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INTRODUCTION

What we call the convexity—cones approach consists of comparing two individu-
als’ attitude towards (downside) risk by making them evaluate probability changes
consisting of a joint increase in return —a first—order stochastic dominance shift—
and in (downside) risk; that is, by confronting them with tradeoffs between risk and
return. An individual is defined to be more (downside) risk averse than another if
whenever he finds such a trade-off acceptable so does the other (that is, the other
needs less return compensation for any given risk). Unlike in the classical approach
to comparative risk aversion, here the test comparisons are always between two
non-degenerate distributions; in the former they are bets against sure income (if
the more risk averse accepts a bet so does the less risk averse).

For risk aversion (negative second derivative of the vNM utility function), Jewitt
[7] has shown that the convexity—cones approach leads to the definition and char-
acterization of Ross [12]. We report here that for downside risk aversion (positive
third derivative) the same line is not fruitful, because of the non—decomposability
of the dual of the relevant intersection of convexity cones.

Utility Space. We work with utilities in C' = C|[0, 1], the Banach space of contin-
uous real functions on [0, 1] with supremum norm. Its dual space is M = M]0, 1],
the space of Radon measures on [0, 1] (representable as functions of bounded vari-
ation on [0,1], and including all distribution functions on [0,1] as well as their
differences); and the duality is u(f) = [ fdp (cf. [3]).

Convezity Cones and their Duals. For n > 0, C(1,z,2%,...,2") C C will
denote the cone of the n + 1-st order convex functions on [0,1]. The complete
definitions may be found in [1, 7, 9]; we will only need to know that C(1) and
C(1,z) are the cones of non—decreasing and of convex functions respectively, and
that C(1,z,2?) contains the functions with convex derivative. To get a general
idea: in all of these cones the smooth functions are dense; and the smooth elements
of C(1,z,z2,...,2") are the functions with positive n + 1-st derivative ([9] ch.XI).
We also let C—(1,z,22,...,2") = —C(1,z,22,...,2").

For a set of functions K C C, the set K* = {u € M: u(f) > O0Vf € K} is a
convex cone, called the dual cone of K. Notice that all the convexity cones contain
the constant functions; therefore any p € C(1,z,22,...,2")* must have u(1) =0,
or f dp = 0, and is thus interpretable as a probability change. Same applies to
sums of duals of convexity cones. As to biduals, identifying the dual of M with C
one defines K** = {f € C: u(f) > 0Vp € K*} (it is the closed convex hull of K).

RISk

Ross—Jewitt. Recall that a probability change in the dual of a convexity cone
is one which is favoured by all functions in the cone. A first—order stochastic
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dominance shift is the type favoured by all non—decreasing functions, that is, is in
C(1)*; and an increase in risk is what the convex functions like, i.e. is in C(1, z)*.
For increasing functions, a trade—off between risk and return appears in the sum of
the two, that is in a u € C(1)* + C(1,z)*. Accordingly, the definition is: u is more
risk averse than v if

peC)*+CQ1,z)* & [udp>0 = [ody>0. (1)

Jewitt noticed that if in (1) u is instead required to lie in the dual of a closed
convex cone C, then the assertion would become v € [{u} U C]**; that is, v(z) =
u(z)+w(x) for some a > 0 and w € C. He then pointed out that by a result of Amir
and Ziegler [1], C(1)*+C(1, z)* is indeed such a dual, precisely: C(1)*+C(1,z)* =
[C(1)NC(1,z)]*. Conclusion: u is more risk averse than v iff v(z) = au(z) +w(zx)
for some a > 0 and w increasing convex. This is the characterization of Ross. For
increasing utility functions, it is also equivalent, as is easily seen, to
>0 Yo,y G >A> L (2)
Asymmetry between Aversion and Attraction. The classical definition of u
more risk averse than v, that is, “whenever u accepts a bet so does v”, applies
equally well to risk loving individuals; the property in quotes says that w is less risk
attracted than v. This is not the case for the Ross-Jewitt definition; although the
assertion (1) is still well defined, it yields no comparison of risk attitudes if u and
v are increasing convex: if u is convex he will favour any p as in (1), so the latter
just says that also v is convex (increasing). As other side of the coin notice that the
representation coming out of (1), v(z) = au(z) + w(z) with w increasing convex
(may think of u = x and v = z + z?2), gives no separation of derivative-ratios as in
(2): computation yields that for increasing utilities, both ratios (of first and second
derivatives) are above a.

To compare intensities of risk attraction in the Ross-Jewitt vein one clearly needs
another trade-off, namely, increase in return versus decrease in risk: p € C(1)* +
C~(1,z)* (a decrease in risk is what the concave functions, i.e. those in C~ (1, z),
favour). As a consequence, for the resulting definition to yield a representation
of the more risk lover v as au + w with w convex one needs a separate result
about duals of convexity cones, namely that the above sum be equal to the dual of
C(1)NC~(1,z). And this holds (proof in last section):

Proposition 1. C(1)*+ C—(1,z)* = [C())NC~(1,z)]*.
One then defines v to be more risk attracted than v if
peCy+C~(Lz)* & fvdp>0 = [udu>0,

and the above proposition gives the correct characterization: v is more risk attracted
than u iff v(z) = au(z)+w(z) for some a > 0 and w decreasing convez (to visualize
may think of u = z, and v = x? up to z = 1/2 then straight). This is also equivalent
to the right separation of derivative-ratios

IN>0 Va,y L <A< Ly
(which is what you get when v” > 0 if you back-of-the-enveolpe multiply the in-
equality —u" /u' > —v" /v by —u'/v" and then separate).

DOWNSIDE RISK

Identified by Menezes, Geiss and Tressler [10], an increase in downside risk is
defined to be a mean—preserving spread coupled with a mean—preserving contraction
occurring on its right, the pair leaving variance unchanged. In other words it is
a mean-variance preserving transformation which shifts variability from the right
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to the left of a distribution (this is to be precise an ‘elementary’ change, a general
one being given by a finite sum of such transormations). In [10] it is proved that
all the functions with convex derivative dislike a probability change iff it is an
increase in dowside risk; and accordingly, u is defined to be downside risk averse if
it has convex derivative (if smooth: positive third derivative). In our terminology,
the Menezes—Geiss—Tressler characterization says that a signed measure y is an
increase in downside risk according to their definition iff 4 € C~(1,z,2?)* (what
u dislikes is what —u likes); and this will also be our definition. Of course the
attraction counterpart is: u is a decrease in downside risk if u € C(1,, z%)*.

Analogous to what we have seen in the previous section, the convexity—cones
approach to comparative downside risk aversion, based on the risk—return tradeoff,
is to define u to be more downside risk averse than v if

peC)*+C (1,z,2°)* & [udu>0 = [wvdu > 0. (3)
For risk attraction, the definition is: v is more downside risk attracted than u if
peC)*+C1,z,2*)* & [vdu>0 = [udu>0.

In both cases, one looks for a representation v = au + w where w has concave
derivative; and as before, in each case the representation hinges on the decompos-
ability of the relevant cone. In the case of downside risk aversion for example,
one would hope that C(1)* + C~(1,z,22)* be the dual of C(1) NC~ (1, z,x?); this
would give v = au+w with ¢ > 0 and w increasing with concave derivative, and for
increasing functions would also be equivalent to the ‘right’ separation of derivative
ratios, namely

ulll(z) ul( )
IA>0 Vz,y ) A> v’(Z)'

Symmetrically, for risk attraction the result sought for is C'(1)* + C(1,,2%)* =
[C(1)NC(1,z,22)]*, and the representation would be v = au +w with w decreasing
with concave derivative.

Unfortunately, while the latter result holds, the former, applying to the central
case of downside risk aversion, does not. Indeed, it is proved in the next section
that:

Proposition 2. C(1)* + C(1,z,2%)* = [C(1) N C(1,z, x?)]*.
Proposition 3. C(1)* + C (1,z,z?)* clean C (1,z,z2)].

The content of the last proposition is that there are u more downside risk averse
than v according to (3) which are not of the type u = av + w where w is (decreas-
ing) with convex derivative. In other words, the convex-derivative property of the
(affine) transormation is stronger than u being more downside risk averse than v
(cf. also Modica—Scarsini [11]). On the other hand, for increasing utility functions
existence of the above transformation can be proved directly (cf. [11]).

PROOFS

In all cases, the inclusion of the sum of duals in the dual of the intersection
is a direct consequence of definitions; proofs are needed to show that a given u
in the dual of the intersection is decomposable in a sum. Most arguments in the
sequel are applications of ideas of Amir—Ziegler [1] and Karlin—Studden [9]; some
complications arise from dealing with non—consecutive cones, and from a non-—
differentiability problem in Proposition 1.

In each case the starting point is a useful characterization of the dual in terms
of the extreme rays of the corresponding cone. And in each case, it can be checked
by applying the approximation methods of [9] ch. XTI that the smooth functions are
dense in the relevant cone.
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Basic notation: for y € M, f a.e. continuous on [0,1] and ¢ € [0, 1] let

Pu(t) ft du(z ft x)dz, and Qf(t) fo

So we may write Pzp(t) = P(Pu ft Pu(z)dz, and for n > 2 P"u(t) =
Ll P"—1y(z)dz. Throughout, 14 will be the indicator of A.

Proof of Proposition 1. For ¢ € [0,1] let 7(z;t) be the function of z which is
equal to x up to t then constant:

7(z;t) = l[oyt](x)a: + l(t,l](;c) t, x € [0, 1].
Lemma 1. p € [C(1)NC~(1,2)]* iff
fdu—() and fo 7(z;t)dp(x) >0, t € [0,1]. 4)

Proof of Lemma. We are talking about the cone of non—decreasing concave func-
tions. So necessity is clear, since all constant functions belong to it (so fol du=20
must hold), and so does 7(-;t) for all t

Sufficiency. Since 7(x;t) fo 1[0 #(2)dz, it is easily seen by interchanging order
of integration that fo x;t)dp(x fo Pu(z)dr = QPu(t). Assume pu satisfies
the stated conditions; we want [ ¢du > 0 for all ¢ e C(1)NnC~(1,z), and by the
denseness property mentioned before it suffices to take ¢ smooth. Then, noting

that Pu(O = fol du(z) =

Jo #@)du(z) == fy & dPu =h o )d(x)
—fo ¢ (z QPu)( ) =1[4'(= )(QP# ~ f, ¢"(@)(QPp)(w)dz.
But ¢' >0, QPu > 0, and ¢” < 0, so this integral is non-negative. O

Now decomposition. We start with g € [C(1)NC~(1,2)]*, and want p = p1 + po
with g1 € C(1)* and ps € C~(1,2)*. Characterizations of the latter duals are due
to Karlin and Novikoff [8] (which is the starting point of this literature) and are
reported in [1] (modulo a minus sign which is easily accounted for); for p; and us
they are

Pps(0) =0, Pus(t) >0Vt

Ppuy(0) =0, P?u3(0) = 0, and P?us(t) <0 Vt. (*)
Since fo x;t)du(z) = QPu(t) = P?2u(0) — P2u(t), (4) may be written as
Pu(0) =0 and P?u(t) < A Vt, (4"

where A = P?u(0). Notice that 4 = fol zdu(x), so since the function z is increasing
concave and p € [C(1) N C~(1,z)]*, it must be A > 0. If A = 0, then by (4")
uw € C~(1,z)* (apply () to u), and decomposition is achieved with u; = 0.
Take therefore p satisfying (4’) with A > 0. Given puy = p — py, the conditions
(%) are
Py (0) = Pp(0) = 0, P?p;(0) = P*u(0), and P?puy (t) > P?p(t) Vt,
so finding 1 and po as wanted amounts to finding p; satisfying;:
Ppi(0) =0, Pui(t) > 0Vt, P?ui(0) = A, P?ui(t) > P*p(t) Vt. (5)

Now we follow Amir—Ziegler’s lead (up to a point). If F' € C is a smooth function
such that F(1) = DF(1) = 0 (where D denotes derivative), then if u; is defined by
setting

w1 = D’F (6)
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(in the sense that dui(x) = D?F(z)dx), it is easily verified that P?u; = F and
Puy; = —DF'. Thus if py is defined by (6) for a smooth F with F(1) = DF(1) =0,
it will satisfy (5) iff F' satisfies

F(0) = A, F(t) > P*u(t)Vt, DF(0) =0, DF(t) < OVt

So we are looking for a smooth decreasing function dominating P2, equal to it at
t=0,1 (to A and zero respectively), with zero derivative there; if such a function
exists the proposition is proved.

If there is a left interval of t = 1 where P2y is negative such an F is found with
no effort: construct it backwardly from ¢ = 1 to t = 0 by making it smoothly reach
height A within that interval, and from that point on have it constant = A until ¢
reaches zero.

So assume that in any left interval of ¢ = 1 there are points where P2y is positive.
Observe that DP?u(t) = —Pu(t) if t is a continuity point of Py; in the case on
hand one has to deal separately with the cases where ¢t = 1 is/is not such a point.

Case Py continuous at 1. Here the Amir-Ziegler argument still works: Given
our current hypothesis, DP?p is zero at t = 1 and arbitrarily small (where it exists)
in a sufficiently small left interval of it; so one can construct the wanted F', again
backwardly from t = 1 to t = 0, by making it come out of 1 steep enough so that
within this interval it stays above P? (still with DF(1) = DP?u(1) = 0, but with
DF negative and < DP2y in the interval), and also smoothly reaches height A; as
before, from that point on we can have it constant = A until ¢ reaches zero, and
we are done.

Case Pu not continuous at 1. In this case it may happen that lim,_,;— DP?pu(t) =
—lim;_,;- Pu(t) < 0, and then no twice differentiable function F with F(1) =
DF(1) = 0 can stay above it just left of ¢ = 1; so the Amir—Ziegler argument
cannot be applied.

Recall that the the case where there is a left interval of t+ = 1 where P2?y is
negative has already been covered (Pu continuous or not). So we are dealing with
the situation where Py is not continuous at 1 and limsup,_,;— Pu(t) > 0.

In terms of Py the conditions (4) or (4°) characterizing our p € [C(1)NC~ (1, z)]*
with A > 0 may be written as (recall that A = fol Pu(x)dx)

Pu(0) = Pu(1) =0, fol Pu(z)dz > 0, and f(f Pu(z)dz > 0 Vt. (7)

We are going to decompose this Py into a sum, Py = P; + Py, such that when
we define p; and py by

Pi(t) = [ dpi(z), i=1,2

we obtain p; € C(1)* and uy € C~ (1, z)*; since by construction u = p; + p2, the
proposition will be proved. To see what conditions we need on P; notice that when
1; is defined as above, one has

Vn>0vte[0,1] [ (z—t)dui(x) = n [ (@ — )" Py(z)da. (8)
The respective conditions on y; are then seen to be (again cf. e.g. [1])
P(t)=0fort=0,1,i=1,2
Pi(t) > 0V [} Py(z)dz =0, [, Py(x)dz > 0 Vi.

Notice first that if Pu(t) > 0 all ¢t then p € C(1)* and we are done; on the
other hand it cannot be Pu < 0 because it has positive intergal; so we will face a
Py oscillating between positive and negative (with limsup,_,;- Pu(t) > 0), with

(9)

non-null positive and negative parts (Pu)™, (Pu)~. In this case also fot Pu(x)dx
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is oscillating, with lim;_,;- fo Pu(z fo Pu(z)dx > 0. In the rest of the
argument we write P for Pu.

Since P = PT — P~ and both P and P~ have positive integrals (the latter by
right continuity), there exists 0 < a < 1 such that fol (ozP+ (z) — P‘(x))dm =0.If
for this « it is also fot (aP*(z)— P~ (z))dx > 0V¢t, then we just set P, = (1—a)P*
and P, = aPt — P~ except maybe at the boundary points where we assign them
vaule zero, and (9) holds. So assume that such a ‘global’ scaling down of P* cannot
be done because the resulting P> would violate the condition fot Py(z)dz > 0 V.
The construction described below consists of scaling down P ‘locally’. We define
P, = P where the latter is negative; where P is positive, in some intervals P> will
be again = P, in some others it will be a fraction of it (see below); and P, is defined
as the difference P — P,. Since by construction P, < P, it will then be P, > 0, and
this is all we need of it (check (9)). So from now on we only speak of Ps; in fact
only of Py, because Py = P~.

If there are t such that fo x)dx = 0, take the largest of them, say to, define
P, = P on [0,t0], and begin the constructlon below from ty. So in the following
we assume wlog that to = 0, i.e. that fot P(z)dz > 0Vt > 0. Then for « sufficiently

close to 1 it will still be [; (aP*(z) — P~ (z))dz > 0Vt. As a goes down, it will
reach a value a; € (0,1) where the above integral is zero for some ¢ ’s. Let t; be the
maximum of these ¢’s (which exists because the integral is contmuous) and define
PJr =a; Pt on [0,%1]. Thus on this interval fo Py(x)dx > 0, and fo Py(z)dx = 0.
If t1 = 1, the proof ends (again by (9)). Otherwise, by construction of #; it is for
allt >t

fttl P(z)dx > fttl (1 P (z) — P~ (z))dz = fot (a1 P*(z) — P~ (z))dz > 0.
Thus we can repeat the process just described for [0,1] on the interval [t1, 1], and
find a and t, > t; such that defining P} = a2P+ on (t1,t2] we have f(f Py(x)dz >0
for 0 < t < t, [;* Py(z)dz = 0; and ft z)dz > 0 all t > tp. Iterating this
process we get sequences (an) and (t,) with the same properties we have just seen
for n = 1,2. Also, t,, — 1 (as can be seen by contradiction); so P» is defined on all
of (0,1), and by construction fo Py(z)dz > 0Vt.

To complete the proof we must check that fo Py(z)dr = limy_yq fo Py(z)dr = 0.
Indeed for € > 0, there is ¢, such that for ¢ > t. one has ft |P )|dz < €; so take
tn > te, and for t > t, get 0 < fot Py(x)dx = j;tn Py(x)dx < ft |P(z)|dz < e.

Proof of Proposition 2. Again start with [C(1) N C(1,z,2?)]*. The two char-
acterizing families of extreme rays here are convex and concave increasing parts of
parabolas; precisely, for ¢ € [0,1] let

$a(z;t) = 1 1y(z)(z — 1)?/2 and Ya(z;t) = —1p4(2)(z — 1)%/2, z € [0,1].
Lemma 2. p € [C(1)NC(1,z,2%)]* iff
Jy du(z) =0, [} zdu(z) >0, and
o ¢o(@st)ydp(z) >0, [} po(z;t)du(z) >0, te[0,1].

Proof of Lemma Necessity is again direct. For sufficiency, observe that ¢ (z;t) =
Ty [, [0 td~772d$1 and Yo (z;t) = —1jo,4(z) f;:z f;:m dzodzy; from this
it easily follows that fo da(x;t)du(z) = P3,u(t), and

Ja da(@s () = — [1_o [7 [7 du(a)daydzs = W(8).
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Now suppose p satisfies the given conditions and integrate a smooth qﬁ in the cone
(want result non-negative); for this, observe that ¥'(t) = — [* o dp(x)dz, =

z1—0

P2u(0)—P?u(t), last equality using f dp = 0. Then obtain (using agaln Pu(0) =0)

fol () —fo x)dPu(z fo ¢ (z )da:
= —fo ¢' (x)dP?p(z) = ¢'(0) P +f0 ¢" p(x)dx
= HO P +men2m> M—Ld’dﬁ()

= ¢ (t)P*p(0) — [} ¢"(x)dT Lw'dw()
-ww#<m—ww(<)1ﬁ t)) + f3 ¢ (@) ¥ (z)dz + [;' ¢ (2) P p(z)dz.

By positivity and the endpoint conditions at + = 0,1 of P3y and ¥, there exists ¢
such that ¥(t) — P3u(t) = 0; take ¢ equal to this value in the last expression above,

and you are left with only positive terms (recall that P?u(0) = fol zdp(z) >0). O

Now decomposition: we start with p € [C(1)NC(1, z,2?)]*, and want p = p1 +p»
with g1 € C(1)* and po € C(1,z,22)*; again from [8] or [1], the conditions on s
and p9 are then

Pps(0) =0, Ppu(t) 20, (0 1) (10)

Pu2(0) = 07 PZ/"Z(O) 0 (0) = 07 P3/1'2(t) > 07 te (07 ]-)7 (11)
where recall that P?u»(0) = [ 2dus(z) and P3us(t) = 271 ftl(;r —1)%dps(z). Let
again A = P2u(0). Given Pu(0) = 0, it easily checked that

U(t) = PPu(t) + At — P?u(0). (12)

From the lemma A > 0; suppose A = 0. Since the last two conditions on g in the
lemma assert non-negativity of P3u and ¥ on [0, 1], and equation (12) (with ¢ = 1)
and A = 0 then implies P3u(0) < 0, we may conclude that if A = 0 then also
P31(0) = 0. But in this case p € C(1,z,2%)* (apply (11) to u), and decomposition
obtains with u; = 0.

So assume A > 0. Then, since (d/dt)P?u(0) = —P?u(0) < 0 and P3u(t) > 0 all
t, it must be P3u(0) > 0. Letting B = P3u(0), and using (12), the conditions on u

in lemma 2 can then be written as
Pu(0) =0, P?u(0) = A >0, PPu(0) =B >0, 13)
PPu(t) >0, P’u(t) > B— At, t € [0,1].

On the other hand, using p> = p — pu1 and writing as in the previous proposition
the conditions (11) in terms of pu and p; we obtain conditions on p; equivalent to
(10) and (11), which in the present case are

P311(0) = B, P%uy(t) < P3u(t) Vt.

To sum up, we start with (13) and look for a p satisfying (14). Here adaptation
of the Amir—Ziegler’s line leads to the result. The starting point is again the fact
that for any f € C differentiable j times (denoting D°f = f),

if D'f(1)=0,i=0,1,...,j — 1, then PD7f = (1)’ f.
So if for an F which at ¢t = 1 is zero with its first two derivatives we define

p = —D°F, (15)
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then P®u; = F, and also Puy = D?F and P?u; = —DF. So if F € C has
F(1) = DF(1) = D?F(1) = 0, then y; defined via (15) satisfies (14) iff F satisfies

F(0) = B, F(t) < P°u(t) Vt,

N ) (16)
DF(0) = —A, D2F(0) =0, D2F(t) > 0 Vt.

Notice that at t = 0, F is required to be equal to P3y with its first two derivatives;
and at t = 1 it is required to be equal to P3p with its first derivative. For the rest, F'
has to be convex and dominated by P3u. If an F constant on a left neighbourhood
of t = 1 and satisfying (16) exists, the proposition is proved (with u; defined by
(15)).

We already observed that ¥'(t) = P?u(0) — P?u(t); then ¥'(1) = A > 0 which,
together with ¥(¢) > 0 all ¢, implies ¥(1) > 0; so from (12) letting ¢t = 1 we get
A > B. Hence there is ¢t € (0,1) such that B — Aty = 0. Define

Fi(t) = 19,4, (t) (B — At).

This F; satisfies all of (16) (convexity replacing D?F > 0) except smoothness
at to. To smooth it around #o (and end up with a function still below P3u) we
need to exclude that P3u(ty) = 0. But if this were the case, by smoothness of
P3u we would have P3u(t) < B — At on a left neighbourhood of ¢, contradicting
the last requirement of (13). Therefore we can smooth F; around ¢y (as done in
Amir—Ziegler for example) to get the wanted F, and the proof is complete.

Proof of Proposition 3. To characterize the dual of C(1) N C~ (1, z,z2) define
the following family of extreme rays for ¢t € (0,1] (parts of parabolas joined at t,
increasing first convex then concave)-

mo(x;t) = 1p 4 () 152 +1[t1]( )w
= ;1:0 ;;:0 [%I[O,t) ($2) — l[t’l](xz)] dmzd.fll'l.

The last equality is elementarily checked, and it easily gives
Jo ma(@; t)dp(x) = $[(1 - 1)B — PPu(t)] = LH(1), (17)

where as before B = P31(0). Incidentally, it will be again A = P?u(0).
Lemma 3. p € [C(1)NC~(1,z,22)]" iff

fol du(x) =0, fol z2du(z) > 0, fo (x —1)%du(z) > 0, and

Jo ma(@;t)dp(x) >0, t € (0,1)
Proof. Necessity is obvious by construction, and for sufficiency take a smooth ¢ €
C(1)NC~(1,z,2?) and integrate. The first equality below is obtained by using as

usual du(z) = —dPu(z), Pu(z)dr = —dP?p(x) and Pu(0) = 0; then we use the fact
that for the H defined in (17) it is dH(t) = [P?u(t) — B]dt, and H(0) = H(1) = 0:

Jo (@)dp( ——L¢'dﬂ<)
:[—¢%x) (@)]g + Jy ¢"(z)[dH (z) + Bdz)
= ¢'(0)P*u(0) + B J, ¢" Yz + [¢" (@) H(x)] o~ Jo ) (0)H(2)da
=¢®M+BW(%- 0)] - [y ¢® H(z)dz
=¢m3+wmm_m_5¢mmmmm

Now: B = P3pu( fo ) > 0 by hypothesis; and A= P2y fol xdu(z)

so using fol d,u =0 we get A B = fo 2C=2) gz fo (w(z2 z) Ddu(z) =
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fol —@dﬂ(x) > 0 by hypothesis; always by assumption, H, ¢’ and ¢ are also
non-negative. Result then follows. ! O

Now non-decomposability. We show that there exists u € [C(1)NC~ (1,2, 3?)] *
which admits no representation of the form pu = p; + ps with yy € C(1)* and
ps € C~(1,z,22)*. The conditions for yu; € C(1)* are still those in (10); those on
o are found from (11) by observing that us € C~(1,z,2%)* iff —us € C(1,z,2?)*,
hence they are

Pps(0) = P?ps(0) = P*p»(0) = 0, and P?ps(t) <0,t € (0,1).

As before using ps = p — p1 and rewriting, we find that p admits representation of
the wanted type iff there exists u; satisfying

P:u’l(o) =0, Pﬂl(t) >0Vte (Oa 1)7

P2un(0) = A, PPui(0) = B, and PPu(t) > Pou(t) ve € 0,1).

We now rewrite the conditions on p in lemma 3. Given fol du(z) = 0, the
condition fo (z—1)%2du(z) > 0 amounts to A > B; also, fol x2du(z) = 2B; finally,
using (17) it is seen that the last condition in the lemma is P3u(t) < B(1 —t)
all t € (0,1), which obviously holds also for ¢ = 0,1. Hence we conclude that
pe [C()nC—Q1,z,2%)]" iff

Jo du(z) =0, A>B >0, and PPu(t) < B(1—1),t€[0,1],  (19)

where recall A = P2u(0) = fol zdu(r) and B = P3u(0) = fol d

If A =0 then also B = 0, and decomposition does obtain trivially, with p;
0 (easy to check). We now give an example of u satisfying (19), with A >
and B = 0, Which cannot be decomposed. Recalling from page 6 that P3u(t)

fo oo (m;t)du(z ftl (=t t) du(z), conditions (19) in the present case read
fo dp(z) =0, fo zdp(z) > O,fo z?dp(z) = 0, and j;l(a: —t)%du(z) <0 Vt. (20)

Again we broadly follow the line Amir—Ziegler employed for their counterexample
(to the decomposability of the dual of the intersection of four consecutive convexity
cones), and define g via a particular function P by setting

1

= [ dule), te 0,1, (21)

Applying (8) to u and P we see that u defined by (21) satisfies (20) (and so is
in the given dual) iff P is such that

ol

P(0) = =0, [} P(z)dz >0, [y eP(z)dz =0, [;'(z —t)P(z)dz < 0 Vt. (22)
Define R(t ft x — t)P(z)dz. Then
- ft z)dr = fo z)dr — A, (23)

and if fol 2P (z)dx = 0 also R(0) = 0. P is defined as follows (a tent with basis
[0,1/4], then 0 up to ¢t = 3/4, then an upside—down tent with basis [3/4,1] and
height 1/7 of the other):

P(t) =1yt + 13 1) (=t + ) + Lz, @) 7 (§ —1) + Lz y®) 3 (2= 1).

4°8
This P is elementarily seen to satisfy all but the last of (22). For the latter,
which is R(t) < 0 all ¢, integrate P from 0 to ¢, plot, and shift down by A; this
function, which by (23) is R'(¢), increases on [0,1/4] from —A to a positive value,
then remains constant up to ¢ = 3/4, then decreases to zero, which it reaches at

INotice that although the condition fol zdu(z) > 0 does not appear in the lemma, we have
seen that it does hold: fol zdu(r) = A> B > 0.



CONVEXITY CONES AND COMPARATIVE RISK 10

t =1. But fg’ R'(z)dz = R(t) — R(0) = R(t), so R(t) decreases on [0,1/8], then
increases; since R(0) = R(1) =0, it must be R(t) <0 all ¢.

The conclusion then is that the P defined above satisfies (22); thus the p defined
via P by (21) is in [C(1) N C~(1,z,2%)]". To finish the proof we shall show that
it is not decomposable. Suppose it were, with g = p1 + pa, 1 € C(1)* and
po € C~(1,x,2%)*; then ftl du = ftl duy + ftl dus = P, + P»; and if v; is defined
by dv;(x) = P;(z)dz, i = 1,2, it follows from (8) and the characterizations of the
relevant duals (for the last time, cf. [1] or [9]) that

v € (C+)*7 vy € C_(l,.Z')*,

C* being the cone of positive functions. Therefore their densities P; and P should
in particular satisfy

Pi(t) > 0Vt, [} Py(z)dz =0, [ zP(x)dz = 0. (24)

This and P = P, + P, give fol xP(z)dr = fol x Py (z)dz; and the integral on the left
is zero by (22), thus by non-negativity and right continuity of P; we conclude that
(24) implies that the latter is identically zero. On the other hand fol Py(x)dx =0
implies fol Py (z)dx = fol P(z)dz, which is strictly positive by (22). A contradiction
has been reached.
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