equilibrium where 1 plays S. If he plays B then she

would play BS and he would get 1, while S would yield him 0.5. Thus the pro�le (B,BS ) is

an equilibrium.

In terms of the game played by (1, (2, l), (2, r)) - with obvious notation for the girl's

strategies, we get the following payo�s - in the order (1, (2, l), (2, r)) - where asterisks mark

best responses:

BB BS SB SS

B 2∗, 1∗, 0 1∗, 1∗, 2∗ 1∗, 0, 0 0, 0, 2∗

S 0, 0, 1∗ 0.5, 0, 0 0.5, 2∗, 1∗ 1∗, 2∗, 0

which con�rms that (B,BS ) is the only pure equilibrium of the game.
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2.2 Opponent of unknown strength

Again player 1 has one type, player 2 has two types t and t′, and player 1 is uninformed about

2's type. The interpretation here is that player 1 is uninformed of the strength of player 2.

Type t has probability p. For both actions are F for �ght and Y for yield. The respective

payo� matrices are the following (the strong t type of 2 is on the left):

F Y

F −k,1 1, 0

Y 0, 1 0, 0

F Y

F 1,−1 1, 0

Y 0, 1 0, 0

You are player 1. Look at the payo�s. The strong opponent will �ght for sure; the weak

one only if you yield. So if you �ght you get −kp+ 1− p = 1− (1 + k)p; if you don't you get

zero. So you �ght if 1− (1 + k)p > 0 that is p < 1/(1 + k). Thus the equilibrium is (F,FY )

if p < 1/(1 + k), and (Y,FF ) otherwise. Notice how the range of π where you �ght shrinks

as k gets larger (of course!).

2.3 Entrant/Incumbent

Player 1 is a potential entrant and has a single type; player 2 is the incumbent and is of two

possible types t, t′. He is of type t with probability p, assumed ̸= 1/2 to avoid unnecessary

complications. The actions for 1 are E,N - for entry or not - and for 2 are A,F - for

accommodate or �ght. The two possible payo� matrices are the following (only di�erence

marked as bold), where again we can interpret the left type of the incumbent as �strong�:

A F

E 1, 1 −1,2

N 0, 3 0, 3

A F

E 1, 1 −1,−1

N 0, 3 0, 3

We may look for equilibria where 1 enters, then for equilibria when 1 does not. Note that

if does not enter he gets zero for sure. If 1 enters then player 2 plays FA, in which case E

yields 1− 2p, and this is positive i� p < 1/2. Therefor there is an equilibrium where 1 enters

only for p < 1/2, in which case the equilibrium is (E,FA).

Next look for equilibria where 1 plays N . Every strategy of 2 is a best reply to N ; we

must select those against which N is best reply. Best reply to AA is E, so AA is out. From

the above computation we deduce that N is best reply to FA for p > 1/2 and to AF for
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p < 1/2, so (N,FA) is an equilibrium for p > 1/2 and (N,AF ) is an equilibrium for p < 1/2

(notice that in the right game NF is an equilibrium along with EA). Finally, (N,FF ) is an

equilibrium for all p.

To sum up: for p < 1/2 equilibria are (E,FA), (N,FF ) and (N,AF ); for p > 1/2 they

are (N,FF ) and (N,FA).

2.4 More information may hurt

This is an interesting phenomenon, which cannot occur in single person decision problems:

more information may hurt both the informed and the uninformed. Consider the following

two two-player games:

L M R

T 1, 2 1, 0 1, 3

B 4, 4 0, 0 0, 5

L M R

T 1, 2 1, 3 1, 0

B 4, 4 0, 5 0, 0

Suppose �rst that both players assign equal probability to each of them (formally, both

have two types and both are uninformed about the other player's type). Then L is a dominant

action for 2 (if 2 plays T it gives 2 while the others yield 1.5; if 1 plays B it gives 4 while

the others give 2.5); so in any equilibrium 2 plays L; then 1 plays B, and both get 4 for sure.

Now suppose player 2 becomes informed of her own type. Then her best reply is RM against

both T and B; but player 1's best reply to RM is T , so the equilibrium payo� is 1 for player

1 and 3 for (both types of) player 2. Both are worse o�. Here L is a �compromise� action,

which 2 can only play if uninformed; once 1 knows that 2 is informed then L is out, and 1's

then dominant action T can make both worse o�.

2.5 Quantity competition: the Cournot oligopoly model

We modify the model we have already studied which we recall for convenience. We had n

�rms, with demand price p(q) = a − Q with Q =
∑

qi, and costs ci(qi) = cqi, where a > c.

Firms maximized pro�ts πi(q) = qip(q) − cqi = qi(a − Q) − cqi, and we found that the only

equilibrium was symmetric with (letting σ = a− c)

qeqi =
a− c

1 + n
=

σ

1 + n
∀i

We now assume there are only two �rms and that �rm 1 has cost c1 = c, but suppose
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that 2's cost c2 may be with equal probabilities cH = c+ δ or cL = c− δ so Ec2 = c.2 Firm

2 only knows its value, so its cost is its type (and the two types have equal probability).

An equilibrium is a triple of choice (q1, q
H
2 , qL2 ) with the mutual best response property (in

expected value terms). Expected payo�s of the three e�ective players are, letting Eq2 =

(qH2 + qL2 )/2,

u1(q1, q
H
2 , qL2 ) =

∑
t=H,L

1

2
q1(a− q1 − qt2)− cq1 = q1(a− c− Eq2 − q1)

ut2(q1, q
H
2 , qL2 ) = qt2(a− q1 − qt2)− ct2q

t
2 = qt2(a− ct2 − q1 − qt2), t = H,L.

The optimal choices are easily seen to be (all functions are parabolas..)

q1 =
a− c− Eq2

2
qt2 =

a− ct2 − q1
2

t = H,L.

From 2's best responses we get Eq2 = (a − c − q1)/2 (since Ec2 = c) and plugging this

into the �rst we obtain q1 = (a− c)/3. Plugging this in gives the equilibrium, where we use

σ = a− c:

q1 =
σ

3
qH2 =

σ

3
− δ

2
qL2 =

σ

3
+

δ

2
.

So �rm 1 produces as much as in the full information case, the high cost �rm produces a little

less and the low cost one a little more.

Here too more information is worse for all

It is interesting to compare equilibrium payo�s to those which would arise if 2's costs were

observed by both �rms. Of course we are heading to a question we already encountered: does

more information hurts? We know that in the just computed equilibrium Eq2 = q1 so �rm 1's

payo� is q1(σ− 2q1) = (σ/3)2; the expected payo� of �rm 2 is (σ/3)2 + (δ/2)2, see footnote.3

2δ is assumed small enough that all the quantities computed below are positive.
3We have

1

2
qH2 (a− cH2 − q1 − qH2 ) +

1

2
qL2 (a− cL2 − q1 − qL2 )

=
1

2

[
a− c

3
− δ

2

] [
a− c− δ − q1 −

a− c

3
+

δ

2

]
+

1

2

[
a− c

3
+

δ

2

] [
a− c+ δ − q1 −

a− c

3
− δ

2

]
=
1

2

(
a− c

3
− δ

2

)2

+
1

2

(
a− c

3
+

δ

2

)2

=
(σ
3

)2

+

(
δ

2

)2
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Now suppose 2's costs become known to both; then we have two full information games

each occurring with probability 1/2. The �rst has c1 = c, c2 = c + δ; the second has c1 =

c, c2 = c−δ. In these games, respectively: u1 = q1(σ−q2−q1), maximized at q1 = (σ−q2)/2;

u2 = q2(σ ∓ δ − q1 − q2), maximized at q2 = (σ ∓ δ − q1)/2. It is elementary to check that

the systems have the following solutions: in the high cost game q1(H) = (σ + δ)/3, q2(H) =

(σ−2δ)/3 = q1(H)−δ; in the low cost game q1(L) = (σ−δ)/3, q2(L) = (σ+2δ)/3 = q1(L)+δ.

And that payo�s are: in the high cost game u1(H) = q1(H)2 and u2(H) = q2(H)2; in the low

cost game u1(L) = q1(L)
2 and u2(L) = q2(L)

2.4 Therefore from an ex-ante point of view the

two �rms' expected payo�s are the following:

Firm 1:
1

2

(
(σ + δ)2

9
+

(σ − δ)2

9

)
=

(σ
3

)2
+

(
δ

3

)2

>
(σ
3

)2

Firm 2:
1

2

(
(σ − 2δ)2

9
+

(σ + 2δ)2

9

)
=

(σ
3

)2
+

(
2

3
δ

)2

>
(σ
3

)2
+

(
1

2
δ

)2

.

So both �rms are better o� if �rm 2 foregoes its private information in the entire range of

parameters values.

2.6 Price Competition: the Bertrand oligopoly model

We consider the model without uncertainty �rst. There are two price-setting �rms with

demand functions

d1(p1, p2) = a− p1 +
1

2

p2
p1

d2(p1, p2) = b− p2 +
1

2
p1

where di, pi are quantities and prices, and a, b are constants (parameters).5 Assume for

simplicity that production costs are zero; then payo�s ui(p1,p2) are just gross revenues pidi.

(i) Find the Nash equilibrium prices (best responses are found via the zeros of the deriva-

4To compute payo�s note that in the high cost game q1 + q2 = 2q1 − δ = 2q2 + δ; in the low cost game
q1+q2 = 2q1+δ = 2q2−δ; so payo�s are: in the high cost game u1(H) = q1(σ−q2−q1) = [(σ + δ)/3]2 = q1(H)2

and u2(H) = q2(σ − 2δ − 2q2) = [(σ − 2δ)/3]2 = q2(H)2; in the low cost game u1(L) = [(σ − δ)/3]2 = q1(L)
2

and u2(L) = [(σ + 2δ)/3]2 = q2(L)
2.

5To be pedantic quantities demanded are max{di, 0} but we can neglect this.
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tives). The answer is (details in footnote6)

p1 =
a

2
, p2 =

b

2
+

1

4
p1 =

b

2
+

1

8
a.

Now suppose a and b can take two values {aH , aL} and {bH , bL} respectively, where the

value of a is known to �rm 1 but not 2 and similarly b is known to �rm 2 only. So each player

has two types and we have to specify p1(aH), p1(aL) for player 1 and p2(bH), p2(bL) for player

2. The players' conditional probabilities πi are as follows:

π1(bH | aH) = π2(aH | bH) = 4/5

π1(bL | aL) = π2(aL | bL) = 2/3

where of course π1(bL | aH) = 1/5 etc. since conditional probabilities must sum up to 1.

Thus each �rm believes that it is likely that its competitor faces the same demand condition

as itself. In the obvious notation (i,H), (i, L) for i = 1, 2 the payo� of (1, H) is

Eu1,H = π1(bH | aH)

[
aHp1 − p21 +

1

2
p2(bH)

]
+ π1(bL | aH)

[
aHp1 − p21 +

1

2
p2(bL)

]
= aHp1(aH)− p1(aH)2 +

1

2
Ep2(b | aH),

and the others are de�ned similarly.

(ii) Find the Bayesian equilibrium of the game. (Hint: you should �nd e.g. p2(bL) =
bL
2 +

[
1
24aH + 1

12aL
]
).7

(iii) Suppose demand for our two �rms has been constant for a while and then at some

6Solution. From u1(p1,p2) = ap1 − p21 + 1
2
p2 and u2(p1,p2) = bp2 − p22 + 1

2
p1p2 by equating derivatives to

zero we get

0 = a− 2p1, 0 = b− 2p2 +
1

2
p1

from which the result is direct.
7The payo�s are the same as in the certainty case except that the opponent's price is replaced by its

expectation. For t = H,L we have Eu2,t =
[
b+ 1

2
E(p1(a) | bt)

]
p2 − p22. Thus in equilibrium

p1(aH) =
aH

2
p1(aL) =

aL

2

p2(bH) =
bH
2

+
1

4
E(p1(a) | bH) =

bH
2

+
1

8
E2(a | bH)

p2(bL) =
bL
2

+
1

4
E(p1(a) | bL) =

bL
2

+
1

8
E2(a | bL).
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point �rm 2 believes the demand conditions of its competitor may deteriorate, in the sense

that E2(a | bH) and E2(a | bL) decrease. On the basis of the result above can we predict its

price reaction? 8

2.7 Infection

2.8 Providing a Public good

2.8.1 Study Group

In this example types are not �nite, but as you will see this does not create problems. Two

students i = 1, 2 work on a problem in two di�erent rooms. Student i can solve the problem

- choice si = 1 - at utility cost 0 < c < 1, or do nothing - choice si = 0 - at zero cost. If the

problem is solved - by one of them or both - student 1 gets t21 and student 2 gets t22, where

0 ≤ ti ≤ 1 for i = 1, 2 (higher types care more about the result). So student i of type ti has

payo�

ui(si, sj , ti) = max{s1, s2}t2i − sic.

The two types have independent uniform distributions on [0, 1], that is cumulative distri-

bution function F (ti) = ti.
9 Player i knows her type and that the other has cdf F . So this is

a Bayesian game, where a strategy of player i is a function si(ti) from [0, 1] to {0, 1} (one of

the two possible choices for each type). We want to �nd equilibrium strategies.

To analyze the game let zi = Prob(si = 1). If player 1 chooses s1 = 1 she gets t21 − c;

under s1 = 0 she gets t21 if 2 solves the problem and zero if 2 does not, so her expected utility

is t21 ·z2+0 · (1−z2). Therefore she chooses s1 = 1 if and only if t21−c ≥ t21z2 or t
2
1(1−z2) ≥ c.

Analogously s2 = 1 if and only if t22(1 − z1) ≥ c. Notice that the best response of i depends

on sj(·) only through zj .

Let us �rst see if it is possible to have z2 = 1 in equilibrium (player 2 always contributing).

If z2 = 1 then 1 never contributes (t21 − c < t21z2 for all t1) so that z1 = 0; but then s2 = 1 if

t22 − c ≥ 0 or t2 ≥
√
c so z2 = 1−

√
c < 1, contradiction. Analogously it cannot be z1 = 1. A

similar argument shows that z1, z2 > 0,10 and we can conclude that 0 < z1, z2 < 1.

8Solution: The result says it will lower the price.
9Recall that this means that Prob(ti ≤ x) = x for all x ∈ [0, 1].

10Suppose z2 = 0 then z1 = 1− c1/2; but then

z2 = 1−
√

c/(1− z1) = 1−
√

c/c1/2 = 1− c1/4 > 0

9



Therefore the two threshold conditions can be written as

t1 ≥
√

c

1− z2
, t2 ≥

√
c

1− z1

which say

z1 = 1−
√

c

1− z2
, z2 = 1−

√
c

1− z1

c = (1− z1)
2 (1− z2) = (1− z1) (1− z2)

2

z1 = z2 = 1− c1/3.

Therefore the equilibrium strategies are the same, given by

si(ti) =

0 ti < c1/3

1 ti ≥ c1/3.

Remark. Consider player i in isolation. If she chooses s1 = 1 she gets t21 − c; under s1 = 0

she gets zero for sure - remember that in the group her expected utility in that case is

t2i · zj + 0 · (1− zj) > 0. So in isolation she solves the problem if t1 ≥
√
c. For

√
c < ti < c1/3

she works if she is alone but not if in the group. This is not surprising: in the group you can

hope that somebody else does the work. In the group only the most motivated students will

work hard.

2.8.2 Same idea, di�erent model

Consider the following variant of the �study group� example above. Bene�t is 1 for both

players but e�ort costs are di�erent: for player i it is ci; and both c1and c2 are distributed

uniformly on [0, 2] that is with cdf P given by P (c) = c/2 for c ∈ [0, 2]. Show that the unique

Bayes Nash equilibrium is that each player contributes in the interval [0, c∗] where c∗ = 2/3.

Note that in isolation each player would contribute if ci ≤ 1.

Solution. In this case a strategy for player i is a map si(ci) from [0, 2] to {0, 1} (contribute
or not), and the payo� - which does not depend on cj - is

ui(si, sj , ci) = max{s1, s2} − cisi.
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Now for the equilibrium. Let zj = Pr(sj = 1). If i does not contribute she gets 1 with

probability zj (zero with probability 1 − zj); if she does she gets 1 − ci; therefore she will

contribute if zj ≤ 1−ci or ci ≤ 1−zj ≡ c∗i . In other words we have zi = P (c∗i ) with c∗i = 1−zj .

Therefore c∗i = 1− zj = 1−P (c∗j ) = 1−P (1− zi) = 1−P (1−P (c∗i )); that is both c∗1, c
∗
2 must

satisfy the equation x = 1− P (1− P (x)). In our case this gives directly x = c∗1 = c∗2 = 2/3.

2.8.3 A slight generalization

Suppose c1 and c2 are distributed in an interval [c, c] with c < 1 < c according to the cdf P

(in the previous case it was [c, c] = [0, 2] and P (x) = x/2 for 0 ≤ x ≤ 2). As before zi = P (c∗i )

with c∗i = 1− zj .

Now if zj = 0 then c∗i = 1 that is zi = P (1); on the other hand in this case c∗j = 1− P (1)

so zj = 0 if 1 − P (1) ≤ c. The conclusion is that if 1 − P (1) ≤ c there are two equilibria

where one player contributes for ci ≤ 1 and the other never contributes. And these are the

only equilibria since if c∗i < 1 then a fortiori zj = 0 so it must be c∗i = 1.

If on the other hand 1− P (1) > c then we can proceed as in the base model and deduce

that c∗1, c
∗
2 must satisfy the equation x = 1 − P (1 − P (x)) that is 1 − x = P (1 − P (x)). For

x = 1 we have 1 − x = 0 = P (c) < P (1 − P (1)) = P (1 − P (x)) while for x = c we have

P (1−P (x)) = P (1−P (c)) = P (1) < 1− c = 1−x so there are solutions in the open interval

(c, 1), which are symmetric equilibria.

2.9 Committee voting under unanimity

We frame this example in terms of a group of jurors who have to decide whether to convict or

acquit a defendant who may be guilty or not guilty.11 The defendant is convicted only if all

the jurors agree on conviction. The defendant is guilty with probability π, and each juror's

payo� is 1 if a correct decision is taken and zero otherwise. Each juror has two actions, A

and C for acquit and convict. For a juror in isolation C yields 1 with probability π and zero

otherwise, and similarly A gives 1− π, so he prefers C if π > 1− π that is π > 1/2. We will

assume π > 1/2.

Each juror receives a signal on the defendant. The latter may be G or NG (guilty or not

guilty), and the signal is g or ng ; we assume that the probability that the signal is correct is p:

P (g | G) = P (ng | NG) = p, and we assume p > 1/2. The signal is the juror's type. So each

11General remarks on the relevance of committee voting and a more complete analysis of the problem are
in Osborne's book, chapter 9.
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one has two possible types, and therefore a strategy is a pair of actions, one for each signal;

we order them so that strategy XY with X,Y ∈ {A,C} means X under g and Y under ng .

Again let us look at the case of a single juror. When is it optimal to �follow the signal�,

that is to play CA? By Bayes rule we have P (G | g) = πp/[πp+ (1− π)(1− p)] > π so under

g you choose C.12 On the other hand P (G | ng) = π(1 − p)/[π(1 − p) + (1 − π)p] < π; thus

under ng you choose A if π(1− p)/[π(1− p) + (1− π)p] < 1/2 which is equivalent to p > π ,

that is the quality of the signal is high enough.13

Now suppose there are two jurors. Is the pro�le (CA,CA) an equilibrium? Recall that for

conviction both jurors have to choose C. Suppose juror 2 chooses CA. Will juror 1 choose

A under ng? The crucial point is that his decision is relevant only if the juror 2 chooses C

(which occurs if his type is g);14 therefore juror 1 computes

P (G | ng , g) = πp(1− p)

πp(1− p) + (1− π)p(1− p)
= π.

Since π > 1/2 the answer is no; therefore �following signals� is not an equilibrium.

Note that with n jurors the situation is even worse: juror i's decision is again relevant

only if all the others choose C; therefore assuming all the others choose CA, upon receiving

the not guilty signal ng he computes

P (G | ng , g, . . . , g) = π(1− p)pn−1

π(1− p)pn−1 + (1− π)p(1− p)n−1

and since (1 − p)pn−1 > p(1 − p)n−1 this is even greater than π. His own ng evidence loses

weight given that all others are taken to have the g signal. Indeed

P (G | ng , g, . . . , g) = π(1− p)

π(1− p) + (1− π)p[(1− p)/p]n−1
→ 1 as n → ∞

since p > 1/2. What are equilibria of this game? All choosing AA is an obvious equilibrium.

Another is all choosing CC under the same condition p > π of the single juror case, since

when all j ̸= i choose CC then i is in the same position as when he is alone. These equilibria

are not �satisfactory�, but the problem is not the equilibrium concept - it is unanimity.

We will explore existence of a symmetric mixed equilibrium in the next section.

12the denominator is smaller than p since p > 1− p: πp+ (1− π)(1− p) < πp+ (1− π)p = p
132π(1− p) < π(1− p) + (1− π)p ⇐⇒ π(1− p) < (1− π)p ⇐⇒ p > π
14We shall make a similar point in the next example and in the context of common value auctions.
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2.10 Adverse selection: a market for lemons

There are two players, a seller of a car and a potential buyer. The quality of the car - which is

the seller's type, known to the seller but not to the buyer - is t, uniformly distributed on [0, 1].

Here there is a continuum of types, but again all we need to know for now is that the uniform

distribution on [0, 1] has density f(t) = 1, and that for any function g we want to integrate

it is Eg =
∫ 1
0 g(t)dt. In particular the expected value of the car is Et =

∫ 1
0 tdt = 1/2. The

buyer's strategy is a bid b ∈ [0, 1]; the seller has two actions, A for accept and R for reject,

so a strategy of the seller is a function s : [0, 1] → {A,R}. The value of the car to the seller

is t, therefore obviously the seller's best response to b is A if and only if b ≥ t. There is

nothing more to say about him. The value of the car to the buyer is assumed to be a+ t with

0 ≤ a < 1, so that since a+ t ≥ t it would be e�cient (better for both) to trade for all t. The

payo� to the buyer if she bids b is then a + t − b if the o�er is accepted and zero otherwise.

Given the above strategy of the seller we then have u(b) = I(t ≤ b)(a + t − b) where I(F )

denotes the indicator of the event F ⊆ [0, 1], and therefore

Eu(b) =

∫ 1

0
I(t ≤ b)(a+ t− b)dt =

∫ b

0
(a+ t− b)dt

= b(a− b) + b2/2 = b(2a− b)/2

For equilibrium the buyer must maximize this with respect to b, which gives beq = a. Thus

the car is sold if t ≤ a, which implies that the expected value of the traded car is

E(t | t ≤ a) =

∫ 1
0 tI(t ≤ a)dt

P (t ≤ a)
=

∫ a
0 tdt

a
= a/2.

This is lower than the overall average Et = 1/2. Only �lemons� are traded. The idea is

simple: you can't bid 1/2, for in that case the expected value of the car you get is 1/4. You

have to bid (possibly much) less.

2.11 BoS with uncertainty on both sides

This is based on OR exercise 27.2. Here the two players like to go out together but neither

knows whether the other prefers B or S. Each player's type consists of his/her preferred

alternative, and it is then convenient to use b and s to denote types; so each player can be of

type ti ∈ {b, s}, and T = {bb, bs, sb, ss}. The corresponding four games (in the same order)
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are then:

B S

B 2, 2 0, 0

S 0, 0 1, 1

B S

B 2, 1 0, 0

S 0, 0 1, 2

B S

B 1, 2 0, 0

S 0, 0 2, 1

B S

B 1, 1 0, 0

S 0, 0 2, 2

Player i is informed of her/his type, so for example player 2 knows whether t2 = b (that

is t ∈ {bb, sb}) or t2 = s (that is t ∈ {bs, ss}). For each i = 1, 2 the pure strategies are

XY with X,Y ∈ {B,S} - as in the previous examples, player 1 playing SB means that (1, b)

plays S and (1, s) plays B, etc. To �nd the equilibria of this game �rst observe that in each

state the unique best reply of each player is to match the choice of the other. This implies

that (BB ,BB) and (SS ,SS ) are equilibria for any probability P on T , and that any other

pure-strategy equilibrium has both players play type-dependent strategies (in the sense that

di�erent types play di�erent strategies).

To see what these other equilibria may be we impose some symmetry on the probability

P on T . Speci�cally, we assume that for any (i, ti) the conditional probability that j has the

same preference as i is a constant p; formally, that

P (tj = x | ti = x) = p for all i ̸= j and x = b, s.

The �rst of the candidate equilibria just described is (BS ,BS ). So suppose 2 plays BS ; if

(1, b) plays B he gets 2 ∗ p+0 ∗ (1− p), while playing S results in the payo� 0 ∗ p+1 ∗ (1− p);

so (1, b)'s best reply is B if p ≥ 1/3; analogously, (1, s)'s best reply is S if 0 ∗ (1− p)+ 2 ∗ p ≥
1 ∗ (1− p) + 0 ∗ p that is again if p ≥ 1/3. Hence player 1's best reply to BS is BS if p ≥ 1/3.

The symmetric argument shows that the same holds for player 2. Hence if p ≥ 1/3 we have

the equilibrium (BS ,BS ). Analogous calculations show that for p ≥ 2/3 the pro�le (SB ,SB)

is an equilibrium;15 this makes sense, for if p is close to 1 then she shares your preferences

so if she plays according to the opposite preferences you should too. Note that in these pure

strategy equilibria, with probability P {ti ̸= tj} the two players make di�erent choices and

get zero. Lastly, the same kind of computations show that for p ≤ 1/3 the pro�les (BS ,SB)

and (SB ,BS ) are equilibria.16 In these two cases the two players make di�erent choices with

15Suppose that 2 plays SB ; then (1, b)'s best reply is S if p ∗ 1 + (1 − p) ∗ 0 ≥ p ∗ 0 + (1 − p) ∗ 2 that is
p ≥ 2/3; by the same token (1, s)'s best reply is B if p ≥ 2/3.

16Check (BS ,SB). If 2 plays SB then 1's best reply is BS if p ≤ 2/3; if 1 plays BS then by the �rst
calculation 2's best reply is SB if p ≤ 1/3; so (BS ,SB) is an equilibrium if p ≤ 1/3. The case (SB ,BS) is
analogous.
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probability P {ti = tj}.

3 Mixed equilibria

3.1 Premise: mixed vs behavior strategies

In the Battle of Sexes with uncertainty we are going to �nd that in some range of the param-

eters there is no pure-strategy equilibrium, so we look for mixed equilibria.

In Bayesian games a pure strategy of i is a function mapping ti ∈ Ti 7→ si(ti) ∈ Si. A

mixed strategy is a probability distribution on pure strategies. For the games we analyze it

is equivalent - and convenient - to consider a di�erent type of mixing, whereby each type ti

of i chooses a distribution on Si. These are called behavior strategies.17 Of course each ti

choosing a degenerate distribution is a pure strategy of i. In the following examples we work

with behavior strategies.

There is no need for general notation. To see what is involved, player 2 in the example

below has two types t and t′, and two actions B and S (hence 4 pure strategies). A behavior

strategy is speci�ed by a distribution (x, 1−x) on {B,S} used by t and another one (y, 1−y)

used by t′.

3.2 A �rst example

This is from Maschler et al. Example 9.54. There are two players, and for a change the

uninformed player is player 2. Player 1 has two types say again l, r. The games in the two

states are the following, and each has probability 1/2:

L R

T 1, 0 0, 2

B 0, 3 1, 0

L R

T 0, 2 1, 1

B 1, 0 0, 2

So the three players here are (1, l), (1, r) and 2. Player 2 chooses L or R, a pure strategy of 1

is of the form XY with X,Y ∈ {T,B} (where for example BT means (1, l) plays B and (1, r)

plays T ). As to mixed strategies, we let q the probability 2 assigns to L and x [resp. y] the

probability with which (1, l) [resp. (1, r)] plays T .

17This is a consequence of Kuhn's Theorem, to discuss which would take us too far aside.
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To analyze the game �rst observe that player 2 must mix, that is in equilibrium it must

be 0 < q < 1. Indeed if 2 plays L for sure then 1 plays TB but then L gives zero for sure

while R gives 2 for sure. If on the other hand 2 plays R for sure then 1 will play BT and then

R gives expected payo� 0.5 and L gives 2.5.

Then 2 must be indi�erent between L and R, which implies

1

2
· 3(1− x) +

1

2
· 2y =

1

2
· 2x+

1

2
· [y + 2(1− y)]

that is x = (1 + 3y)/5. Since 1/5 < x < 4/5, (1, l) must be indi�erent between T and B, so

it must be q = 1/2. For this value (1, r) is also indi�erent between her two strategies. We

conclude that the equilibria have

q = 1/2, x = (1 + 3y)/5 and 0 ≤ y ≤ 1.

Equilibrium payo�s: player 1 of any type gets 1/2, while player 2 gets (e.g. from L)

1

2
· 3(1− x) +

1

2
· 2y =

12 + y

10
∈ {12/10, 13/10}.

Does more information hurt once again? Would player 1 pay to keep for her private

information? We compare the Bayesian equilibrium to two possible alternatives.

1. When 2's types are realized they become common knowledge. In this case the players

play the left and the right game with equal probability. In the left game the unique equilibrium

is mixed, with q = 1/2, p = 3/5; player 1 gets 1/2, player 2 gets 6/5. In the right game

q = 1/2, p = 2/3; player 1 gets 1/2, player 2 gets 4/3. So 1's expected payo� is 1/2 while 2

gets 0.5(6/5+4/3) = 6/5+0.67/10. 1 is indi�erent to the original game. As to 2, if she think

that the equilibria on 0 ≤ y ≤ 1 are played with uniform probability she is better o� without

private information.

2. Types remain unknown to both types. Hence 1 and 2 play ex ante, assigning probability

1/2 to each of the two games. The matrix below contains the expected payo�s:

L R

T 1
2 , 1

1
2 ,

3
2

B 1
2 ,

3
2

1
2 , 1
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Pure equilibria are o� diagonals, where 1 gets 1/2 and 2 gets 3/2 > 6/5+ 0.67/10. In the

mixed equilibria p = 1/2 and 0 ≤ q ≤ 1 payo�s are the same. Therefore in this case 1 is again

indi�erent and 2 strictly prefers not to become informed of her type.

3.3 Symmetric mixed equilibrium in the committee voting example

We look for a symmetric mixed equilibrium in which g chooses C and ng chooses C with

probability β, for each player. We assume p > π which is the condition guaranteeing that the

single juror would follow the signal, and also that p is close to π.

To �nd the equilibrium β again assume all j ̸= i play according to the candidate strategy,

and consider type ng of i. Again his decision is relevant only if all others play C so he

computes P (G | ng and all j ̸= i choose C), and this must be equal to 1/2 for him to be

indi�erent between C and A. Now if the defendant is guilty j play C with probability

p+(1−p)β, while if he is not guilty that probability is 1−p+pβ; therefore (always by Bayes

rule)

P (G | ng and all j ̸= i choose C) =
π(1− p)[p+ (1− p)β]n−1

π(1− p)[p+ (1− p)β]n−1 + (1− π)p[1− p+ pβ]n−1

and this is = 1/2 i�

π(1− p)[p+ (1− p)β]n−1 = (1− π)p[1− p+ pβ]n−1 (⋆)

Π ≡
[
π/(1− π)

p/(1− p)

]1/(n−1)

=
1− p+ pβ

p+ (1− p)β

Π [p+ (1− p)β] = 1− p+ pβ

β =
Πp− (1− p)

p−Π(1− p)

Given p > π but close to π we have Π < 1 but close to 1. It is then easy to check that both

numerator and denominator above are positive,18 and that β < 1.

We still have to check that type g wants to play C; for this it must be P (G | g and all j ̸= i choose C) ≥
1/2; this probability is

πp[p+ (1− p)β]n−1

πp[p+ (1− p)β]n−1 + (1− π)(1− p)[1− p+ pβ]n−1

18The numerator is (Π + 1)p− 1; denominator is (Π + 1)p−Π; both are positive if p is close to π.
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and it is ≥ 1/2 if πp[p+ (1− p)β]n−1 ≥ (1− π)(1− p)[1− p+ pβ]n−1; but this follows from

(⋆) and p > 1/2.

3.4 The Battle of Sexes with uncertainty on one side, 0 < π < 1.

Recall that the game (from Osborne section 9.1) is an incomplete information version of the

battle of sexes. For concreteness we think of player 1 as a boy and player 2 as a girl. The

situation is that she may or may not like to be with him and he does not know it. So the two

possibilities are the ones we know:

B S

B 2, 1 0, 0

S 0, 0 1, 2

B S

B 2, 0 0, 2

S 0, 1 1, 0

where the left game has probability 0 < π < 1. We denote by p the probability of B for player

1, and by x and y the probabilities of B for (2, l) and (2, r).

The pure equilibria To study the game we start looking for pure strategy equilibria.

If 1 plays B then 2's best response is BS . And against this B ≻1 S i� 2π > 1 − π i.e.

π > 1/3. So for π > 1/3 we have the pure equilibrium (B,BS ).

If 1 plays S then 2's best response is SB . Against this S ≻1 B i� π > 2(1−π) i.e. π > 2/3.

So for π > 2/3 we have the equilibrium (S,SB).

Therefore:

a) for 1/3 < π < 2/3 equilibrium is (B,BS ). Here π is large enough so that 1 grabs the

occasion to meet 2 on the left if 2 plays BS , and 1−π is large enough that if 2 plays SB then

enjoying B in good company in the right game has higher expected utility than enjoying S

in the left game.

b) for π > 2/3 there are two equilibria, (B,BS ) and (S,SB) - those of the left game.

For π < 1/3 there is no equilibrium in pure strategies. In this case we are with high

probability in the right game, where there is no pure equilibrium.
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The mixed equilibrium Let us study the case π < 1/3. We know that 1 must mix,

0 < p < 1. So 1 must be indi�erent between B and S. This gives

2xπ + 2(1− π)y = π(1− x) + (1− π)(1− y)

3πx+ 3(1− π)y = 1

πx+ (1− π)y = 1/3.

Equilibrium x, y must satisfy this condition for 1 to mix. But they must also be best

replies to the equilibrium p. So we look at player 2. (2, l) prefers B i� p > 2/3; (2, r) prefers

S i� p > 1/3. So:

For p > 2/3 2's best response is BS to which (given π < 1/3) 1's best response is S, that

is p = 0. This is out.

For p < 1/3 2's best response is SB to which 1's best reply is B (again because π < 1/3),

that is p = 1. This is out too.

For 1/3 < p < 2/3 2's best response is SS to which 1's best reply is obviously S that is

p = 0. So no equilibria there. The only candidates are p = 1/3 and p = 2/3.

If p = 1/3 then (2, l) plays S that is x = 0 and (2, r) is indi�erent; so we have equilibrium

with y given by π · 0 + (1− π)y = 1/3 that is y = 1/3(1− π).

If p = 2/3 then (2, r) then plays S that is y = 0; but then given π < 1/3 there is no

x ∈ [0, 1] which solves πx+ (1− π) · 0 = 1/3.

The conclusion is that for π < 1/3 there is a unique (mixed) equilibrium, where 1 plays

p = 1/3, (2, l) plays S for sure, and (2, r) plays B with probability y = 1/3(1− π) < 1/2.

Moral of the story

Lets us look at the equilibrium payo� of the (2, l) (the girl who likes him) in the mixed

equilibrium. She plays S and he plays B with probability 1/3 so she gets (2/3) · 2 ≈ 1.33. In

the original BoS without uncertainty the mixed equilibrium is p = 2/3, q = 1/3 so that her

payo� is pq + 2(1− p)(1− q) = 2/9 + 2 · 2/9 = 2/3 ≈ 0.67.

In other words: given that the boy lets the girl know that he wants to go out with her,

if the girl who actually wants to go out with him too makes him believe she quite possibly

(precisely with probability higher than 2/3) does not, then she ends up much better o�. Since

- as we all know too well - this behavior is the rule, the moral of this story is: sorry guys, but

girls are so much smarter than us!
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4 Simple Auctions

The basic setup is the same as in the standard case, with each of the n bidders having a

valuation of the object which is now her type vi ∈ Ti, private information to her (we use the

letter v for types in this context). Here again types are a continuum. For each i the action

set is Ai = R+ containing her bid bi. A strategy of player i is then a function si : Ti → R+,

and i's payo� depends on the bids pro�le b = (b1, . . . , bn) and her type: ui = ui(b, vi). The

fact that ui does not depend on v−i characterizes the so called private value auctions. We will

introduce common value auctions later. The payo� is di�erent in the �rst- and second-price

auctions as in the standard case. We deal with the two cases next. We start with private

value auctions, then turn to common value ones.

4.1 Private value auctions

4.1.1 Second-price

In the second-price auction the highest bidder pays the second highest bid, and if there is a

tie at the top the highest bidders share the object. Precisely,

ui(b, ti) =


0 if maxj ̸=i bj > bi

vi −maxj ̸=i bj if maxj ̸=i bj < bi

(vi − bi)/m if maxj ̸=i bj = bi and bj = bi for m players

For this auction we only want to show that - as in the standard case - bidding your value,

that is the strategy si(vi) = vi, is weakly dominant.

To see this observe that since v−i is unknown to i so is j's bid sj(vj). Therefore the other

players' maximum bid maxj ̸=i sj(vj) ≡ X is a random variable from the point of view of i.

Let P (F ) be the probability that i assigns to the event X ⊆ F (conditional on vi). Consider

bidding bi < vi. Then (always conditional on vi), denoting as usual by I{F} the indicator of
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the event F and applying the auction's rule we get (considering possible m-way ties)

Eui(bi, b−i, vi)

=

∫
R+

[I{X < bi} ∗ (vi − x) + I{X = bi} ∗ (vi − x)/m+ I{bi < X < vi} ∗ 0 + I{X ≥ vi} ∗ 0] dP (x)

≤
∫
R+

[I{X < bi} ∗ (vi − x) + I{X = bi} ∗ (vi − x) + I{bi < X < vi} ∗ (vi − x) + I{X ≥ vi} ∗ 0] dP (x)

= Eui(vi, b−i, vi).

Here a way to read the integral is to think that X is discrete and identify the integral with

the sum of values times probability as in the discrete case.

For bids bi > vi the argument is similar:

Eui(bi, b−i, vi)

=

∫
R+

[I{X ≤ vi} ∗ (vi − x) + I{vi < X < bi} ∗ (vi − x) + I{X = bi} ∗ (vi − x)/m+ I{X > bi} ∗ 0] dP (x)

≤
∫
R+

[I{X ≤ vi} ∗ (vi − x) + I{vi < X < bi} ∗ 0 + I{X = bi} ∗ 0 + I{X > bi} ∗ 0] dP (x)

= Eui(vi, b−i, vi)

since now in {vi < X < bi}, and {X = bi} we have ti − x < 0. This completes the argument.

4.1.2 First-price

Here we assume that types vi are independent and each has distribution P uniform on [0, 1].19

In particular any single type has probability zero, and for all x ∈ [0, 1] we have P (vi < x) = x.

Independence implies that on [0, 1]k, k ≤ n the vi's induce the product probability P k which

on rectangles R = [x1, y1) × · · · × [xk, yk) takes values P
k(R) = Πi≤k(yi − xi); in particular,

19Underlying there is a probability space (Ω,F ,P) on which the vi are [0, 1]-valued random variables. The
assumption is that these rv's are independent, and that on [0, 1] they all induce the uniform distribution
P = Leb.
The Lebesgue measure on [0, 1] is most easily de�ned as the distribution F - where F (x) = P (ω ≤ x) - given

by F (x) = x. Its derivative is the constant density f(x) = 1, and by the fundamental theorem of calculus we
have, for 0 ≤ a ≤ b ≤ 1,

P (ω ∈ [a, b]) = F (b)− F (a) =

∫ b

a

f = b− a

so that Leb assigns to each interval a probability equal to its length.
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for given i the probability that vj < x ∀j ̸= i is Pn−1([0, x)n−1) = xn−1.

Action sets are again Ai = R+ for all i, containing bids bi, and we use b for elements of

A = A1 × · · · × An and v for types pro�les. The utility ui(b, v) is de�ned by the �rst-price

rule as follows. If there is some bj > bi then i gets zero; if bi is the sole highest bid she gets

vi − bi; if bi is one of m ≤ n highest bids then i gets (vi − bi) /m. A strategy for player i is

again a function si : [0, 1] → R+ which speci�es the bid si(vi) of type vi.

We look for equilibria where all the strategies si are strictly increasing and di�erentiable.

Since the vi's are iid uniform ties have probability zero, and since the strategies are increasing

P (si(vi) < x) = P (vi < s−1
i (x)) = s−1

i (x). We also restrict attention to existence of a

symmetric equilibrium, where si = sj ≡ ς for all i, j. We are going to show that such an

equilibrium exists and is given by ς(vi) = (1− 1/n)vi. Thus in this equilibrium player of type

vi bids a little less than vi.

Given strategy pro�le s−i, the conditional expected utility which type vi of player i gets

if she bids bi is simply the payo� vi− bi multiplied by the probability that hers is the winning

bid,20 and given symmetry this is (vi − bi) · Pn−1([0, ς−1(bi))
n−1) = (ti − bi) ·

(
ς−1(bi)

)n−1
.

The symmetric equilibrium best response ς(vi) is given by the maximum of this expression

with respect to bi. To �nd it set the derivative equal to zero, obtaining that for bi = ς(vi) it

must be

0 = −
(
ς−1(bi)

)n−1
+ (n− 1)(vi − bi)

(
ς−1(bi)

)n−2 · d

dbi
ς−1(bi).

From this, using bi = ς(vi) ⇐⇒ vi = ς−1(bi) and dς−1(bi)/dbi = 1/ς ′
(
ς−1(bi)

)
= 1/ς ′ (vi),

we get that the equilibrium strategy must satisfy

vn−1
i ς ′ (vi) = (n− 1)(vi − ς(vi))v

n−2
i

vn−1
i ς ′ (vi) + (n− 1)ς(vi) · vn−2

i = (n− 1)vn−1
i

d

dvi
vn−1
i ς (vi) = (n− 1)vn−1

i

vn−1
i ς (vi) =

∫ vi

0
(n− 1)sn−1ds =

n− 1

n
vni

ς (vi) =

(
1− 1

n

)
vi.

This proves our claim.

20In this case type spaces are not �nite so the expectation is an integral. But since its value is so simple to
compute there is no point in getting into formal details.
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4.1.3 Revenue equivalence

In both �rst price and second price auctions the expected price paid by the winner, which is

the expected revenue of the owner of the auctioned object, is the same (in the second price

auction we consider the equilibrium where each player bids his valuation). We show this in

the two-player case. In the �rst price auction each player i with valuation vi bids vi/2, so the

expected price paid by the winner is half the highest realized valuation. In the second price

auction each bidder bids his value vi, and the winner - again the highest realized valuation

- pays the second highest bid. Given that the latter is less than the winner's valuation, its

expected value is again half of that (recall that valuations are distributed uniformly).

4.2 Common value auctions

This is taken from the book by Osborne (ch.9), to which the reader is referred for more details

and for an account of the auctions of the radio spectrum in the USA. In the private values

case discussed so far a player's valuation depends only on her type. In the common value

case her valuation depends also on the other players' valuations. The possibility arises when

players valuations depend on some (partial) information they have collected on the auctioned

object - say an oil �eld, or a jar containing some unknown quantity of gold coins. We shall

consider a simple case with two players. If my opponent has a low valuation it means she had

bad news on the value of the object, and this pushes down my own valuation. The crucial

point in this context is that if I win I must take into account the fact that my opponent's

valuation is lower than mine.

In this context we must distinguish between players' values and the signals they received,

representing their information on the value of the object. So a player's type is her signal ti

(unknown to the others); and her value depends on all signals, say vi = g(t1, . . . , tn). This g

function is assumed increasing in all arguments. Again actions are non-negative bids bi, and

the price ρ(b) paid by the winner at the bid pro�le b = (b1, . . . , bn) is as before equal to the

highest bid in �rst-price auctions and to the second highest bid in second-price auctions. For

example if bi > maxj ̸=i bj player i wins and gets vi − ρ(b) = g(t1, . . . , tn)− ρ(b); etc.

We will study the case of two players with valuations vi = ati + γtj with a ≥ γ > 0,

i = 1, 2 ̸= j. Note that γ = 0 would mean private values. We assume the two signals are iid

uniform on [0, 1]. Recall that this implies P ([0, x)) = x ∀x ∈ [0, 1].
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4.2.1 Second Price

In such an auction an equilibrium is given by bi = (a + γ)ti, i = 1, 2. To prove this suppose

player 2 is bids b2 = (a+γ)t2; we must show that then player 1's best response is b1 = (a+γ)t1.

Keep in mind that ties have zero probability under uniform distribution so we use strict

inequalities. Player 1 must maximize her expected payo� with respect to b1. If she loses she

gets zero, so her expected payo� is the probability of winning times the expected payo� if she

wins.

Now 0 ≤ b2 < b1 ⇐⇒ 0 ≤ t2 < b1/(a + γ) which has probability b1/(a + γ). So this is

the winning probability. Payo� is expected value minus expected price paid, the latter being

2's bid. For both terms we must condition on the fact that 1 wins, that is on b2 ∈ [0, b1);

therefore proceeding as in section 2.10 we �nd that the conditional expected value of t2 is
1
2b1/(a+γ). Thus 2's expected bid is (a+γ) ∗ 1

2b1/(a+γ) = b1/2, and 1's expected valuation

is at1 + γ ∗ 1
2b1/(a+ γ). In conclusion 1's expected payo� from b1 is

b1
a+ γ

[
at1 +

γb1
2(a+ γ)

− b1
2

]
=

a

2(a+ γ)2
b1 [2(a+ γ)t1 − b1]

which is a parabola with maximum at b1 = (a+γ)t1. By symmetry the same holds for player

2, and the result follows.

4.2.2 First price

The only change from the previous case here is that the price paid by the winner is now the

highest bid. We next show that in this case the symmetric equilibrium has bi = (a+γ)ti/2. So

suppose player 2's bid is b2 = (a+ γ)t2/2. Since now 0 ≤ b2 < b1 ⇐⇒ 0 ≤ t2 < 2b1/(a+ γ),

proceeding as before you should be able to show that 1 wins with probability 2b1/(a+ γ) and

that the conditional expected value of t2 is b1/(a + γ). At this point plug in t2's expected

value into at1 + γt2, and write down 1's expected payo�, recalling that the price paid is now

simply b1. You should �nd that it is a parabola maximized at b1 = (a + γ)t1/2. Details in

footnote.21 Again symmetry completes the argument.

21From 0 ≤ b2 < b1 ⇐⇒ 0 ≤ t2 < 2b1/(a+ γ) we deduce directly that 1 wins with probability 2b1/(a+ γ)
(twice as before of course). And proceeding as the previous case we �nd that the conditional expected value
of t2 is b1/(a+ γ). Thus 1's expected value if she wins is at1 + γb1/(a+ γ), and since she pays b1 her expected
payo� if she wins is

2b1
a+ γ

[
at1 +

γb1
(a+ γ)

− b1

]
=

2ab1
(a+ γ)2

[(a+ γ)t1 − b1] ,
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4.2.3 Revenue equivalence

That the expected price paid by the winner in the two types of auctions is the same holds

for common value auctions as well (again considering the truthful equilibrium in the second

price auction). In both cases we deduce (proceeding as before) that it is (a+ γ)t/2, where t

is the highest realized type.

4.3 Double auction: trade under incomplete information

This is from Fudenberg-Tirole, to which the reader is referred for a more detailed discussion.

Here player 1 is a seller of an object she can produce at cost c and player 2 is a potential buyer

whose valuation of the object is v. These are the players' types, as usual privately known,

and they are independent and uniformly distributed in [0, 1]. Both simultaneously place a

bid : the seller asks b1(c) and the buyer o�ers b2(v). If b1 > b2 no trade occurs; if b1 ≤ b2

trade occurs at price (b1 + b2)/2. If no trade occurs both get zero; if it does the seller gets

u1 = (b1 + b2)/2− c and the buyer u2 = v − (b1 + b2)/2.

We show existence of an equilibrium with linear strategies, b1(c) = α1+β1c ∈ [α1, α1+β1]

and b2(v) = α2 + β2v ∈ [α2, α2 + β2]. The uniform distributions give constant densities 1/β1

and 1/β2 respectively.

Given the buyer's strategy, b2 ≥ b1 ⇐⇒ v ≥ (b1 − α2)/β2 so the seller's expected utility

as a function of b1 is

Eu1(b1) =
1

β1

∫ 1

(b1−α2)/β2

[(b1 + α2 + β2v)/2− c] dv

which she maximizes with respect to b1. This integral is elementary, and it is found to equal

a constant times

(α2 + β2 − b1)

[
b1 −

4c− (α2 + β2)

3

]
which is a parabola, maximized at the midpoint of the roots b1(c) =

2
3c+

α2+β2

3 . Thus if the

buyer's strategy is linear so is the seller's, with β1 = 2/3 and α1 = (α2 + β2)/3. Similarly for

the buyer, given the seller's strategy b1 ≤ b2 ⇐⇒ c ≤ (b2 − α1)/β1; therefore she maximizes

again a parabola, maximized at b1 = (a+ γ)t1/2.
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with respect to b2 her expected utility

Eu2(b2) =
1

β2

∫ (b2−α1)/β1

0
[v − (α1 + β1c+ b2)/2] dc

which is another elementary integral, which can be checked to equal a constant times

(b2 − α1)

[
4v − α1

3
− b2

]
and this is another parabola, maximized at b2(v) =

2
3v + α1

3 . Thus if the seller's strategy is

linear so is the buyer's, with β2 = 2/3 and α2 = α1/3. From this and α1 = (α2+β2)/3 (found

above) we get α1 = 1/4 and α2 = 1/12. Thus the equilibrium is

b1(c) =
1

4
+

2

3
c b2(v) =

1

12
+

2

3
v.

The relevant point is that trade occurs if 1
4+

2
3c ≤

1
12+

2
3v that is if v ≥ c+1/4, while there

would be gains from trade for both payers whenever v ≥ c. Assuming that with complete in-

formation gains from trade are always realized, incomplete information considerably hampers

trade opportunities. Indeed the probability of trade shrinks from 1/2 to 9/32 ≈ 0.28.22

Little exercise Consider the following pair of strategies. The seller asks 1/2 if c ≤ 1/2 and

1 otherwise, and the buyer o�ers 1/2 if v ≥ 1/2 and zero otherwise. Is this an equilibrium?

What is the probability of trade under this pro�le?

22Given uniform distributions of c and v the probability that v ≥ c is
∫ 1

0
(1−c)dc = 1/2, while the probability

that v ≥ c+ 1/4 is
∫ 3/4

0
(1− c− 1/4)dc = 9/32.
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