Notes on Decisions Under Risk ${ }^{1}$

Motivation and intuition

A coin which falls Heads or Tails with equal probability (a half each) is called fair. If you ever wondered, it is called fair because if you bet x Euros on Heads against me the coin does not favor either of us, both have zero expected gain: $0.5 * x+0.5 *(-x)=0$. That is the most the coin can do, but zero isn't necessarily the worth we attach to the bet. In other words expected value as a valuation criterion doesn't always reflect preferences. The starkest example to see the point is the St. Petersburg "paradox": suppose you are offered the prospect of winning 2^{k} Euros with probability 2^{-k}, for $k \geq 1 ;{ }^{2}$ The expected value of such a bet is $1+1+\cdots=\infty$, but I am pretty sure you prefer 10 million Euros for sure to such a bet. If so you are not evaluating bets according to their expected values.

Indeed, going back to the simpler coin case: if I invite you to bet a hundred Euros on a fair coin, would you accept? Most likely not - you would prefer not to bet, that is getting zero for sure. Said otherwise, your valuation of that zero-expectation bet is less than zero. The easiest explanation of this "risk averse" behavior is that money gives utility but the utility of money - say u - does not grow as much as the money itself - in other words it has a decreasing derivative, that is it is concave. In this case when you take expected utility rather than expected value, that is you evaluate the bet by computing $0.5 * u(x)+0.5 * u(-x)$, you get a number smaller than $u(0)$. Picture:

Making precise the connection between risk aversion (properly defined) and concave utility of money and its basic implications is one of the principal goals of these notes. ${ }^{3}$

[^0]
1 Setup and basic definitions

The model A measurable space $(\Omega, \mathcal{F}, \mathrm{P})$ is given. Objects of choice are simple random variables (henceforth r.v.)

$$
\xi=\sum_{i=1}^{n} x_{i} 1\left(A_{i}\right)
$$

where the x_{i} are distinct reals, $1\left(A_{i}\right)$ is the indicator of set $A_{i} \subseteq \Omega$ and $\left\{A_{1}, \ldots, A_{n}\right\}$ is a partition of Ω; here $A_{i}=\left\{\omega: \xi(\omega)=x_{i}\right\}$. For any $x \in \mathbb{R}$ the constant r.v. $x 1(\Omega)$ will be denoted by x.

A preference \succcurlyeq on r.v.'s characterizes the decision maker, where $\xi \succcurlyeq \eta$ reads " ξ is preferred to $\eta^{\prime \prime}$. It is assumed that \succcurlyeq is a weak order, that is

1. Complete: for any pair ξ, η either $\xi \succcurlyeq \eta$ or $\eta \succcurlyeq \xi$ or both, and
2. Transitive: $\xi \succcurlyeq \eta \succcurlyeq \zeta \Longrightarrow \xi \succcurlyeq \zeta$.

We write $\xi \sim \eta$ if $\xi \succcurlyeq \eta$ and $\eta \succcurlyeq \xi$, and $\xi \succ \eta$ if $\xi \succcurlyeq \eta$ and not $\eta \succcurlyeq \xi$.
Recall that a simple r.v. ξ induces a probability distribution P_{ξ} on \mathbb{R} defined by

$$
\mathrm{P}_{\xi}\left(x_{i}\right)=\mathrm{P}\left(A_{i}\right)=\mathrm{P}\left\{\omega: \xi(\omega)=x_{i}\right\} .
$$

Reduction The fundamental behavioral assumption we make is that if $\mathrm{P}_{\xi}=\mathrm{P}_{\eta}$ then $\xi \sim \eta$. This implies that the decision maker is only concerned with the distributions on \mathbb{R} induced by the various r.v.'s (inelegantly speaking, money) rather than with the r.v.'s themselves. The space $(\Omega, \mathcal{F}, \mathrm{P})$ plays no role in decision making. It is therefore natural to define preferences directly on those distributions, letting $\mathrm{P}_{\xi} \succcurlyeq \mathrm{P}_{\eta}$ if $\xi \succcurlyeq \eta$ (we use the same \succcurlyeq symbol to save notation). This new preference clearly inherits the transitivity property of the original relation.

To speak of completeness we need to make another assumption. Observe that the distribution P_{ξ} induced by $\xi=\sum_{i} x_{i} 1\left(A_{i}\right)$ is characterized by its finite support $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and by the probability vector $p=\left(p_{1}, \ldots, p_{n}\right)$ where $p_{i}=\mathrm{P}_{\xi}\left(x_{i}\right)$. In other words it may be represented as a pair $P=(X, p)$. The (technical) assumption we need is that the space $(\Omega, \mathcal{F}, \mathrm{P})$ is rich enough that any such P is induced by some r.v. on $\Omega .{ }^{4}$ At this point we have a relation \succcurlyeq defined on all the finite-support distributions on \mathbb{R}, and we assume it is a weak order.

It is convenient to visualize $P=\left(\left\{x_{1}, \ldots, x_{n}\right\},\left(p_{1}, \ldots, p_{n}\right)\right)$ as in the following picture:

[^1]

The degenerate distribution $P=(\{x\}, 1)$ giving x for sure will be also written as x. We may also occasionally use the handy notation $x_{p} y$ for the two-outcome distribution assigning probability p to x and $1-p$ to y.

Note on terminology: we shall use interchangeably the terms distribution, lottery and prospect.

Expectation Recall that for r.v. $\xi=\sum_{i=1}^{n} x_{i} 1\left(A_{i}\right)$ and $\varphi: \mathbb{R} \rightarrow \mathbb{R}$, letting $p_{i}=\mathrm{P}_{\xi}\left(x_{i}\right)$ we have

$$
E \varphi(\xi)=\sum_{i=1}^{n} \varphi\left(x_{i}\right) \mathrm{P}_{\xi}\left(x_{i}\right)=\sum_{i=1}^{n} \varphi\left(x_{i}\right) p_{i} .
$$

For $P=\left(\left\{x_{1}, \ldots, x_{n}\right\},\left(p_{1}, \ldots, p_{n}\right)\right)$ we now define

$$
E \varphi(P)=\sum_{i=1}^{n} \varphi\left(x_{i}\right) p_{i} .
$$

Note that if P is induced by ξ (so that $P=\mathrm{P}_{\xi}$) we are just defining $E \varphi(P)$ as $E \varphi(\xi)$. In the case of identity function $\varphi(\xi)=\xi$ this reduces to $E(P)=\sum_{i} x_{i} p_{i}$. In the sequel we most often write $E P$ for $E(P)$ to ease reading.

2 The expected utility theorem

Expected Utility We say that EU holds for \succcurlyeq if there exists a strictly increasing $u: \mathbb{R} \rightarrow \mathbb{R}$ such that for any pair of distributions P, Q one has $P \succcurlyeq Q \Longleftrightarrow E u(P) \geq E u(Q)$. The function u is called a vonNeumann-Morgenstern (vNM) utility.

We next state three axioms on \succcurlyeq which are necessary and sufficient for EU to hold.
A. Monotonicity For $M>m$ and $p>q$ the following strict preference holds:

This is pretty self-explanatory: you prefer winning more money with higher probability. Observe that for $p=1$ and $q=0$ the axiom says that $M \succ m$ (here the comparison is between degenerate distributions); thus we have the direct implication $M>m \Longrightarrow M \succ m$ - more money is better.
B. Continuity For any numbers $m<x<M$ there exists $p \in(0,1)$ such that the following indifference holds:

The monotonicity axiom implies that such a p is unique (exercise).
C. Consistency To state the last axiom we need to define the mixture of two distributions. Start with two distributions $P=\left(\left\{x_{1}, \ldots, x_{n}\right\},\left(p_{1}, \ldots, p_{n}\right)\right)$ and $Q=\left(\left\{y_{1}, \ldots, y_{m}\right\},\left(q_{1}, \ldots, q_{m}\right)\right)$. For $\alpha \in \mathbb{R}$ let $p(\alpha)$ be the probability of α under P and $q(\alpha)$ the probability of α under Q, that is

$$
p(\alpha)=\left\{\begin{array}{ll}
p_{i} & \text { if } \alpha=x_{i} \text { some } i=1, \ldots, n \\
0 & \text { otherwise }
\end{array} \quad q(\alpha)= \begin{cases}q_{j} & \text { if } \alpha=y_{j} \text { some } j=1, \ldots, m \\
0 & \text { otherwise } .\end{cases}\right.
$$

Given a number $0 \leq \lambda \leq 1$, the mixture $P_{\lambda} Q$ is defined as follows: its support is $X \cup Y$, and the probability assigned to $\alpha \in X \cup Y$ is $\lambda p(\alpha)+(1-\lambda) q(\alpha)$. These probabilities sum to 1 (proof in footnote) so the mixture is well defined. ${ }^{5}$
$P_{\lambda} Q$ obtains if you get P with probability λ and Q with probability $1-\lambda$. The picture is this:

$$
\begin{aligned}
& { }^{5} \text { For } \alpha \in Y \backslash X \text { we have } p(\alpha)=0 \text { and for } \alpha \in X \backslash Y \text { we have } q(\alpha)=0 \text {. Therefore, since } X \cup Y= \\
& X \cup(Y \backslash X)=Y \cup(X \backslash Y) \text {, we have } \\
& \quad \sum_{\alpha \in X \cup Y} p(\alpha)=\sum_{\alpha \in X} p(\alpha)=1 \quad \text { and } \quad \sum_{\alpha \in X \cup Y} q(\alpha)=\sum_{\alpha \in Y} q(\alpha)=1
\end{aligned}
$$

so that

$$
\sum_{\alpha \in X \cup Y} \lambda p(\alpha)+(1-\lambda) q(\alpha)=\lambda \sum_{\alpha \in X} p(\alpha)+(1-\lambda) \sum_{\alpha \in Y} q(\alpha)=1 .
$$

Example: let $P=(\{8,5,0\},(1 / 4,1 / 2,1 / 4)), Q=(\{5,2\},(1 / 2,1 / 2))$ and $\lambda=4 / 5$. Then

Exercise Verify the following linearity property of the expectation operator, precisely that $E \varphi\left(P_{\lambda} Q\right)=\lambda E \varphi(P)+(1-\lambda) E \varphi(Q)$. Solution in footnote. ${ }^{6}$

The consistency axiom states that for all numbers x, m, M, all probabilities p and λ and distributions C the following implication holds:

[^2]The expected utility theorem EU holds for \succcurlyeq if and only if \succcurlyeq is a weak order satisfying monotonicity, continuity and consistency.

Uniqueness of vNM utility The following result holds. Under EU, the vNM utility is unique up to linear transformations. That is, if u is a vNM utility for \succcurlyeq then any other vNM utility for \succcurlyeq is of the form $\sigma u+\tau$ with $\sigma>0$ and $\tau \in \mathbb{R}$.

Important exercise Prove the easy directions of the above assertions. First, show that if EU holds then the axioms are satisfied (the hard part is to show the reverse implication). Second, show that if u is a vNM utility for \succcurlyeq then so also is $\sigma u+\tau$ with $\sigma>0$ and $\tau \in \mathbb{R}$ (the hard part here is to show that there are no others). Solution of the easy direction in footnote. ${ }^{7}$

Existence of a certainty equivalent A certainty equivalent for a distribution P is a number $C E(P)$ such that $C E(P) \sim P$. By monotonicity if such a number exists it is unique. Under EU it does exist for all P if and only if the vNM utility for \succcurlyeq is continuous. This is Exercise 2.6.5 in Wakker.

The key idea for the proof of the EU theorem Notation: if P assigns probability p to x and $1-p$ to y we write $P=x_{p} y$. Fix two values $m<M$; suppose EU holds; take a vNM utility u such that $u(m)=0$ and $u(M)=1$; then if for an $x \in(m, M)$ the number p solves $x \sim M_{p} m$ (existence of such p guaranteed by the continuity axiom) we have $u(x)=p * u(M)+(1-p) * u(m)=p$. So in the search for a vNM utility between m and M we are forced to define $u(x)$ by the equivalence

[^3]From this it follows directly that for any P, Q we have

$$
P \succcurlyeq Q \Longleftrightarrow E u(P) \geq E u(Q) \Longleftrightarrow E u^{*}(P) \geq E u^{*}(Q)
$$

because we know that if there is a vNM it must be it. So the proof starts from this definition, and repeatedly using consistency and then monotonicity shows that EU holds for distributions with values in an interval $[m, M]$. The procedure is illustrated in Appendix 1 where we give the details of the proof and show how the extension from $[m, M]$ to all of \mathbb{R} and uniqueness are obtained.

Building some intuition Take $m=0, M=100$ and $u(m)=0, u(M)=1$. Applying the definition of u as above, to find for example $u(30)$ and $u(70)$ we must find probabilities in the indifferences below (in the picture it is assumed they are .4 and .8) and then utility is as drawn in the right diagram (with some interpolation to get an idea).

Assessing vNM utility the other way around ${ }^{8}$ Suppose you have to choose one of these four lotteries:

It does not seem an easy task at all, but assuming you subscribe to the expected utility axioms the problem "reduces" to assessing your vNM utility for the outcomes, for then you just compute expected utility and choose the one for which that is highest. To derive u we start by normalizing at the extremes: $u(1000)=1, u(-100)=0$. We want to get some utility values and then interpolate to get an acceptable estimate. We assume existence of certainty equivalents. We have just seen one way to do it: derive probabilities to get utility of given values. An alternative is to start with given probabilities - say $50-50$ two-valued prospects, which are the simplest to understand - and derive utility, as follows. Start with $1000_{1 / 2}(-100)$

[^4]and give the value which gives indifference in the comparison below; here we suppose the value is 400 .

Then you know $u(400)=1 / 2 \cdot u(1000)+1 / 2 \cdot u(-100)=1 / 2$. Given this, to get x such that $u(x)=0.75$ we can then use the lottery $1000_{0.5} 400$. Supposing you assert that $1000_{0.5} 400 \sim$ 675 then $u(675)=0.5 \cdot(1+1 / 2)=0.75$. For 0.25 we can use $400_{0.5}(-100)$; assuming you say $400_{0.5}(-100) \sim 100$ then $u(100)=0.25$. You can go further, or just interpolate somehow between these four values to draw a continuous u between -100 and 1000. In fact you can also perform some consistency check. For example, it should now be the case that

because the prospect on the right has now expected utility $0.5 \cdot u(675)+0.5 \cdot u(100)=$ $0.5(0.75+0.25)$. If you give a number different from 400 here then you should go back and think better. In the end you should end up with a consistent assessment. If you reach that you are done, just choose the lottery with the highest expected utility.

Application: medical decisions

This is from Wakker chapter 2, which the reader may consult for accurate description of the situation. We will be brief. A patient with throat cancer must decide between Radiotherapy and Surgery. The situation is depicted in the self-explaining figure below. Note the use of squares for decision nodes and circles for chance nodes. Probabilities come from data on previous cases. The outcomes are not monetary, but rest assured that the theory can cover cases like this as well. We just assume that EU holds, with vNM u such that $u($ normal voice $)>u($ artificial voice $)>u($ death $)$.

The tree may be simple for us though most likely not for a person with cancer. But the whole point is that we don't need the patient to examine it. By normalizing u (normal voice) $=$ 1 and $u($ death $)=0$ (which we know it can always be done) we only need to elicit the patient's u (artificial voice). And given $0-1$ utility at the extremes we know that u (artificial voice) is the probability p which solves the indifference

Given u (artificial voice) then we compute expected utility of the two choices:

$$
\begin{aligned}
E u(\text { Surgery }) & =(.7+.3 * .3) * u(\text { artificial voice })+(.3 * .7) * 0 \\
& =.79 * u(\text { artificial voice }) \\
E u(\text { Radiotherapy }) & =.6 * 1+(.4 * .4) * u(\text { artificial voice })+(.4 * .6) * 0 \\
& =.6+.16 * u(\text { artificial voice })
\end{aligned}
$$

therefore the patient prefers Radiotherapy iff

$$
\begin{gathered}
.79 * u(\text { artificial voice })<.6+.16 * u(\text { artificial voice }) \\
u(\text { artificial voice })<.6 / .63 \approx 0.95 .
\end{gathered}
$$

This is quite a high value, so we can expect to be able to advice a majority of patients to try radiotherapy. Still, eliciting whether u (artificial voice) is above or below the threshold may not be always simple. It may be easy to find that the patient prefers the lottery with 95% probability to complete recovery to artificial voice (so that u (artificial voice) <0.95). But if the threshold were say 0.6 , when confronted with the alternatives

it may be more problematic to have a definite answer. In any case it is quite clear that a decision theorist can be of huge help in situations like this.

A case study: the coach problem

This is from the book "Thinking strategically: the competitive edge in business, politics, and everyday life" by Avinash K. Dixit and Barry J. Nalebuff, W.W. Norton 1991.

9. CASE STUDY \#2: THE TALE OF TOM OSBORNE AND THE 1984 ORANGE BOWL

In the 1984 Orange Bowl the undefeated Nebraska Comhuskers and the once-beaten Miami Hurricanes faced off. Because Nebraska came into the Bowl with the better record, it needed only a tie in order to finish the season with the number-one ranking.

But Nebraska fell behind by 31-17 in the fourth quarter. Then the Cornhuskers began a comeback. They scored a touchdown to make the score 31-23. Nebraska coach Tom Osborne had an important strategic decision to make.

In college football, a team that scores a touchdown then runs one play from a hash mark $21 / 2$ yards from the goal line. The team has a choice between trying to run or pass the ball into the end zone, which scores two additional points, or trying the less risky strategy of kicking the ball through the goalposts, which scores one extra point.

Coach Osborne chose to play it safe, and Nebraska successfully kicked for the one extra point. Now the score was 31-24. The Cornhuskers continued their comeback. In the waning minutes of the game they scored a final touchdown, bringing the score to $31-30$. A point conversion would have tied the game and landed them the title. But that would have been an unsatisfying victory. To win the championship with style, Osborne recognized that he had to go for the win.

The Cornhuskers went for the win with a two-point conversion attempt. Irving Fryer got the ball, but failed to score. Miami and Nebraska ended the year with equal records. Since Miami beat Nebraska, it was Miami that was awarded the top place in the standings.

Put yourself in the cleats of Coach Osborne. Could you have done better?

As you may have guessed a touchdown gives six points. The problem is to translate this real world problem into a decision tree which we can analyze with the tools we have learned. We let p the probability of scoring a $R U N \equiv R$ (2 points) and $q>p$ the probability of scoring a $K I C K \equiv K$ (1 point).

First observation: at 31-23 you need another touchdown to draw or win. So let us put ourselves in the coach's position and assume we score a touchdown. With the touchdown we are at $-8+6=-2$ from the opposing team. So we need 2 points to draw and 3 to win.

There are two decisions to be made. K or R now - at -2 - and K or R after next touchdown. We call these decisions K_{1}, R_{1} and K_{2}, R_{2}. These are choices of lotteries.

Next, possible outcomes: lose, draw, win. So let us take $u(\ell)=0, u(w)=1$ and $u(d)=b$ where $0<b<1$.

The last choice, represented below,

depends on preferences, hence it cannot be criticized. We have to examine the coach's first choice, between K_{1} and R_{1}.

The first choice is at -2 :

Then we split the tree. After choice K_{1} we get

The arrows indicate the subsequent choices (R_{2} at the top node because of preferences, and at the bottom node by monotonicity). So K_{1} gives expected utility

$$
E u\left(K_{1}\right)=q * p * 1+(1-q) * p * b=p[q+(1-q) b]
$$

Now R_{1}, depicted below:

where K_{2} at node 0 follows from monotonicity and R_{2} at node -2 also because K_{2} gives zero for sure so we can write it as

So R_{1} gives expected utility

$$
E u\left(R_{1}\right)=p[q+(1-q) b]+(1-p) p b
$$

Now let us compare them:

$$
E u\left(R_{1}\right)=E u\left(K_{1}\right)+(1-p) p b>E u\left(K_{1}\right) .
$$

So the mistake was to choose K_{1}. The coach should have chosen to Run when they were at -8 . The moral of the story is: look ahead to choose what to do now.

3 Caveat: the Allais experiment

Maurice Allais (Nobel 1988) produced an example of "reasonable" choices incompatible with EU. Incompatibility is most easily seen through violation of the following axiom which is implied by EU.

The independence axiom This axiom says that for any distributions P, Q, C and number $0 \leq \lambda \leq 1$ the following implication holds:

To see that EU implies independence it suffices to recall that $E u\left(P_{\lambda} C\right)=\lambda E u(P)+(1-$ $\lambda) E u(C)$, same with P replaced by Q.

The example The preferences displayed in this example violate independence, hence are incompatible with EU. We are confronted with the two pairs of lotteries drawn below:

First we imagine the numbers are Euros. Then we make our choices if they represent millions of Euros. Usually the choices are different. For the smaller amounts the typical choices are the following:

$$
P \prec Q \quad \text { and } \quad P^{\prime} \prec Q^{\prime}
$$

But for the larger amounts many express the following preferences:

$$
P \succ Q \quad \text { and } \quad P^{\prime} \prec Q^{\prime}
$$

which are "reasonable" since it is hard to give up 5 million Euros for sure. However we show presently that the latter choices violate expected utility, for they violate independence. To see this let C be the lottery which gives zero for sure and observe that $P^{\prime}=P_{11 / 100} C$ and $Q^{\prime}=Q_{11 / 100} C$: the former is clear, and for the latter note that the support of $Q_{11 / 100} C$ is $\{25,0\}$ and the probability of zero is $\frac{11}{100} \cdot \frac{1}{11}+\frac{89}{100} \cdot 1=\frac{90}{100}$. Independence then implies $P \succ Q \Longrightarrow P^{\prime} \succ Q^{\prime}$.

4 Attitudes towards risk for general, monotone weak orders \succcurlyeq

Recall that monotonicity implies that for any pair of numbers x, y we have $x>y \Longleftrightarrow x \succ y$. We assume this, and in addition that for any P the certainty equivalent $C E(P) \sim P$ (unique by monotonicity) exists.

Risk aversion We say that \succcurlyeq is risk averse (RA) if $E P \succ P$ for any non-degenerate P.
That is, a risk averse decision maker strictly prefers the sure amount $E P=\sum_{i} x_{i} p_{i}$ to the distribution P. For example, she would refuse to enter a bet on a fair coin.

The degree of risk aversion of different preferences can be compared. We say that \succcurlyeq_{2} is more risk averse than \succcurlyeq_{1} if $x \sim_{1} P \Rightarrow x \succ_{2} P$, for any $x \in \mathbb{R}$ and P.

Risk loving There is no universally accepted term for this: risk attraction, risk loving, etc. The obvious definition is that \succcurlyeq is risk loving if $P \succ E P$ for any non-degenerate P.

A risk lover would, for example, pay to bet on a fair coin. It is a fairly uncommon case, but we do observe risk attraction in some cases: indeed people entering casinos or buying lottery tickets enter unfavorable bets. Casinos are a special case in that people may derive utility from being there. The case of lotteries is more intriguing, and well studied: lotteries involve long shot bets which could change the individual's life at a typically small cost, and can be rationalized. But keep in mind that it is usually the case that the same individuals would not accept to bet non trivial amounts of money on a fair coin, so may be regarded as risk averse after all.

Risk neutrality You can guess the definition: \succcurlyeq is risk neutral if $E P \sim P$ for any P.
Observe that risk neutrality implies that \succcurlyeq is represented by expected value: $P \succcurlyeq Q$ iff $E P \geq E Q$. Therefore a risk neutral decision maker is in fact an $E U$ maximizer, with linear vonNeumann utility $u(x)=x$ (indeed any $\tilde{u}(x)=\sigma x+\tau$ with $\sigma>0, \tau \in \mathbb{R}$).

A firm maximizing expected profits is in fact assumed to be risk neutral; this is a fairly common assumption. However keep in mind that for a generic decision maker risk neutrality incurs in the St. Petersburg paradox (Wakker sec. 2.5).

Risk premium The risk premium of P is the number $\rho(P)$ such that $E P-\rho(P) \sim P$.
The following are direct consequences of the definitions:

1. $\rho(P)=E P-C E(P)$
2. \succcurlyeq is risk averse $\Longrightarrow C E(P) \sim P \prec E P \Longrightarrow$ (monotonicity) $C E(P)<E P \Longrightarrow \rho(P)>0$
3. \succcurlyeq_{2} is more risk averse than $\succcurlyeq_{1} \Longleftrightarrow C E_{2}(P)<C E_{1}(P) \Longleftrightarrow \rho_{2}(P)>\rho_{1}(P) .{ }^{9}$
[^5]Of course if \succcurlyeq is risk lover everything is reversed: $C E(P)>E P$ and $\rho(P)<0$. And for risk neutral preference $C E(P)=E P$ and $\rho(P)=0$.

Application: risk premium and insurance Suppose a risk averse individual faces a risk of an accident causing damage $d>0$ with probability π. This means she "owns" the distribution P which assigns probability $1-\pi$ to zero and π to $-d$; of course $E P=-\pi d<0$ (to fix ideas you may take $E P=-50$). By risk aversion her certainty equivalent $C E(P)=$ $E P-\rho(P)<E P$ will be less than $E P$ (again to fix ideas suppose $\rho(P)=5$ so $C E(P)=-55$). This means she is willing to pay $-C E(P)=-E P+\rho(P)=\pi d+\rho(P)$ (with the above numbers this is 55) to get rid of P and eliminate the risk - that is to acquire full insurance. Suppose an insurance company insures N identical customers paying that price. If their accidents are independent of one another, by the Law of Large Numbers with probability 1 the fraction of accidents will be very close to π for N large so the cost per customer will be approximately $(N \pi \cdot d) / N=\pi d(=50$ in our example) and the company's profit is $\pi d+\rho(P)-\pi d=\rho(P)$ (in the example $50+5-50=5$). In other words, the risk premium is approximately the insurance company's profit per customer. This is why it's called risk premium. ${ }^{10}$

Pareto improvement via transfer of risk Generalizing the previous example, if \succcurlyeq_{2} is more risk averse than \succcurlyeq_{1} then a non-degenerate lottery P can be sold from Mr. 2 to Mr. 1 for any price p such that $C_{2}(P)<p<C_{1}(P)$. This is a general principle: it is always advisable to transfer risks from more risk averse agents to less risk averse ones.

4.1 Financial markets with risk averse traders ${ }^{11}$

The purpose of this section is to show that when traders in a financial market are risk averse, no trader can have strictly positive expected gains.

Premise: meet of information partitions $O n$ a set Ω a partition \mathcal{P} is a family of nonempty disjoint sets whose union is Ω. A partition can be interpreted as information: you know in which element of \mathcal{P} the realized ω lies. Given two partitions \mathcal{P} and \mathcal{Q} their meet $\mathcal{P} \wedge \mathcal{Q}$ is defined as

$$
\mathcal{P} \wedge \mathcal{Q}=\{A \cap B \neq \emptyset: A \in \mathcal{P}, B \in \mathcal{Q}\} .
$$

It corresponds to the aggregate information in \mathcal{P} and \mathcal{Q} : you know which element of \mathcal{P} and which element of \mathcal{Q} are true. Picture:

[^6]

The meet of partitions $\mathcal{P}_{1}, \ldots, \mathcal{P}_{I}$ is defined inductively. It reflects the information aggregated over the given partitions. If \mathcal{P}_{i} is individual i 's information the meet results if all the individuals share their information among one another.

The market There are $i=1, \ldots, I$ individuals trading an asset ξ which is a random variable on a space (Ω, \mathcal{F}, P); if the asset price is p and i trades x_{i} units (positive if she buys, negative if she sells) her gain is $G_{i}=x_{i}(\xi-p)$. Traders are expected utility maximizers, with concave vNM utility on gains. Trader i has information partition \mathcal{A}_{i}, and we let \mathcal{A} denote the meet of the individual partitions. The market clears when $\sum_{i} x_{i}=0$. Note that when markets clear $\sum_{i} G_{i}=0$ as well.

Rational Expectations Equilibrium The idea is that price reveals information, and rationality consists of correctly using this information when choosing x_{i}. It is assumed that the asset price depends on the aggregate information \mathcal{A} according to a function $\Phi: \mathcal{A} \rightarrow \mathbb{R} \ni p$. The information contained in p is the counterimage $\Phi^{-1}(p)=\{A \in \mathcal{A}: \Phi(A)=p\}$, which we denote by $S(p)$. Trader i 's information then consists of $\left(A_{i}, S(p)\right)$ where A_{i} is the known element of \mathcal{A}_{i} and $S(p)$ is the public information which the rational trader takes into account.

A Rational Expectation Equilibrium is a function Φ and trades $x_{i}\left(p, A_{i}, S(p)\right), i=1, \ldots, I$ such that: $x_{i}\left(p, A_{i}, S(p)\right)$ maximizes expected utility of i conditional on $\left(A_{i}, S(p)\right)$ and markets clear, that is $\sum_{i} x_{i}\left(p, A_{i}, S(p)\right)=0$. In equilibrium trader i 's expected gain is $E\left(G_{i} \mid A_{i}, S(p)\right)$.

Proposition (Impossibility of speculation). $E\left(G_{i} \mid A_{i}, S(p)\right)=0$ for each i if traders are not risk lovers.

Proof. For risk averse traders it must be $E\left(G_{i} \mid A_{i}, S(p)\right)>0$, and for risk neutral ones $E\left(G_{i} \mid A_{i}, S(p)\right) \geq 0$; so without risk lovers we must have $E\left(G_{i} \mid A_{i}, S(p)\right) \geq 0$ for all i. By iterating conditional expectation we then get $E\left(G_{i} \mid S(p)\right)=E\left[E\left(G_{i} \mid A_{i}, S(p)\right) \mid S(p)\right] \geq 0$. But from $\sum_{i} G_{i}=0$ we deduce $\sum_{i} E\left(G_{i} \mid S(p)\right)=E\left(\sum_{i} G_{i} \mid S(p)\right)=0$; so since each term is non-negative, each must be zero. But $E\left[E\left(G_{i} \mid A_{i}, S(p)\right) \mid S(p)\right]=0$ and $E\left(G_{i} \mid A_{i}, S(p)\right) \geq 0$ imply $E\left(G_{i} \mid A_{i}, S(p)\right)=0$.

5 Risk attitudes for EU Preferences

We now turn to the analysis of risk attitudes in the important case where EU holds. We assume that all vNM utilities possess derivatives of all orders.

Risk aversion Risk aversion is characterized by the shape of the vNM utility:
Proposition. For EU preferences risk aversion is equivalent to concavity of $v N M$ utility.
Proof. Recall that a function u is concave if for any $x_{1}, x_{2} \in \mathbb{R}$ and $0 \leq p_{1}, p_{2}$ with $p_{1}+p_{2}=1$ it is $u\left(p_{1} x_{1}+p_{2} x_{2}\right)>p_{1} u\left(x_{1}\right)+p_{2} u\left(x_{2}\right)$. It can be shown by induction that this is equivalent to: for any $x_{1}, \ldots, x_{n} \in \mathbb{R}$ and $0 \leq p_{1}, \ldots, p_{n}$ with $\sum p_{i}=1$ it is $u\left(\sum p_{i} x_{i}\right)>\sum p_{i} u\left(x_{i}\right)$. This says exactly that for distribution P (values x_{i}, probabilities p_{i}) $u(E P)>E u(P)$ that is (by definition) $E P \succ P .{ }^{12}$

It is instructive to visualize the situation considering a distribution P concentrated on the two points $\alpha<\beta$, with probability p on α (and $1-p$ on β); its expected value is $E P=p \alpha+(1-p) \beta$. Note that $E u(P)=p u(\alpha)+(1-p) u(\beta)$ is the value on the line at $E P$ (see Appendix 2 on straight lines). All the relevant quantities appear in the picture below.

[^7]and apply the result for two-outcome lotteries; you get
$$
u\left(p_{1} x_{1}+p_{2} x_{2}+p_{3} x_{3}\right) \geq p_{1} u\left(x_{1}\right)+\left(1-p_{1}\right) u\left(\left(\frac{p_{2}}{1-p_{1}} x_{2}, \frac{p_{3}}{1-p_{1}} x_{3}\right)\right)
$$
but $\frac{p_{2}}{1-p_{1}} x_{2}, \frac{p_{3}}{1-p_{1}} x_{3}$ is a two-outcome lottery because $\frac{p_{2}}{1-p_{1}}+\frac{p_{3}}{1-p_{1}}=1$ so we can re-apply the two-outcome lottery result
\[

$$
\begin{aligned}
p_{1} u\left(x_{1}\right)+\left(1-p_{1}\right) u\left(\left(\frac{p_{2}}{1-p_{1}} x_{2}, \frac{p_{3}}{1-p_{1}} x_{3}\right)\right) & \geq p_{1} u\left(x_{1}\right)+\left(1-p_{1}\right)\left(\frac{p_{2}}{1-p_{1}} u\left(x_{2}\right)+\frac{p_{3}}{1-p_{1}} u\left(x_{3}\right)\right) \\
& =p_{1} u\left(x_{1}\right)+p_{2} u\left(x_{2}\right)+p_{3} u\left(x_{3}\right)
\end{aligned}
$$
\]

so we see that

$$
u\left(p_{1} x_{1}+p_{2} x_{2}+p_{3} x_{3}\right) \geq p_{1} u\left(x_{1}\right)+p_{2} u\left(x_{2}\right)+p_{3} u\left(x_{3}\right)
$$

which means the result is true for three-outcome lotteries. Then analogously go from $n-1$ to n, and complete the proof.

Of course risk attraction corresponds to convex utility. Risk neutrality we have already observed that corresponds to linear utility.

Exercise Consider the prospect $P=100_{1 / 2} 0$. Calculate its risk premium for $u(x)=1-$ $e^{-x / 100}$ and $u(x)=\sqrt{x}$. Answers: for the first $\rho(P) \approx E P / 4$, for the second $\rho(P)=E P / 2$. Solution in footnote. ${ }^{13}$

Application: choice of insurance A risk averse individual with initial wealth w may incur a loss $d \leq w$ with probability π. Now assume she can buy insurance at price p; this means if she buys α units of insurance she pays $p \alpha$ in advance and gets α in case the loss occurs. Thus her wealth will be $w-p \alpha$ with probability $1-\pi$ and $w-p \alpha-d+\alpha=w-d+(1-p) \alpha$ with probability π. Observe that the insurer, that we may assume to be risk neutral, bears an expected cost π for each unit sold, so she must sell at $p \geq \pi$. Observe also that if $\alpha=d$ the individual's income is $w-p d$ for sure; thus full insurance is $\alpha=d$.

Let u denote the individual's vNM utility; she chooses α to maximize expected utility, so taking into account the budget constraint $p \alpha \leq w$ she solves

$$
\max _{0 \leq \alpha \leq w / p}(1-\pi) u(w-p \alpha)+\pi u(w-d+(1-p) \alpha) .
$$

Let $V(\alpha)$ denote the function to be maximized. We have $V^{\prime}(\alpha)=-p(1-\pi) u^{\prime}(w-p \alpha)+(1-$ p) $\pi u^{\prime}(w-d+(1-p) \alpha)$; and $V^{\prime \prime}(\alpha)=p^{2}(1-\pi) u^{\prime \prime}(w-p \alpha)+(1-p)^{2} \pi u^{\prime \prime}(w-d+(1-p) \alpha)<0$, so V^{\prime} is decreasing. Let α^{*} be the optimal choice. At $p=1$ we have $V^{\prime}(0)<0$, while at $p=\pi$ it is $V^{\prime}(0)=\pi(1-\pi)\left[-u^{\prime}(w)+u^{\prime}(w-d)\right]>0$. Therefore $\alpha^{*}=0$ for p close enough to 1 , otherwise $\alpha^{*}>0$. At $\alpha=d$ we have $V^{\prime}(d)=u^{\prime}(w-p d)[-p(1-\pi)+(1-p) \pi]$ so if $p=\pi$ then $V^{\prime}(d)=0$ and $\alpha^{*}=d$: if $p=\pi$ the optimal choice is full insurance. If on the other hand $p>\pi$ then $V^{\prime}(d)<0$ (the expression $-p(1-\pi)+(1-p) \pi$ is decreasing in p) so $\alpha^{*}<d$: for

[^8]any $p>\pi$ the individual chooses to bear some risk (because $w-p \alpha-d+\alpha<w-p \alpha$ that is wealth in the bad state is lower than in the good state).

Comparative risk aversion Turning to comparative risk aversion, the idea is that more RA must correspond to u "more concave". This means u^{\prime} goes down faster i.e. u^{\prime} steeper i.e. $-u^{\prime \prime}$ larger. But this does not work because u can be rescaled. The solution is to divide by u^{\prime} (for then the rescaling factors cancel out) to get the risk aversion coefficient at $x \in \mathbb{R}$

$$
r(x)=-u^{\prime \prime}(x) / u^{\prime}(x) .
$$

The coefficient r is called the Arrow-Pratt index. This is invariant to linear transformations of u, that is it remains the same if u is replaced by $\hat{u}=\sigma u+\tau$ with $\sigma>0$ and $\tau \in \mathbb{R}$ (exercise). Note that if u is linear, $u(x)=\sigma x+\tau$ then $r(x)=0$ for all x.

Proposition. Under $E U, \succcurlyeq_{2}$ is more risk averse than \succcurlyeq_{1} iff $r_{2}(x)>r_{1}(x)$ for all x.
Proof. Consider a general $P=\left(\left\{x_{1}, \ldots, x_{n}\right\},\left(p_{1}, \ldots, p_{n}\right)\right)$. First we claim that the hypothesis amounts to $u_{2}=\phi \circ u_{1}$ for a ϕ increasing concave. Since $u_{2}=\left(u_{2} \circ u_{1}^{-1}\right) \circ u_{1}$ we must show \succcurlyeq_{2} is more risk averse than \succcurlyeq_{1} iff $\phi=u_{2} \circ u_{1}^{-1}$ is concave (it is clearly increasing since both u_{2} and u_{1}^{-1} are). Now $x \sim_{1} P \Rightarrow x \succ_{2} P$ says $u_{1}(x)=\sum p_{i} u_{1}\left(x_{i}\right) \Rightarrow u_{2}(x)>\sum p_{i} u_{2}\left(x_{i}\right)$; this in turn means $u_{2}\left(u_{1}^{-1}\left(\sum p_{i} u_{1}\left(x_{i}\right)\right)\right)>\sum p_{i} u_{2}\left(x_{i}\right)$, since $u_{1}(x)=\sum p_{i} u_{1}\left(x_{i}\right) \Longleftrightarrow x=$ $u_{1}^{-1}\left(\sum p_{i} u_{1}\left(x_{i}\right)\right)$. The inequality can be written as $\phi\left(\sum p_{i} u_{1}\left(x_{i}\right)\right)>\sum p_{i} \phi\left(u_{1}\left(x_{i}\right)\right)$, and letting $z_{i}=u_{1}\left(x_{i}\right)$ in turn as $\phi\left(\sum p_{i} z_{i}\right)>\sum p_{i} \phi\left(z_{i}\right)$; this shows that is ϕ concave.

Now differentiate $u_{2}=\phi \circ u_{1}$. We obtain $u_{2}^{\prime}=\phi^{\prime}\left(u_{1}\right) \cdot u_{1}^{\prime}$ and $u_{2}^{\prime \prime}=\phi^{\prime \prime} \cdot\left(u_{1}^{\prime}\right)^{2}+\phi^{\prime}\left(u_{1}\right) \cdot u_{1}^{\prime \prime}$. Thus with $\phi^{\prime}>0$ and $\phi^{\prime \prime}<0$ (that is ϕ increasing concave) we get

$$
r_{2}(x)=-\frac{u_{2}^{\prime \prime}}{u_{2}^{\prime}}=-\frac{u_{1}^{\prime \prime}}{u_{1}^{\prime}}-\frac{\phi^{\prime \prime}}{\phi^{\prime}} \cdot u_{1}^{\prime}>-\frac{u_{1}^{\prime \prime}}{u_{1}^{\prime}}=r_{1}(x)
$$

as was to be shown.

Application: a simple portfolio choice You are risk averse, and you have to allocate your wealth w between two assets. The first is risk free: it pays 1 Euro for sure for each Euro invested; the second is risky. Its return is a random variable P, but it has the advantage that its expectation is larger than 1: $E P>1$. By construction, if you invest α in the latter and β in the safe asset you get the (random) return $\alpha P+\beta$. You have to choose $\alpha, \beta \geq 0$ to maximize expected utility $E u(\alpha P+\beta)$. Since it must be $\alpha+\beta=w$ the problem may be written in terms of α alone:

$$
\max _{0 \leq \alpha \leq w} E u(w+\alpha(P-1))
$$

To apply calculus we want to differentiate with respect to α, and we assume that the derivative of an expectation is equal to the expectation of the derivative. ${ }^{14}$ Then letting $V(\alpha)=E u(w+\alpha(P-1))$ we get $V^{\prime}(\alpha)=E\left[(P-1) u^{\prime}(w+\alpha(P-1))\right]$ and $V^{\prime \prime}(\alpha)=$ $E\left[(P-1)^{2} u^{\prime \prime}(w+\alpha(P-1))\right]$; observe that $u^{\prime \prime}<0$ implies $V^{\prime \prime}<0$, so V^{\prime} is decreasing and an interior optimum is characterized by the first order condition.

Our first observation is that the optimal $\alpha^{*}>0$, that is you choose to bear some risk. This simply follows from $V^{\prime}(0)>0$ and $E P>1$. Note that this choice is analogous to that of bearing some risk in the insurance choice whenever $q>\pi$.

The other point we make is on how choice depends on the degree of risk aversion. It should be obvious that a risk neutral individual chooses $\alpha^{*}=w$ - please verify it. We shall next check that the more risk averse you are the less you will buy of the risky asset. We have to show that if u_{2} is more risk averse than u_{1} then $\alpha_{2}^{*}<\alpha_{1}^{*}$. Assuming interior solutions, the optima are characterized by $V_{1}^{\prime}\left(\alpha_{1}^{*}\right) \equiv E\left[(P-1) u_{1}^{\prime}\left(w+\alpha_{1}^{*}(P-1)\right)\right]=0$ and $V_{2}^{\prime}\left(\alpha_{2}^{*}\right) \equiv E\left[(P-1) u_{2}^{\prime}\left(w+\alpha_{2}^{*}(P-1)\right)\right]=0$. Since V_{2}^{\prime} is decreasing it suffices to show that $V_{2}^{\prime}\left(\alpha_{1}^{*}\right)<0$. From the proof on page 20 we know that $u_{2}=\phi\left(u_{1}\right)$ with ϕ concave hence ϕ^{\prime} decreasing; and by composition $u_{2}^{\prime}(x)=\phi^{\prime}\left(u_{1}(x)\right) \cdot u_{1}^{\prime}(x)$, so

$$
V_{2}^{\prime}\left(\alpha_{1}^{*}\right) \equiv E\left[(P-1) \phi^{\prime}\left(u_{1}\left(w+\alpha_{1}^{*}(P-1)\right)\right) u_{1}^{\prime}\left(w+\alpha_{1}^{*}(P-1)\right)\right] .
$$

On the other hand by multiplying the equality $V_{1}^{\prime}\left(\alpha_{1}^{*}\right)=0$ by $\phi^{\prime}\left(u_{1}(w)\right)$ we get

$$
0=E\left[(P-1) \phi^{\prime}\left(u_{1}(w)\right) u_{1}^{\prime}\left(w+\alpha_{1}^{*}(P-1)\right)\right] .
$$

$\operatorname{But} \phi^{\prime}\left(u_{1}\left(w+\alpha_{1}^{*}(P-1)\right)\right) \lessgtr \phi^{\prime}\left(u_{1}(w)\right) \Longleftrightarrow P \gtrless 1$, so going from $\phi^{\prime}\left(u_{1}(w)\right)$ to $\phi^{\prime}\left(u_{1}\left(w+\alpha_{1}^{*}(P-1)\right)\right)$ lowers the integrand in both ranges, making $V_{2}^{\prime}\left(\alpha_{1}^{*}\right)<0$ as we wanted.

An approximate expression for the risk premium Again we consider a general $P=$ $\left(\left\{x_{1}, \ldots, x_{n}\right\},\left(p_{1}, \ldots, p_{n}\right)\right)$. There is a basic relation between r, ρ and the variance $\sigma^{2}(P)$ of P, which is defined as $E(P-E P)^{2}=\sum_{i}\left(x_{i}-E P\right)^{2} p_{i}$.

Proposition. $\rho(P) \approx \frac{1}{2} \sigma^{2}(P) \cdot r(E P)$
Proof. Let $z_{i}=x_{i}-E P$, so that $\sigma^{2}(P)=\sum p_{i} z_{i}^{2}$ (notice that $\sum p_{i} z_{i}=0$). By definition $u(E P-\rho(P))=u(C E(P))=E u(P)=\sum p_{i} u\left(x_{i}\right)=\sum p_{i} u\left(E P+z_{i}\right)$. Now expand around $E P$. Left side: $u(E P-\rho(P)) \approx u(E P)-\rho(P) u^{\prime}(E P)$; right side:

$$
\begin{aligned}
\sum p_{i} u\left(E P+z_{i}\right) & \approx \sum p_{i}\left[u(E P)+z_{i} u^{\prime}(E P)+\left(z_{i}^{2} / 2\right) u^{\prime \prime}(E P)\right] \\
& =\sum p_{i}\left[u(E P)+\left(z_{i}^{2} / 2\right) u^{\prime \prime}(E P)\right]=u(E P)+u^{\prime \prime}(E P) \sigma^{2}(P) / 2
\end{aligned}
$$

[^9]Collecting terms we get $-\rho(P) u^{\prime}(E P) \approx u^{\prime \prime}(E P) \sigma^{2}(P) / 2$, which is what we wanted.

Application: risk sharing Consider two prospects P, Q with $E P=E Q=\mu$ and $\operatorname{Var}(P)=$ $\sigma^{2}, \operatorname{Var}(Q)=\sigma^{2} / n$. Recalling that $P \sim E P-\rho(P)$, to a first approximation the proposition above gives $P \sim \mu-\frac{1}{2} \sigma^{2} \cdot r(\mu)$ and $Q \sim \mu-\frac{1}{2 n} \sigma^{2} \cdot r(\mu)$, so if you have a sure income z_{0} with $\mu-\frac{1}{2} \sigma^{2} \cdot r(\mu)<z_{0}<\mu-\frac{1}{2 n} \sigma^{2} \cdot r(\mu)$ then $Q \succ z_{0} \succ P$. If n identical individuals facing independent prospects $P_{i}=P$ share the risk, in the sense of investing z_{0} / n on each P_{i} and getting $S_{i}=P_{i} / n$ (outcomes $1 / n$ of those of P_{i}) for each i, then each individual faces n identical prospects S_{i}, each with $E S_{i}=\mu / n$ and $\operatorname{Var} S_{i}=\sigma^{2} / n^{2}$, that is in total each spends z_{0} and gets the prospect $S=\sum_{i} S_{i}$ which has $E S=\mu$ and $\operatorname{Var}(S)=\sigma^{2} / n$ which is equal to Q and is therefore preferred to z_{0}. In practice, by this risk sharing agreement each member gets Q at price z_{0}.

6 Exponential and Power vNM utilities

These are the two most prominent families of vNM utilities use in theory and in applications.

The exponential family The exponential family is $u(x)=-e^{-\theta x}$ where we assume $\theta>0$. You can verify that $r(x)=\theta$ for all x in this case. It is convenient to rescale the function to $u(x)=\left(1-e^{-x \theta}\right) / \theta$ so that as $\theta \rightarrow 0$ we get $u(x)=x$. The family is called CARA - constant absolute risk aversion.

Relative risk aversion To introduce the power family we need a last new concept: relative risk aversion. We can take proportional increments of wealth $t x$ with t close to 1 instead of absolute increments $x+h$ with h small. To obtain a measure analogue to r in this setting we let $\tilde{u}(t)=u(t x)$ and consider the Arrow-Pratt index for \tilde{u}, that us $-\tilde{u}^{\prime \prime}(t) / \tilde{u}^{\prime}(t)$ at $t=1$. We have $\tilde{u}^{\prime}(t)=x u^{\prime}(t x), \tilde{u}^{\prime \prime}(t)=x^{2} u^{\prime \prime}(t x)$ so for $t=1$ we obtain the index

$$
\tilde{r}(x)=-\frac{\tilde{u}^{\prime \prime}(1)}{\tilde{u}^{\prime}(1)}=-x \cdot \frac{u^{\prime \prime}(x)}{u^{\prime}(x)}=x r(x)
$$

Note that if $r(x)>0$ and $\tilde{r}(x)$ remains bounded above as x becomes large then $r(x)$ tends to zero.

The power family The power family is $u(x)=x^{\theta}$, with $x>0$ and $0<\theta<1$. We have $u^{\prime}=\theta x^{\theta-1}, u^{\prime \prime}=\theta(\theta-1) x^{\theta-2}$ so that $\tilde{r}(x)=1-\theta$ for all x. For $\theta=1$ we get risk neutrality; and as θ goes down relative risk aversion increases. By rescaling to $u(x)=\left(x^{\theta}-1\right) / \theta$ we see that as $\theta \rightarrow 0$ we get $u(x)=\ln x$. The family is called CRRA - constant relative risk aversion.

CARA utility: investing Assume vNM $u(x)=1-e^{-x \theta}$. Suppose you can invest the amount β in a stock whose yield is represented by the prospect

How much do you invest to maximize expected utility? The result is $\beta \approx 0.16 / \theta$ (solution in footnote): ${ }^{15}$ optimal investment is inversely proportional to risk aversion.

CARA utility: assessing the parameter If you reckon your risk aversion is constant over the range relevant to a decision problem (and subscribe to the expected utility axioms), then discovering your utility amounts to determining the parameter θ. This is "relatively" easy, because it is equivalent to finding x such that the indifference below holds:

Indeed, with $u(x)=-e^{-\theta x}$ (the constant does not matter) the above indifference says $e^{-\theta x}+e^{\theta x / 2}=2$, and this is solved by $x \approx 1 / \theta$ because $e^{-1}+e^{1 / 2} \approx 2$.

7 Practice on decision trees: initial investments

We now study variations of a rather common problem firms often face. The basic structure is that the level of an investment must be chosen before its productivity is known - and even if the investment turns out to be productive, further uncertainty comes from the state of the market demand for the firm's product. We frame the problem in terms of an R\&D investment by a pharmaceutical firm to be concrete, but it should be clear that the structure is common to a fairly large range of situations business firms may find themselves in. We assume expected value maximization (risk neutrality) to keep computations simple.

[^10]whence $\beta=\ln 1.5 / 2.5 \theta \approx 0.16 / \theta$ since $\ln 1.5 \approx 0.4$. This is the solution (the second derivative is positive).

Version 1 A pharmaceutical firm - you, to ease exposition - faces a decision concerning the introduction of a new drug. The first step is to choose a level of R\&D investment, say High or Low (H or L). Under H there is probability p of successful development; in case of failure - probability $1-p$ - you lose 200 (payoff -200) and that's the end of the story. Under L probability of success is $p-\delta$ and failure results in losing 100 . In case of success (under either H or L) you have to make another choice: market or not market the new product - M or N. After H the situation is as follows: if you don't (i.e. choose N) you lose 200; if you do (choice M) you face an uncertain state of demand: either good, G, with probability $s=0.6$ in which case you get 2000, or bad B in which case you lose 600 . After L the numbers are: if you choose N you lose 100, if you choose M you get 2100 in state G (same probability s) and -500 in state B. The payoffs are consistent with interpreting investment as costing 200 or 100 if high or low. Show that you choose H if $\delta>100 / 1160 \equiv \delta_{1}$. I invite you to label $D H$ and $D L$ the decision nodes after success if the initial decision was respectively H or L.

Version 2 Suppose now that if the investment is successful you can choose to buy a survey on the state of demand at cost c before choosing on M, N. The outcome of the survey is either g (the state looks good) or b (the state looks bad). Of course the test is not perfect, its result carries some uncertainty: $P(g \mid G)=0.95$ and $P(g \mid B)=0.2$.

Now the decision after success changes: for example $D H$ becomes say $D H^{\prime}$, where you can either not buy the survey - choice $N S$ - in which case the expected payoff of the continuation remains the same as in Version 1 ; or buy the survey - choice S - in which case you first face the uncertain outcome of the survey - probabilities $P(g)$ and $P(b)$ to be computed using Bayes rule - and then in either case you then choose whether to market the product or not - choices M or N as before. If you choose N you lose $200+c$; if you choose M you face uncertain demand, but now of course the probability of good state is not s but $p(G \mid g)$ or $P(G \mid b)$ according to the result of the survey (again computed via Bayes rule). The payoffs are as before but with c subtracted, that is $2000-c$ and $-600-c$ in good and bad states. The node $D L$ changes analogously to $D L^{\prime}$, you should now be able to easily draw the corresponding tree.

Show first that in both $D H^{\prime}$ and $D L^{\prime}$ you choose to buy the survey if $c<67.2$, and assume in the sequel that this is the case. If for some reason you did not reach that result just assume the choice is S both in $D H^{\prime}$ and $D L^{\prime}$. Next show that in this case the initial investment decision is H if $\delta>100 /(1227.2-c) \equiv \delta_{2}$.

Observe that $c<67.2$ implies that $\delta_{2}<100 / 1160=\delta_{1}$. Thus if the cost of the survey is low enough that it is optimal to buy it, the possibility of getting some information on the state of demand expands the range of parameters for which it is optimal to choose the high investment level H at the initial node.

Version 3 The basic structure is the same as in Version 1: first investment decision H or L; then chance node success/failure, then M / N marketing choice if success, then chance node G / B demand if M chosen. But we change the nature of the investments: the low investment choice leads to a less ambitious project, with scaled down costs and revenues, but with higher probability of success: $p+\delta$ (it was $p-\delta$ in the previous versions).

We assume for simplicity $p=s=0.5$. So at the last chance node demand is in good or bad state with equal probabilities, and after the first H / L decision node the probability of success is $1 / 2$ for H and $1 / 2+\delta$ for H (with $0<\delta<1 / 2$).

Under initial choice H we assume loss of 50 if failure and if N chosen at the marketing choice node; and for demand we assume you get 1000 in good state and -900 in bad state (with $s=1 / 2$ this has expected value of 50). Under initial choice L all payoffs are divided by 10 (so they become $-5,100$ and -90). It is then easy to conclude that L is chosen at the initial node now. Again let's denote by $D H$ and $D L$ the marketing decision nodes corresponding to successful H and L.

Now we again introduce the possibility of buying a demand survey at cost c if investment is successful, giving as before g or b answer. Of course, given that revenues under L are much smaller than under H it may be the case that it is worth taking the survey only under the larger project. We shall confirm that there is a range of c 's for which this is actually the case. We assume $P(g \mid G)=0.9$ and $P(g \mid B)=0.2$. Again the marketing nodes become $D H^{\prime}$ and $D L^{\prime}$ to include the survey choice $S / N S$. And again you have to update probabilities using Bayes rule.

Show that at the $D H^{\prime}$ node you choose S if $c \leq 289.4$ while at $D L^{\prime}$ you choose S if $c \leq 28.94$. Assume that $28.94<c<289.4$ - so that you choose S only under H. If you did not find the above bounds on c, just assume you choose S only under H.

Then show that for $28.94<c<279.4$ you choose H at the initial node for all $0<\delta<1 / 2$. Now the bigger scale works in favor of the high investment even if the success probability is smaller than in the low investment case. The survey's cost becomes small relative to the scale of the larger project, and with the results on hand you enter the market only if the (updated) probability of good state is high.

Appendix 1: proof of the EU theorem

The splitting step in the proof We can write P as a mixture as follows:

You can easily check that the equality (the second, in green) is true. In the proof a splitting like this is applied repeatedly.

The proof on $[\boldsymbol{m}, \boldsymbol{M}]$ The result of the procedure - for distributions with values in the interval $[m, M]$ - is the following, where we use consistency and the definition of u at each step:

But the latter is the two-outcome distribution

so for any P we have $P \sim M_{E u(P)} m$. By transitivity we get $P \succcurlyeq Q$ iff $M_{E u(P)} m \succcurlyeq M_{E u(Q)} m$; and then from monotonicity we deduce $P \succcurlyeq Q \Longleftrightarrow E u(P) \geq E u(Q)$.

Extension and uniqueness Extension from $[m, M]$ to \mathbb{R}. Call m_{0}, M_{0} the starting pair above and u_{0} the vNM utility obtained on $\left[m_{0}, M_{0}\right]$, with $u_{0}\left(m_{0}\right)=0, u_{0}\left(M_{0}\right)=1$. We repeat the process for a sequence of pairs m_{n}, M_{n} with $m_{n} \rightarrow-\infty$ and $M_{n} \rightarrow \infty$, each time
selecting u_{n} on $\left[m_{n}, M_{n}\right.$] such that $u_{n}\left(m_{0}\right)=0, u_{n}\left(M_{0}\right)=1$. The lemma below implies that $u_{n+1}=u_{n}$ on $\left[m_{n}, M_{n}\right]$, for each n. Therefore the u_{n} 's are extensions of each other, and since $\cup_{n}\left[m_{n}, M_{n}\right]=\mathbb{R}$ the procedure gives a vNM utility u on \mathbb{R}, with $u\left(m_{0}\right)=0, u\left(M_{0}\right)=1$. The same lemma establishes that any other vNM utility u^{*} for \succcurlyeq must be an increasing linear transformation of u, that is of the form $u^{*}=\tau+\sigma u$ with $\tau \in \mathbb{R}$ and $\sigma>0$.

Lemma. (i) Let u be a vNM utility for \succcurlyeq on a domain $A \subseteq \mathbb{R}$ which includes the interval $[m, M]$. Then $u(x)$ is uniquely determined by the two values $u(m)$ and $u(M)$, for each $x \in A$. (ii) Suppose $u(m)=0, u(M)=1$; then there are $\tau \in \mathbb{R}$ and $\sigma>0$ such that any other vNM u^{*} is of the form $u^{*}=\tau+\sigma u$.

Proof. (i) For $x \in[m, M]$ let p solve $x \sim M_{p} m$; then $u(x)=p u(M)+(1-p) u(m)$. For $x>M$ let q solve $M \sim x_{q} m$; then $u(M)=q u(x)+(1-q) u(m)$ so that $u(x)=$ $[u(M)-(1-q) u(m)] / q$; for $x<m$ let r solve $m \sim M_{r} x$; then $u(m)=r u(M)+(1-r) u(x)$ so that $u(x)=[u(m)-r u(M)] /(1-r)$.
(ii) Suppose $u^{*}(m)=\tau, u^{*}(M)=\tau+\sigma$. On $[m, M]$ we know that u is defined by $x \sim M_{u(x)} m$, so $u^{*}(x)=u(x) *(\tau+\sigma)+(1-u(x)) * \tau=\tau+\sigma u(x)$. Next, part (i) implies that for $x>M$, with q solving $M \sim x_{q} m$ we have $u(x)=1 / q$ and $u^{*}(x)=[\tau+\sigma-(1-q) \tau] / q=$ $[q \tau+\sigma] / q=\tau+\sigma u(x)$; and that for $x<m$ we have $u(x)=-r /(1-r)$ and $u^{*}(x)=$ $[\tau-r(\tau+\sigma)] /(1-r)=\tau+\sigma u(x)$ again.

Appendix 2: Straight Lines

The equation for a line through $\left(x_{0}, y_{0}\right)$ is

$$
\begin{equation*}
r(x)=y_{0}+m\left(x-x_{0}\right) \tag{1}
\end{equation*}
$$

where m is the slope of r. Note that

$$
\begin{equation*}
r(x+h)-r(x)=\left[y_{0}+m\left(x+h-x_{0}\right)\right]-\left[y_{0}+m\left(x-x_{0}\right)\right]=m h \tag{2}
\end{equation*}
$$

In other words, if $\Delta x=h$ then $\Delta r=m h$. In particular, for any h we get

$$
\begin{equation*}
m=\frac{r(x+h)-r(x)}{h} . \tag{3}
\end{equation*}
$$

The other point to note is that for any x_{1}, x_{2} and $0 \leq p \leq 1$ we have

$$
\begin{equation*}
r\left(p x_{1}+(1-p) x_{2}\right)=p r\left(x_{1}\right)+(1-p) r\left(x_{2}\right) \tag{4}
\end{equation*}
$$

To see this just write $y_{0}=p y_{0}+(1-p) y_{0}$ and $x_{0}=p x_{0}+(1-p) x_{0}$.
Now consider the line through $\left(x_{0}, f\left(x_{0}\right)\right)$ and $\left(x_{1}, f\left(x_{1}\right)\right)$ as in the figure below.

From (3) we see that the slope is

$$
m=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}
$$

so from (1) we have

$$
r(x)=f\left(x_{0}\right)+\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}\left(x-x_{0}\right) .
$$

If z is between x_{0} and x_{1}, say $z=p x_{0}+(1-p) x_{1}$ with $0 \leq p \leq 1$ (please check that with these values for p we actually have $x_{0} \leq z \leq x_{1}$) then from 4

$$
\begin{aligned}
r\left(p x_{0}+(1-p) x_{1}\right) & =p r\left(x_{0}\right)+(1-p) r\left(x_{1}\right) \\
& =p f\left(x_{0}\right)+(1-p) f\left(x_{1}\right) .
\end{aligned}
$$

[^0]: ${ }^{1}$ Salvatore Modica 2023. Based on Wakker Prospect Theory, CUP
 ${ }^{2}$ Those probabilities do sum to 1 (geometric series).
 ${ }^{3}$ For the sake of curiosity: if in the St. Petersburg bet you take a logarithmic utility of money, u(Euro) = \ln (Euro), and compute expected utility you get $\sum_{k \geq 1} 2^{-k} \ln 2^{k}=\ln 4 \approx 1.4$ (pretty far from infinity). Indeed $\ln 2$ factors out, and the remaining sum is 2 because

 $$
 \sum_{k \geq 1} k \cdot 2^{-k}=\sum_{k \geq 1} 2^{-k}+\sum_{k \geq 1}(k-1) \cdot 2^{-k}=1+\frac{1}{2} \sum_{k \geq 1}(k-1) \cdot 2^{-(k-1)}=1+\frac{1}{2} \sum_{k \geq 1} k \cdot 2^{-k}
 $$

[^1]: ${ }^{4}$ Note that such an Ω cannot be finite. Fortunately the space $([0,1), \mathcal{B}[0,1)$, Leb) is sufficient for the purpose. If you don't know what that is just ignore the remark.

[^2]: ${ }^{6}$ This is exercise 2.6.6 in Wakker. We use (as in footnote 5) the fact that for $\alpha \in Y \backslash X$ we have $p(\alpha)=0$ and for $\alpha \in X \backslash Y$ we have $q(\alpha)=0$. From this we get

 $$
 \begin{aligned}
 E \varphi\left(P_{\lambda} Q\right) & =\sum_{\alpha \in X \cup Y}[\lambda p(\alpha)+(1-\lambda) q(\alpha)] \varphi(\alpha) \\
 & =\lambda \sum_{\alpha \in X} p(\alpha) \varphi(\alpha)+(1-\lambda) \sum_{\alpha \in Y} q(\alpha) \varphi(\alpha) \\
 & =\lambda E \varphi(P)+(1-\lambda) E \varphi(Q) .
 \end{aligned}
 $$

[^3]: ${ }^{7}$ Let u be a vNM utility for \succcurlyeq, let $u^{*}=\tau+\sigma u$ and take any $P=\left(\left\{x_{1}, \ldots, x_{n}\right\},\left(p_{1}, \ldots, p_{n}\right)\right)$. Then

 $$
 E u^{*}(P)=\sum_{i=1}^{n} p_{i} u^{*}\left(x_{i}\right)=\sum_{i=1}^{n} p_{i}\left[\tau+\sigma u\left(x_{i}\right)\right]
 $$

 $$
 =\sum_{i=1}^{n} p_{i} \tau+\sum_{i=1}^{n} p_{i} \sigma u\left(x_{i}\right)
 $$

 $$
 \tau+\sigma E u(x)
 $$

[^4]: ${ }^{8}$ From David Kreps Notes on the theory of choice.

[^5]: ${ }^{9}$ Taking $x=C E_{1}(P)$ in the definition $C E_{1}(P) \succ_{2} P$, whence the result by monotonicity.

[^6]: ${ }^{10}$ If you have not studied the Law of Large Numbers before you may read about it on Wikipedia.
 ${ }^{11}$ From Jean Tirole, Econometrica 1982

[^7]: ${ }^{12}$ Sketch of the induction step: suppose it is true for two-outcome lotteries. Take a three-outcome lottery $x=\left(p_{1} x_{1}, p_{2} x_{2}, p_{3} x_{3}\right)$; write it as

 $$
 x=\left(p_{1} x_{1},\left(1-p_{1}\right)\left(\frac{p_{2}}{1-p_{1}} x_{2}, \frac{p_{3}}{1-p_{1}} x_{3}\right)\right)
 $$

[^8]: ${ }^{13}$ For the first, $E u(P)=\left(1-e^{-1}\right) / 2 \approx 0.316$; next, $C E(P)$ solves $1-e^{-x / 100}=E u(P) \approx 0.316$ so $C E(P)=-100 \cdot \ln (1-E u(P)) \approx 37.99$ so $\rho(P)=50-C E(P) \approx 12.01$ which is almost $E P / 4$. For the second, proceeding in the same way we get: $E u(P)=5$; the equation for $C E(P)$ is $\sqrt{x}=5$ which gives $C E(P)=25$; and finally $\rho(P)=50-25=25=E P / 2$.

[^9]: ${ }^{14}$ This is certainly true if P is discrete, but it is true in much more general cases.

[^10]: ${ }^{15}$ You want to maximize $0.5 \cdot u(1.5 \beta)+0.5 \cdot u(-\beta)=0.5 *\left(1-e^{-1.5 \theta \beta}+1-e^{\beta \theta}\right)$. Equivalently, minimize $e^{-1.5 \theta \beta}+e^{\beta \theta}$. Set derivative equal to zero:

 $$
 0=-1.5 \beta \cdot e^{-1.5 \theta \beta}+\beta e^{\beta \theta} \Longleftrightarrow 1.5=e^{2.5 \cdot \beta \theta} \Longleftrightarrow 2.5 \cdot \beta \theta=\ln 1.5
 $$

