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Motivation and intuition

A coin which falls Heads or Tails with equal probability (a half each) is called fair. If you

ever wondered, it is called fair because if you bet x Euros on Heads against me the coin does

not favor either of us, both have zero expected gain: 0.5 ∗ x + 0.5 ∗ (−x) = 0. On the other

1Salvatore Modica 2025. Main reference: Peter Wakker, Prospect Theory, CUP 2010
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hand, zero isn't necessarily the worth we attach to the bet. In other words expected value

as a valuation criterion doesn't always re�ect preferences. The starkest example to see the

point is the St. Petersburg �paradox�: suppose you are o�ered the prospect of winning 2k

Euros with probability 2−k, for k ≥ 1;2 The expected value of such a bet is 1 + 1 + · · · = ∞,

but I am pretty sure you prefer 10 billion Euros for sure to such a bet; and if so you are not

evaluating bets according to their expected values.

Indeed, going back to the simpler coin case: if I invite you to bet a hundred Euros on a

fair coin, would you accept? Most likely not - you would prefer not to bet, that is getting zero

for sure. Said otherwise, your valuation of that zero-expectation bet is less than zero. The

easiest explanation of this �risk averse� behavior is that money gives utility but the utility

of money - say u - does not grow as much as the money itself - in other words it has a

decreasing derivative, that is it is concave. In this case when you take expected utility rather

than expected value, that is you evaluate the bet by computing 0.5 ∗ u(x) + 0.5 ∗ u(−x), you

get a number smaller than u(0). Picture:

−100 1000

u(x)

u(−100)

u(0)

u(100)

[u(100) + u(−100)]/2

x

Making precise the connection between risk aversion (properly de�ned) and concave utility

of money and its basic implications is one of the principal goals of these notes.3 Important:

if you are not at ease with the fact that [u(100) + u(−100)] /2 is on the straight line between

(−100, u(−100)) and (100, u(100)) go study Appendix 2 now.

2These probabilities do sum to 1 (geometric series).
3For the sake of curiosity: if in the St. Petersburg bet you take a logarithmic utility of money, u(Euro) =

ln(Euro), and compute expected utility you get
∑

k≥1 2
−k ln 2k = ln 4 ≈ 1.4 (pretty far from in�nity). Indeed

ln 2 factors out, and the remaining sum is 2 because∑
k≥1

k · 2−k =
∑

k≥1
2−k +

∑
k≥1

(k − 1) · 2−k = 1 +
1

2

∑
k≥1

(k − 1) · 2−(k−1) = 1 +
1

2

∑
k≥1

k · 2−k.
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1 Setup and basic de�nitions

The model A measurable space (Ω,F ,P) is given. Objects of choice are simple random

variables (henceforth r.v.) ξ : Ω → R, of the form

ξ =
∑n

i=1
xi1(Ai)

where the xi are distinct reals, 1(Ai) is the indicator of set Ai ⊆ Ω, that is

1(Ai)(ω) =

0 if ω ̸∈ Ai

1 if ω ∈ Ai

and {A1, . . . , An} is a partition of Ω; here Ai = {ω : ξ(ω) = xi}. For any x ∈ R the constant

r.v. x · 1(Ω) will be denoted by x.

A preference ≽ on r.v.'s characterizes the decision maker, where ξ ≽ η reads �ξ is preferred

to η�. It is assumed that ≽ is a weak order, that is

1. Complete: for any pair ξ, η either ξ ≽ η or η ≽ ξ or both, and

2. Transitive: ξ ≽ η ≽ ζ =⇒ ξ ≽ ζ.

We write ξ ∼ η if ξ ≽ η and η ≽ ξ, and ξ ≻ η if ξ ≽ η and not η ≽ ξ.

Recall that a simple r.v. ξ induces a probability distribution Pξ on R de�ned by

Pξ(xi) = P{ω : ξ(ω) = xi} = P(Ai).

Reduction The fundamental behavioral assumption we make is that if Pξ = Pη then ξ ∼ η.

This implies that the decision maker is only concerned with the distributions on R induced by

the various r.v.'s (inelegantly speaking, money) rather than with the r.v.'s themselves. The

space (Ω,F ,P) plays no role in decision making. It is therefore natural to de�ne preferences

directly on those distributions, letting Pξ ≽ Pη if ξ ≽ η (we use the same ≽ symbol to

save notation). This new preference clearly inherits the transitivity property of the original

relation.

To speak of completeness we need to make another assumption. Observe that the distri-

bution Pξ induced by ξ =
∑

i xi1(Ai) is characterized by its �nite support X = {x1, . . . , xn}
and by the probability vector p = (p1, . . . , pn) where pi ≡ Pξ(xi). In other words it may

be represented as a pair P = (X, p). The (technical) assumption we need is that the space

(Ω,F ,P) is rich enough that any such P is induced by some r.v. on Ω.4 At this point we

have a relation ≽ de�ned on all the �nite-support distributions on R, and we assume it is a

weak order.

4Note that such an Ω cannot be �nite. Fortunately the space ([0, 1),B[0, 1),Leb) is su�cient for the
purpose. If you don't know what that is just ignore the remark.
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It is convenient to visualize P = ({x1, . . . , xn}, (p1, . . . , pn)) as in the following picture:

p1

p2

x1

x2

xn

pn

The degenerate distribution P = ({x}, 1) giving x for sure will be also written as x. We

may also occasionally use the handy notation xpy for the distribution assigning probability p

to x and 1− p to y.

Note on terminology: we shall use interchangeably the terms distribution, lottery and

prospect.

Expectation Recall that for r.v. ξ =
∑n

i=1 xi1(Ai) and φ : R → R, letting pi = Pξ(xi) we

have

Eφ(ξ) =
∑n

i=1
φ (xi)Pξ(xi) =

∑n

i=1
φ (xi) pi.

For P = ({x1, . . . , xn}, (p1, . . . , pn)) we now de�ne

Eφ(P ) =
∑n

i=1
φ (xi) pi.

Note that if P is induced by ξ (so that P = Pξ) we are just de�ning Eφ(P ) as Eφ(ξ). In

the case of identity function φ(ξ) = ξ this reduces to E(P ) =
∑

i xipi. In the sequel we often

write EP for E(P ) to ease reading.5

2 The expected utility theorem

Expected Utility We say that EU holds for ≽ if there exists a strictly increasing u : R → R
such that for any pair of distributions P,Q one has P ≽ Q ⇐⇒ Eu(P ) ≥ Eu(Q). The function

u is called a vonNeumann-Morgenstern (vNM) utility.

We next state three axioms on ≽ which are necessary and su�cient for EU to hold.

A. Monotonicity For M > m and p > q the following strict preference holds:

5Always recall: to form expectation multiply values times probabilities, and then add up.
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p

M

m
1− p

≻

q

M

m
1− q

This is pretty self-explanatory: you prefer winning more money with higher probability.

Observe that for p = 1 and q = 0 the axiom says thatM ≻ m (here the comparison is between

degenerate distributions); thus we have the direct implication M > m =⇒ M ≻ m - more

money is better.

B. Continuity For any numbers m < x < M there exists p ∈ (0, 1) such that the following

indi�erence holds:

p

M

m
1− p

x ∼

The monotonicity axiom implies that such a p is unique (exercise).

C. Consistency To state the last axiom we need to de�ne the mixture of two distributions.

Start with two distributions P = ({x1, . . . , xn}, (p1, . . . , pn)) andQ = ({y1, . . . , ym}, (q1, . . . , qm)).

For α ∈ R let p(α) be the probability of α under P and q(α) the probability of α under Q,

that is

p(α) =

pi if α = xi some i = 1, . . . , n

0 otherwise
q(α) =

qj if α = yj some j = 1, . . . ,m

0 otherwise.

Given a number 0 ≤ λ ≤ 1, the mixture PλQ is de�ned as follows: its support is X ∪ Y , and

the probability assigned to α ∈ X ∪ Y is λp(α) + (1 − λ)q(α). These probabilities sum to 1

(proof in footnote) so the mixture is well de�ned.6

6For α ∈ Y \ X we have p(α) = 0 and for α ∈ X \ Y we have q(α) = 0. Therefore, since X ∪ Y =
X ∪ (Y \X) = Y ∪ (X \ Y ), we have∑

α∈X∪Y
p(α) =

∑
α∈X

p(α) = 1 and
∑

α∈X∪Y
q(α) =

∑
α∈Y

q(α) = 1

so that ∑
α∈X∪Y

λp(α) + (1− λ)q(α) = λ
∑

α∈X
p(α) + (1− λ)

∑
α∈Y

q(α) = 1.
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PλQ obtains if you get P with probability λ and Q with probability 1− λ. The picture is

this:

λ

P

Q
1− λ

Example: let P = ({8, 5, 0}, (1/4, 1/2, 1/4)), Q = ({5, 2}, (1/2, 1/2)) and λ = 4/5. Then

4/5

1/5

P4/5Q = =

8

5

0

5

2

8

5

2

0

1/4

1/2

1/4

1/2

1/2

1/5

1/2

1/10

1/5

Exercise Verify the following linearity property of the expectation operator, precisely that

Eφ(PλQ) = λEφ(P ) + (1− λ)Eφ(Q). Solution in footnote.7

The consistency axiom states that for all numbers x,m,M , all probabilities p and λ and

distributions C the following implication holds:

7This is exercise 2.6.6 in Wakker. We use (as in footnote 6) the fact that for α ∈ Y \X we have p(α) = 0
and for α ∈ X \ Y we have q(α) = 0. From this we get

Eφ(PλQ) =
∑

α∈X∪Y
[λp(α) + (1− λ)q(α)]φ(α)

= λ
∑

α∈X
p(α)φ(α) + (1− λ)

∑
α∈Y

q(α)φ(α)

= λEφ(P ) + (1− λ)Eφ(Q).
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p
M

m
1− p

=⇒x ∼

λ
x

C
1− λ

∼

λ

C
1− λ

p
M

m
1− p

The expected utility theorem EU holds for ≽ if and only if ≽ is a weak order satisfying

monotonicity, continuity and consistency.

Uniqueness of vNM utility The following result holds. Under EU, the vNM utility is

unique up to linear transformations. That is, if u is a vNM utility for ≽ then any other vNM

utility for ≽ is of the form σu+ τ with σ > 0 and τ ∈ R.

Important exercise Prove the easy directions of the above assertions. First, show that

if EU holds then the axioms are satis�ed (the hard part is to show the reverse implication).

Second, show that if u is a vNM utility for ≽ then so also is σu + τ with σ > 0 and τ ∈ R
(the hard part here is to show that there are no others). Solution of the easy direction in

footnote.8

Existence of a certainty equivalent A certainty equivalent for a distribution P is a

number CE (P ) such that CE (P ) ∼ P . By monotonicity if such a number exists it is unique.

Under EU it does exist for all P if and only if the vNM utility for ≽ is continuous. This is

Exercise 2.6.5 in Wakker.

The key idea for the proof of the EU theorem Recall that if P assigns probability

p to x and 1 − p to y we write P = xpy. Fix two values m < M ; suppose EU holds;

take a vNM utility u such that u(m) = 0 and u(M) = 1; then if for an x ∈ (m,M) the

8Let u be a vNM utility for ≽, let u∗ = τ + σu and take any P = ({x1, . . . , xn}, (p1, . . . , pn)). Then

Eu∗(P ) =
∑n

i=1
piu

∗(xi) =
∑n

i=1
pi [τ + σu(xi)]

=
∑n

i=1
piτ +

∑n

i=1
piσu(xi)

τ + σEu(P )

From this it follows directly that for any P,Q we have

P ≽ Q ⇐⇒ Eu(P ) ≥ Eu(Q) ⇐⇒ Eu∗(P ) ≥ Eu∗(Q).
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number p solves x ∼ Mpm (existence of such p guaranteed by the continuity axiom) we have

u(x) = p ∗ u(M) + (1− p) ∗ u(m) = p. So in the search for a vNM utility between m and M

such that u(m) = 0 and u(M) = 1 we are forced to de�ne u(x) by the equivalence

x ∼

M

m

u(x)

because we know that if there is a vNM it must be it. So the proof starts from this de�nition,

and repeatedly using consistency and then monotonicity shows that EU holds for distributions

with values in an interval [m,M ]. The procedure is illustrated in Appendix 1 where we give

the details of the proof and show how the extension from [m,M ] to all of R and uniqueness

are obtained.

Building some intuition Take m = 0, M = 100 and u(m) = 0, u(M) = 1. Applying the

de�nition of u as above, to �nd for example u(30) and u(70) we must �nd probabilities in

the indi�erences below (in the picture it is assumed they are .4 and .8) and then utility is as

drawn in the right diagram (with some interpolation to get an idea).

30 ∼ 70 ∼

100

0

100

0

.4 .8

0 100

u

1

30 70

.4

.8

u

Assessing vNM utility the other way around9 Suppose you have to choose one of these

four lotteries:

.95

.05

105

−100

98

80

600

25

90 150

1000

100

0

−20

.22

.58

.2

.1

.2

.7

.1

.2

.1

.6

9From David Kreps Notes on the theory of choice.
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It does not seem an easy task at all, but assuming you subscribe to the expected utility

axioms the problem �reduces� to assessing your vNM utility for the outcomes, for then you just

compute expected utility and choose the one for which that is highest. To derive u we start by

normalizing at the extremes: u(1000) = 1, u(−100) = 0; and we assume existence of certainty

equivalents to keep things simple. We want to get some utility values and then interpolate

to get an acceptable estimate. We have just seen one way to do it: derive probabilities to

get utility of given values. An alternative is to start with given probabilities - say 50-50

two-valued prospects, which are the simplest to understand - and derive utility, as follows.

Start with 10001/2(−100) (expectation 450) and give the value which gives indi�erence in the

comparison below; suppose the value is 400:

.5

.5

1000

−100

400 ∼

Then you know u(400) = 1/2 · u(1000) + 1/2 · u(−100) = 1/2. Given this, to get x such that

u(x) = 0.75 we can then use the lottery 10000.5400. Supposing you assert that 10000.5400 ∼
675 then u(675) = 0.5 · (1 + 1/2) = 0.75. For 0.25 we can use 4000.5(−100); assuming you

say 4000.5(−100) ∼ 100 then u(100) = 0.25. You can go further, or just interpolate somehow

between these four values to draw a continuous u between −100 and 1000. In fact you can

also perform some consistency check. For example, it should now be the case that

.5

.5

675

100

400 ∼

because the prospect on the right has now expected utility 0.5 · u(675) + 0.5 · u(100) =

0.5(0.75+0.25) = 0.5 = u(400). If you give a number di�erent from 400 here then you should

go back and think better. In the end you should end up with a consistent assessment. If you

reach that you are done, just choose the lottery with the highest expected utility.

2.1 Application: medical decisions

This is from Wakker chapter 2, which the reader may consult for accurate description of

the situation; we will be brief. A patient with throat cancer must decide between Radio-

therapy and Surgery. The situation is depicted in the self-explaining �gure below. Note

the use of squares for decision nodes and circles for chance nodes. Probabilities come from
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data on previous cases. The outcomes are not monetary, but rest assured that the theory

can cover cases like this as well. We just assume that EU holds, with vNM u such that

u(normal voice) > u(artificial voice) > u(death).

Radio

Surgery

Cure

Recurrency

Recurrency

Cure

Normal voice

Artificial Voice

Death

Artificial Voice

Artificial Voice

Death

0.6

0.4

0.4

0.6

0.7

0.3

0.3

0.7

The tree may be simple for us though most likely not for a person with cancer. But the

whole point is that we don't need the patient to examine it. By normalizing u(normal voice) =

1 and u(death) = 0 (which we know it can always be done) we only need to elicit the patient's

u(artificial voice). And given 0-1 utility at the extremes we know that u(artificial voice) is

the probability p which solves the indi�erence

Artificial Voice ∼

p

1− p

Normal Voice

Death

Given u(artificial voice) then we compute expected utility of the two choices:

Eu(Surgery) = (.7 + .3 ∗ .3) ∗ u(artificial voice) + (.3 ∗ .7) ∗ 0

= .79 ∗ u(artificial voice)

Eu(Radiotherapy) = .6 ∗ 1 + (.4 ∗ .4) ∗ u(artificial voice) + (.4 ∗ .6) ∗ 0

= .6 + .16 ∗ u(artificial voice)

10



therefore the patient prefers Radiotherapy i�

.79 ∗ u(artificial voice) < .6 + .16 ∗ u(artificial voice)

u(artificial voice) < .6/.63 ≈ 0.95.

This is quite a high value, so we can expect to be able to advice a majority of patients

to try radiotherapy. It is su�cient that the patients declares to prefer a lottery with 95%

probability to complete recovery to arti�cial voice (so that u(artificial voice) < 0.95). Still,

eliciting whether u(artificial voice) is above or below the threshold may not be always simple.

If the threshold were say 0.6, when confronted with the alternatives

Artificial Voice ≻

0.6

0.4

Normal Voice

Death

OR Artificial Voice ≺

0.6

0.4

Normal Voice

Death

it may be more problematic to have a de�nite answer. In any case it is quite clear that a

decision theorist can be of huge help in situations like this.

2.2 A case study: the coach problem

This is from the book �Thinking strategically: the competitive edge in business, politics, and

everyday life� by Avinash K. Dixit and Barry J. Nalebu�, W.W. Norton 1991.
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As you may have guessed a touchdown gives six points. The problem is to translate this

real world problem into a decision tree which we can analyze with the tools we have learned.

We let p the probability of scoring a RUN ≡ R (2 points) and q > p the probability of scoring

a KICK ≡ K (1 point).

First observation: at 31-23, after the last touchdown, you need another one to draw or win.

So let us put ourselves in the coach's position and assume you will score another touchdown.

Under that assumption, after the touchdown just scored you are at −8 + 6 = −2 from the

opposing team. So we need 2 points to draw and 3 to win.

There are two decisions to be made. K or R now - at −2 - and K or R after next

touchdown. We call these decisions K1, R1 and K2, R2. These are choices of lotteries.

Next, possible outcomes: lose, draw, win (symbols ℓ, d, w). Let us take u(ℓ) = 0, u(w) = 1

and u(d) = b where 0 < b < 1. The last choice at −1, represented below,

12



−1

K2

R2

q
b

0

1

0

p

R2 � K2 means p > qb that is b < p/q

depends on preferences, hence it cannot be criticized. The fact that at −1 the preferred choice

was R2 just says that b < p/q. We have to examine the coach's �rst choice, between K1 and

R1.

The �rst choice is at −2:

−2

K1

R1

Subtree 1

Subtree 2

Then we split the tree. After choice K1 we get

q

−1

K2

R2

q b

0

p 1

0

−2

K2

R2

q 0

0

p b

0

Subtree 1

The arrows indicate the subsequent choices (R2 at the top node because of preferences,
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and at the bottom node by monotonicity). So K1 gives expected utility

Eu(K1) = q ∗ p ∗ 1 + (1− q) ∗ p ∗ b = p [q + (1− q)b]

Now R1, depicted below:

p

0

K2

R2

q 1

b

p 1

b

−2

K2

R2

q 0

0

p b

0

Subtree 2

where K2 at node 0 follows from monotonicity and R2 at node −2 also because K2 gives zero

for sure. So R1 gives expected utility

Eu(R1) = p[q + (1− q)b] + (1− p)pb.

We see that

Eu(R1) = Eu(K1) + (1− p)pb > Eu(K1)

so the mistake was to choose K1. The coach should have chosen to Run when they were at

−8. The moral of the story is: look ahead to choose what to do now.

2.3 Caveat: the Allais experiment

Maurice Allais (Nobel 1988) produced an example of �reasonable� choices incompatible with

EU. Incompatibility is most easily seen through violation of the following axiom which is

implied by EU.

The independence axiom This axiom says that for any distributions P,Q,C and number

0 ≤ λ ≤ 1 the following implication holds:
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≽

Q

C

P

C

λ

1− λ

λ

1− λ

P ≽ Q =⇒

To see that EU implies independence it su�ces to recall that Eu(PλC) = λEu(P ) + (1−
λ)Eu(C), same with P replaced by Q.

The example The preferences displayed in this example violate independence, hence are

incompatible with EU. We are confronted with the two pairs of lotteries drawn below:

P =

P ′ =

Q =

Q′ =

5

25

0

25

0

5

0

1

11/100

10/11

10/100

First we imagine the numbers are Euros. Then we make our choices if they represent

millions of Euros. Usually the choices are di�erent. For the smaller amounts the typical

choices are the following:

P ≺ Q and P ′ ≺ Q′

But for the larger amounts many express the following preferences:

P ≻ Q and P ′ ≺ Q′

which are �reasonable� since it is hard to give up 5 million Euros for sure. However we show

presently that the latter choices violate expected utility, for they violate independence. To

see this let C be the lottery which gives zero for sure and observe that P ′ = P11/100C and

Q′ = Q11/100C: the former is clear, and for the latter note that the support of Q11/100C

is {25, 0} and the probability of zero is 11
100 · 1

11 + 89
100 · 1 = 90

100 . Independence then implies

P ≻ Q =⇒ P ′ ≻ Q′.

3 Attitudes towards risk for general, monotone weak orders

Recall that monotonicity implies that for any pair of numbers x, y we have x > y ⇐⇒ x ≻ y.

We assume this, and in addition that for any P the certainty equivalent CE (P ) ∼ P (unique

by monotonicity) exists.
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Risk aversion We say that ≽ is risk averse (RA) if EP ≻ P for any non-degenerate P .

That is, a risk averse decision maker strictly prefers the sure amount EP =
∑

i xipi to

the distribution P . For example, she would refuse to enter a bet on a fair coin.

The degree of risk aversion of di�erent preferences can be compared. We say that ≽2 is

more risk averse than ≽1 if x ∼1 P ⇒ x ≻2 P , for any x ∈ R and P .

Risk loving There is no universally accepted term for this: risk attraction, risk loving, etc.

The obvious de�nition is that ≽ is risk loving if P ≻ EP for any non-degenerate P .

A risk lover would, for example, pay to bet on a fair coin. It is a fairly uncommon case,

but we do observe risk attraction in some cases: indeed people entering casinos or buying

lottery tickets enter unfavorable bets. Casinos are a special case in that people may derive

utility from being there. The case of lotteries is more intriguing, and well studied: lotteries

involve long shot bets which could change the individual's life at a typically small cost, and

can be rationalized. But keep in mind that it is usually the case that the same individuals

would not accept to bet non trivial amounts of money on a fair coin, so may be regarded as

risk averse after all.

Risk neutrality You can guess the de�nition: ≽ is risk neutral if EP ∼ P for any P .

Observe that risk neutrality implies that ≽ is represented by expected value: P ≽ Q i�

EP ≥ EQ. Therefore a risk neutral decision maker is in fact an EU maximizer, with linear

vonNeumann utility u(x) = x (indeed any ũ(x) = σx+ τ with σ > 0, τ ∈ R).
A �rm maximizing expected pro�ts is in fact assumed to be risk neutral; this is a fairly

common assumption. However keep in mind that for a generic decision maker risk neutrality

incurs in the St. Petersburg paradox (Wakker sec. 2.5).

Risk premium The risk premium of P is the number ρ(P ) such that EP − ρ(P ) ∼ P .

The following are direct consequences of the de�nitions:

1. ρ(P ) = EP − CE (P )

2. ≽ is risk averse =⇒ CE (P ) ∼ P ≺ EP =⇒ (monotonicity) CE (P ) < EP =⇒ ρ(P ) > 0

3. ≽2 is more risk averse than ≽1 ⇐⇒ CE 2(P ) < CE 1(P ) ⇐⇒ ρ2(P ) > ρ1(P ).10

Of course if ≽ is risk lover everything is reversed: CE (P ) > EP and ρ(P ) < 0. And for

risk neutral preference CE (P ) = EP and ρ(P ) = 0.

3.1 Application: risk premium and insurance

Suppose a risk averse individual faces a risk of an accident causing damage d > 0 with

probability π. This means she �owns� the distribution P which assigns probability 1 − π

10Taking x = CE1(P ) in the de�nition CE1(P ) ≻2 P , whence the result by monotonicity.

16



to zero and π to −d; of course EP = −πd < 0 (to �x ideas you may take EP = −50).

By risk aversion her certainty equivalent CE (P ) = EP − ρ(P ) < EP will be less than EP

(again to �x ideas suppose ρ(P ) = 5 so CE (P ) = −55). This means she is willing to pay

55 = −CE (P ) = −EP + ρ(P ) = πd+ ρ(P ) to get rid of P and eliminate the risk - that is to

acquire full insurance. Suppose an insurance company insures N identical customers paying

that price. If their accidents are independent of one another, by the Law of Large Numbers

with probability 1 the fraction of accidents will be very close to π for N large so the cost per

customer will be approximately (Nπ · d)/N = πd (= 50 in our example) and the company's

pro�t is πd + ρ(P ) − πd = ρ(P ) (in the example 50 + 5 − 50 = 5). In other words, the

risk premium is approximately the insurance company's pro�t per customer. This is why it's

called risk premium.11

3.2 Pareto improvement via transfer of risk

Generalizing the previous example, if ≽2 is more risk averse than ≽1 then a non-degenerate

lottery P can be sold from Mr.2 to Mr.1 for any price p such that C2(P ) < p < C1(P ). This

is a general principle: it is always advisable to transfer risks from more risk averse agents to

less risk averse ones.

3.3 Financial markets with risk averse traders

The purpose of this section is to show that when traders in a �nancial market are risk averse,

no trader can have strictly positive expected gains. The present result is in a paper by Jean

Tirole, Econometrica 1982.

Premise: meet of information partitions On a set Ω a partition P is a family of

nonempty disjoint sets whose union is Ω. A partition can be interpreted as information: you

know in which element of P the realized ω lies. Given two partitions P and Q their meet

P ∧Q is de�ned as

P ∧Q = {A ∩B ̸= ∅ : A ∈ P, B ∈ Q} .

It corresponds to the aggregate information in P and Q: you know which element of P and

which element of Q are true. Picture:

11If you have not studied the Law of Large Numbers before you may read about it on Wikipedia.
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P Q P ∧Q

The meet of partitions P1, . . . ,PI is de�ned inductively. It re�ects the information aggre-

gated over the given partitions. If Pi is individual i's information the meet results if all the

individuals share their information among one another.

The market There are i = 1, . . . , I individuals trading an asset ξ which is a random variable

on a space (Ω,F , P ); if the asset price is p and i trades xi units (positive if she buys, negative

if she sells) her gain is Gi = xi(ξ − p). Traders are expected utility maximizers, with concave

vNM utility on gains. Trader i has information partition Ai, and we let A denote the meet of

the individual partitions. The market clears when
∑

i xi = 0. Note that when markets clear∑
iGi = 0 as well.

Rational Expectations Equilibrium The idea is that price reveals information, and

rationality consists of correctly using this information when choosing xi. It is assumed that the

asset price depends on the aggregate information A according to a function Φ : A → R ∋ p.

The information contained in p is the counterimage Φ−1(p) = {A ∈ A : Φ(A) = p}, which we

denote by S(p). Trader i's information then consists of (Ai, S(p)) where Ai is the known

element of Ai and S(p) is the public information which the rational trader takes into account.

A Rational Expectation Equilibrium is a function Φ and trades xi(p,Ai, S(p)), i = 1, . . . , I

such that: xi(p,Ai, S(p))maximizes expected utility of i conditional on (Ai, S(p)) and markets

clear, that is
∑

i xi(p,Ai, S(p)) = 0. In equilibrium trader i's expected gain is E(Gi | Ai, S(p)).

Proposition (Impossibility of speculation). E(Gi | Ai, S(p)) = 0 for each i if traders are

not risk lovers.

Proof. For risk averse traders it must be E(Gi | Ai, S(p)) > 0, and for risk neutral ones

E(Gi | Ai, S(p)) ≥ 0; so without risk lovers we must have E(Gi | Ai, S(p)) ≥ 0 for all i. By

iterating conditional expectation we then get E(Gi | S(p)) = E [E (Gi | Ai, S(p)) | S(p)] ≥ 0.

But from
∑

iGi = 0 we deduce
∑

iE(Gi | S(p)) = E(
∑

iGi | S(p)) = 0; so since each term is

non-negative, each must be zero. But E [E(Gi | Ai, S(p)) | S(p)] = 0 and E(Gi | Ai, S(p)) ≥ 0

imply E(Gi | Ai, S(p)) = 0.
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4 Risk attitudes for EU Preferences

We now turn to the analysis of risk attitudes in the important case where EU holds. We

assume that all vNM utilities possess derivatives of all orders.

Risk aversion Risk aversion is characterized by the shape of the vNM utility:

Proposition. For EU preferences risk aversion is equivalent to concavity of vNM utility.

Proof. Recall that a function u is concave if for any x1, x2 ∈ R and 0 ≤ p1, p2 with p1+p2 = 1

it is u(p1x1+ p2x2) > p1u(x1)+ p2u(x2). It can be shown by induction that this is equivalent

to: for any x1, . . . , xn ∈ R and 0 ≤ p1, . . . , pn with
∑

pi = 1 it is u(
∑

pixi) >
∑

piu(xi).

This says exactly that for distribution P (values xi, probabilities pi) u(EP ) > Eu(P ) that is

(by de�nition) EP ≻ P .12

It is instructive to visualize the situation considering a distribution P concentrated on

the two points α < β, with probability p on α (and 1 − p on β); its expected value is

EP = pα+ (1− p)β. Note that Eu(P ) = pu(α) + (1− p)u(β) is the value on the line at EP

(see Appendix 2 on straight lines). All the relevant quantities appear in the picture below.

12Sketch of the induction step: suppose it is true for two-outcome lotteries. Take a three-outcome lottery
x = (p1x1, p2x2, p3x3); write it as

x =

[
p1x1, (1− p1)

(
p2

1− p1
x2,

p3
1− p1

x3

)]
and apply the result for two-outcome lotteries; you get

u(p1x1 + p2x2 + p3x3) ≥ p1u(x1) + (1− p1)u

((
p2

1− p1
x2,

p3
1− p1

x3

))
but p2

1−p1
x2,

p3
1−p1

x3 is a two-outcome lottery because p2
1−p1

+ p3
1−p1

= 1 so we can re-apply the two-outcome
lottery result

p1u(x1) + (1− p1)u

((
p2

1− p1
x2,

p3
1− p1

x3

))
≥ p1u(x1) + (1− p1)

(
p2

1− p1
u(x2) +

p3
1− p1

u(x3)

)
= p1u(x1) + p2u(x2) + p3u(x3)

so we see that
u(p1x1 + p2x2 + p3x3) ≥ p1u(x1) + p2u(x2) + p3u(x3)

which means the result is true for three-outcome lotteries. Then analogously go from n−1 to n, and complete
the proof.

19



α β x

u(x)

EP

Eu(P ) = u(CE (P ))

CE (P )

ρ(P )

u(EP )

Of course risk attraction corresponds to convex utility. Risk neutrality we have already

observed that corresponds to linear utility.

Exercise Consider the prospect P = 1001/20. Calculate its risk premium for u(x) = 1 −
e−x/100 and u(x) =

√
x. Answers: for the �rst ρ(P ) ≈ EP/4, for the second ρ(P ) = EP/2.

Solution in footnote.13

4.1 Application: choice of insurance

A risk averse individual with initial wealth w may incur a loss d ≤ w with probability π.

Now assume she can buy insurance at price p; this means if she buys α units of insurance she

pays pα in advance and gets α in case the loss occurs. Thus her wealth will be w − pα with

probability 1 − π and w − pα − d + α = w − d + (1 − p)α with probability π. Observe that

the insurer, that we may assume to be risk neutral, bears an expected cost π for each unit

sold, so she must sell at p ≥ π. Observe also that if α = d the individual's income is w − pd

for sure; thus full insurance is α = d.

Let u denote the individual's vNM utility; she chooses α to maximize expected utility, so

taking into account the budget constraint pα ≤ w she solves

max
0≤α≤w/p

(1− π)u(w − pα) + πu(w − d+ (1− p)α).

Let V (α) denote the function to be maximized. We have V ′(α) = −p(1−π)u′(w−pα)+ (1−
p)πu′(w−d+(1−p)α); and V ′′(α) = p2(1−π)u′′(w−pα)+(1−p)2πu′′(w−d+(1−p)α) < 0, so

V ′ is decreasing. Let α∗ be the optimal choice. V ′(0) = −p(1−π)u′(w)+(1−p)πu′(w−d) =

πu′(w−d)−p [(1− π)u′(w) + πu′(w − d)] is decreasing in p; and at p = 1 we have V ′(0) < 0,

while at p = π it is V ′(0) = π(1− π) [−u′(w) + u′(w − d)] > 0. Therefore α∗ = 0 for p close

enough to 1, otherwise α∗ > 0. At α = d we have V ′(d) = u′(w−pd) [−p(1− π) + (1− p)π] =

13For the �rst, Eu(P ) = (1 − e−1)/2 ≈ 0.316; next, CE(P ) solves 1 − e−x/100 = Eu(P ) ≈ 0.316 so
CE(P ) = −100 · ln (1− Eu(P )) ≈ 37.99 so ρ(P ) = 50 − CE(P ) ≈ 12.01 which is almost EP/4. For the
second, proceeding in the same way we get: Eu(P ) = 5; the equation for CE(P ) is

√
x = 5 which gives

CE(P ) = 25; and �nally ρ(P ) = 50− 25 = 25 = EP/2.
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u′(w − pd) [π − p] so if p = π then V ′(d) = 0 and α∗ = d: if p = π the optimal choice is full

insurance. If on the other hand p > π then V ′(d) < 0 so α∗ < d: for any p > π the individual

chooses to bear some risk (because w − pα− d+ α < w − pα that is wealth in the bad state

is lower than in the good state).

5 Comparative risk aversion

Turning to comparative risk aversion, the idea is that more RA must correspond to u �more

concave�. This means u′ goes down faster i.e. u′ steeper i.e. −u′′ larger. But this does not

work because u can be rescaled. The solution is to divide by u′ (for then the rescaling factors

cancel out) to get the risk aversion coe�cient at x ∈ R

r(x) = −u′′(x)/u′(x).

The coe�cient r is called the Arrow-Pratt index. This is invariant to linear transformations of

u, that is it remains the same if u is replaced by ũ = σu+ τ with σ > 0 and τ ∈ R (exercise).

Note that if u is linear, u(x) = σx+ τ then r(x) = 0 for all x.

Proposition. Under EU, ≽2 is more risk averse than ≽1 i� r2(x) > r1(x) for all x.

Proof. Consider a general P = ({x1, . . . , xn}, (p1, . . . , pn)). First we claim that the hypoth-

esis that ≽2 is more risk averse than ≽1 is equivalent to u2 = ϕ ◦ u1 for a ϕ increasing

concave. Since u2 =
(
u2 ◦ u−1

1

)
◦ u1 we must show that ϕ = u2 ◦ u−1

1 is concave (it is

clearly increasing since both u2 and u−1
1 are). Now x ∼1 P ⇒ x ≻2 P says u1(x) =∑

piu1(xi) ⇒ u2(x) >
∑

piu2(xi); this in turn means u2
(
u−1
1 (

∑
piu1(xi))

)
>

∑
piu2(xi),

since u1(x) =
∑

piu1(xi) ⇐⇒ x = u−1
1 (

∑
piu1(xi)). The inequality can be written as

ϕ (
∑

piu1(xi)) >
∑

piϕ (u1(xi)), and letting zi = u1(xi) in turn as ϕ (
∑

pizi) >
∑

piϕ (zi);

this shows that is ϕ concave.

Now di�erentiate u2 = ϕ ◦u1. We obtain u′2 = ϕ′(u1) ·u′1 and u′′2 = ϕ′′ · (u′1)
2+ϕ′(u1) ·u′′1.

Thus, given with ϕ′ > 0 and ϕ′′ < 0 (ϕ is increasing concave) we get

r2(x) = −u′′2
u′2

= −u′′1
u′1

− ϕ′′

ϕ′ · u
′
1 > −u′′1

u′1
= r1(x)

as was to be shown.

5.1 Application: a simple portfolio choice

You are risk averse, and you have to allocate your wealth w between two assets. The �rst is

risk free: it pays 1 Euro for sure for each Euro invested; the second is risky. Its return is a

random variable ξ; its return is uncertain, but its expectation is larger than 1: Eξ > 1. By
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construction, if you invest α in the latter and β in the safe asset you get the (random) return

αξ+ β. You have to choose α, β ≥ 0 to maximize expected utility Eu(αξ+ β). Since it must

be α+ β = w the problem may be written in terms of α alone:

max
0≤α≤w

Eu(w + α(ξ − 1)).

To apply calculus we want to di�erentiate with respect to α, and we assume that the derivative

of an expectation is equal to the expectation of the derivative.14 Then letting V (α) = Eu(w+

α(ξ−1)) we get V ′(α) = E [(ξ − 1)u′(w + α(ξ − 1))] and V ′′(α) = E
[
(ξ − 1)2u′′(w + α(ξ − 1))

]
;

observe that u′′ < 0 implies V ′′ < 0, so V ′ is decreasing and an interior optimum is charac-

terized by the �rst order condition.

Our �rst observation is that the optimal α∗ > 0, that is you choose to bear some risk. This

is because Eξ > 1 implies V ′(0) > 0. Note that this choice is analogous to that of bearing

some risk in the insurance choice whenever p > π.

The other point we make is on how choice depends on the degree of risk aversion. It

should be obvious that a risk neutral individual chooses α∗ = w - please verify it. We

shall next check that the more risk averse you are the less you will buy of the risky asset.

We have to show that if u2 is more risk averse than u1 then α∗
2 < α∗

1. Assuming interior

solutions, the optima are characterized by V ′
1(α

∗
1) ≡ E [(ξ − 1)u′1(w + α∗

1(ξ − 1))] = 0 and

V ′
2(α

∗
2) ≡ E [(ξ − 1)u′2(w + α∗

2(ξ − 1))] = 0. Since V ′
2 is decreasing it su�ces to show that

V ′
2(α

∗
1) < 0. From the proof on page 21 we know that u2 = ϕ ◦ u1 with ϕ concave hence ϕ′

decreasing; and by composition u′2(x) = ϕ′(u1(x)) · u′1(x), so

V ′
2(α

∗
1) ≡ E

[
(ξ − 1)ϕ′ (u1(w + α∗

1(ξ − 1)))u′1(w + α∗
1(ξ − 1))

]
.

On the other hand by multiplying the equality V ′
1(α

∗
1) = 0 by ϕ′ (u1(w)) we get

0 = E
[
(ξ − 1)ϕ′ (u1(w))u

′
1(w + α∗

1(ξ − 1))
]
.

But ϕ′ (u1(w + α∗
1(ξ − 1))) ≶ ϕ′ (u1(w)) ⇐⇒ ξ ≷ 1, so going from ϕ′ (u1(w)) to ϕ

′ (u1(w + α∗
1(ξ − 1)))

lowers the expression in both ranges, making V ′
2(α

∗
1) < 0 as we wanted.

5.2 An approximate expression for the risk premium

Again we consider a general P = ({x1, . . . , xn}, (p1, . . . , pn)). There is a basic relation between
r, ρ and the variance σ2(P ) of P , which is de�ned as E(P − EP )2 =

∑
i(xi − EP )2pi.

Proposition. ρ(P ) ≈ 1
2σ

2(P ) · r(EP )

14This is certainly true if P is discrete, but it is true in much more general cases.
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Proof. Let zi = xi − EP , so that σ2(P ) =
∑

piz
2
i (notice that

∑
pizi = 0). By de�nition

u (EP − ρ(P )) = u(CE (P )) = Eu(P ) =
∑

piu(xi) =
∑

piu(EP + zi). Now expand around

EP . Left side: u (EP − ρ(P )) ≈ u (EP )− ρ(P )u′(EP ); right side:∑
piu(EP + zi) ≈

∑
pi
[
u(EP ) + ziu

′(EP ) +
(
z2i /2

)
u′′(EP )

]
=

∑
pi
[
u(EP ) +

(
z2i /2

)
u′′(EP )

]
= u(EP ) + u′′(EP )σ2(P )/2.

Collecting terms we get −ρ(P )u′(EP ) ≈ u′′(EP )σ2(P )/2, which is what we wanted.

The message here is that given EP a risk averse agent prefers prospects with lower vari-

ance.

5.3 Application: risk sharing

Consider two prospects P,Q with EP = EQ = µ and Var(P ) = σ2, Var(Q) = σ2/n.

Recalling that P ∼ EP − ρ(P ), to a �rst approximation the proposition above gives P ∼
µ− 1

2σ
2 · r(µ) and Q ∼ µ− 1

2nσ
2 · r(µ), so if you have a sure income z0 with µ− 1

2σ
2 · r(µ) <

z0 < µ− 1
2nσ

2 · r(µ) then Q ≻ z0 ≻ P . If n identical individuals facing independent prospects

Pi = P share the risk, in the sense of investing z0/n on each Pi and getting Si = Pi/n

(outcomes 1/n of those of Pi) for each i, then each individual faces n identical prospects

Si, each with ESi = µ/n and Var Si = σ2/n2, that is in total each spends z0 and gets the

prospect S =
∑

i Si which has ES = µ and Var(S) = σ2/n which is equal to Q and is

therefore preferred to z0. In practice, by this risk sharing agreement each member gets Q at

price z0.

5.4 Application: Hedging

In this (very naive) example we look at how the variance of a chosen prospect varies with

the �diversi�cation� of the corresponding portfolio.15 A number from 1 to 8 will be drawn

at random (each has probability 1/8 of being selected). You can bet 1 (Euro) on any set A

of four numbers, so that your gain is X = 21A − 1 (1 on A and −1 on Ac). Since #A = 4

we have P (A) = 1/2 and EX = 0; notice also that Std(X) = 1. Now suppose you may also

bet 1 Euro on a second four-element set B; your gain on the bet is Y = 21B − 1, also with

EY = 0. The total gain is then

S = X + Y = 2(1A + 1B − 1).

15It is taken from Jim Pitman, Probability, 1987.
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Whatever the choices of A and B you get ES = 0 - but the variability of S, as expressed by

Var(S), does depend on the choice. We have

Var(S) = Var(X) +Var(Y ) + 2Cov(X,Y ) = 2 [1 + Corr(X,Y )]

where the last equality follows from Std(X) = Std(Y ) = 1. You can easily check that

Corr(X,Y ) = Corr(1A,1B) = Cov(1A,1B)/(1/4) since Std(1A) = Std(1B) = 1/2 from

P (A) = P (B) = 1/2; now 1A · 1B = 1AB, so E(1A · 1B) = P (AB) = #(AB)/8, whence

Cov(1A,1B) = #(AB)/8− 1/4 = [#(AB)− 2] /8; in conclusion

Var(S) = 2 [1 + Corr(X,Y )] = 2 [#(AB)/2] = #(AB)

which says that the variance of the gain depend on the size of the overlap between A and B.

The two extreme cases are:

Complete Hedging: #(AB) = 0. Here B = Ac and S = 0 with probability 1: whenever

you win on A you lose on B and vice versa.

Double your bet: #(AB) = 4. Here B = A so you are e�ectively betting 2 Euros on

A, and Std(S) = 2 - twice as much as in the 1-Euro bet. This is the case of �all eggs in one

basket�.

The interesting intermediate case is

Independence of bets: #(AB) = 2. Here P (AB) = P (A)P (B) that is A and B are

independent, which implies that the two bets X and Y are independent too. It is as if you

bet on A in two independent games/trials with probability of success 1/2. The number of

successes is 1A + 1B ∼ Bin(2, 1/2).

In more realistic examples the choice is between portfolios with higher mean and higher

variance and portfolios with lower mean and lower variance.

6 Common families of vNM utilities

These are the most prominent families of vNM utilities use in theory and in applications.

6.1 The exponential family

The exponential family is u(x) = −e−θx with θ > 0. You can verify that r(x) = θ for all x in

this case. It is convenient to rescale the function to u(x) = (1− e−xθ)/θ so that as θ → 0 we

get u(x) = x. The family is called CARA - constant absolute risk aversion.

Relative risk aversion To introduce the power family we need a last new concept: relative

risk aversion. We can take proportional increments of wealth tx with t close to 1 instead of
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absolute increments x+ h with h small. To obtain a measure analogue to r in this setting we

let ũ(t) = u(tx) and consider the Arrow-Pratt index for ũ, that us −ũ′′(t)/ũ′(t) at t = 1. We

have ũ′(t) = xu′(tx), ũ′′(t) = x2u′′(tx) so for t = 1 we obtain the index

r̃(x) = − ũ′′(1)

ũ′(1)
= −x · u

′′(x)

u′(x)
= xr(x)

Note that if r(x) > 0 and r̃(x) remains bounded above as x becomes large then r(x) tends

to zero.

6.2 The power family

The power family is u(x) = xθ, with x > 0 and 0 < θ < 1. We have u′ = θxθ−1, u′′ =

θ(θ − 1)xθ−2 so that r̃(x) = 1 − θ for all x. For θ = 1 we get risk neutrality; and as θ goes

down the relative risk aversion increases. By rescaling to u(x) = (xθ − 1)/θ we see that as

θ → 0 we get u(x) = lnx. The family is called CRRA - constant relative risk aversion.

6.3 CARA utility: investing

Assume vNM u(x) = 1− e−xθ. Suppose you can invest the amount β in a stock whose yield

is represented by the prospect

1/2

1/2

1.5β

−β

How much do you invest to maximize expected utility? The result is β ≈ 0.16/θ (solution

in footnote):16 optimal investment is inversely proportional to risk aversion.

6.4 CARA utility: assessing the parameter

If you reckon your risk aversion is constant over the range relevant to a decision problem (and

subscribe to the expected utility axioms), then discovering your utility amounts to determining

the parameter θ. This is �relatively� easy, because it is equivalent to �nding x such that the

indi�erence below holds:

16You want to maximize 0.5 · u(1.5β) + 0.5 · u(−β) = 0.5 ∗ (1− e−1.5θβ + 1− eβθ). Equivalently, minimize
e−1.5θβ + eβθ. Set derivative equal to zero:

0 = −1.5β · e−1.5θβ + βeβθ ⇐⇒ 1.5 = e2.5·βθ ⇐⇒ 2.5 · βθ = ln 1.5

whence β = ln 1.5/2.5θ ≈ 0.16/θ since ln 1.5 ≈ 0.4. This is the solution (the second derivative is positive).

25



1/2

1/2

x

−x/2

0 ∼

Indeed, with u(x) = −e−θx (the constant does not matter) the above indi�erence says

e−θx + eθx/2 = 2, and this is solved by x ≈ 1/θ because e−1 + e1/2 ≈ 2.

6.5 Quadratic approximation

Locally, any function can be approximated by a quadratic function. A quadratic vNM function

would be

u(x) = x− ax2

with a > 0 assuming u′′ < 0. In this case since Var(ξ) = Eξ2 − (Eξ)2 we see that

Eu(ξ) = Eξ − aEξ2 = Eξ − a
[
Var(ξ) + (Eξ)2

]
which says that in this case expected utility depends only on mean and variance of the relevant

random variable. A quadratic function however is not monotone, so caution must be taken

to employ it. The �Mean-variance analysis� is based on such functions. For its study we refer

to more specialized courses on �nancial decisions.

7 Practice on decision trees: initial investments

We now study variations of a rather common problem �rms often face. The basic structure

is that the level of an investment must be chosen before its productivity is known - and even

if the investment turns out to be productive, further uncertainty comes from the state of the

market demand for the �rm's product. We frame the problem in terms of an R&D investment

by a pharmaceutical �rm to be concrete, but it should be clear that the structure is common

to a fairly large range of situations business �rms may �nd themselves in. We assume expected

value maximization (risk neutrality) to keep computations simple.

Version 1 A pharmaceutical �rm - you, to ease exposition - faces a decision concerning the

introduction of a new drug. The �rst step is to choose a level of R&D investment, say High

or Low (H or L). Under H there is probability p of successful development; in case of failure

- probability 1 − p - you lose 200 (payo� −200) and that's the end of the story. Under L

probability of success is p− δ and failure results in losing 100. In case of success (under either

H or L) you have to make another choice: market or not market the new product - M or

N . After H the situation is as follows: if you don't (i.e. choose N) you lose 200; if you do
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(choice M) you face an uncertain state of demand: either good, G, with probability s = 0.6

in which case you get 2000, or bad B in which case you lose 600. After L the numbers are:

if you choose N you lose 100, if you choose M you get 2100 in state G (same probability s)

and −500 in state B. The payo�s are consistent with interpreting investment as costing 200

or 100 if high or low. Show that you choose H if δ > 100/1160 ≡ δ1. I invite you to label

DH and DL the decision nodes after success if the initial decision was respectively H or L.

Version 2 Suppose now that if the investment is successful you can choose to buy a survey

on the state of demand at cost c before choosing on M,N . The outcome of the survey is

either g (the state looks good) or b (the state looks bad). Of course the test is not perfect,

its result carries some uncertainty: P (g | G) = 0.95 and P (g | B) = 0.2.

Now the decision after success changes: for example DH becomes say DH ′, where you can

either not buy the survey - choice NS - in which case the expected payo� of the continuation

remains the same as in Version 1; or buy the survey - choice S - in which case you �rst face the

uncertain outcome of the survey - probabilities P (g) and P (b) to be computed using Bayes

rule - and then in either case you then choose whether to market the product or not - choices

M or N as before. If you choose N you lose 200 + c; if you choose M you face uncertain

demand, but now of course the probability of good state is not s but p(G | g) or P (G | b)
according to the result of the survey (again computed via Bayes rule). The payo�s are as

before but with c subtracted, that is 2000− c and −600− c in good and bad states. The node

DL changes analogously to DL′, you should now be able to easily draw the corresponding

tree.

Show �rst that in both DH ′ and DL′ you choose to buy the survey if c < 67.2, and assume

in the sequel that this is the case. If for some reason you did not reach that result just assume

the choice is S both in DH ′ and DL′. Next show that in this case the initial investment

decision is H if δ > 100/(1227.2− c) ≡ δ2.

Observe that c < 67.2 implies that δ2 < 100/1160 = δ1. Thus if the cost of the survey

is low enough that it is optimal to buy it, the possibility of getting some information on the

state of demand expands the range of parameters for which it is optimal to choose the high

investment level H at the initial node.

Version 3 The basic structure is the same as in Version 1: �rst investment decision H or

L; then chance node success/failure, then M/N marketing choice if success, then chance node

G/B demand if M chosen. But we change the nature of the investments: the low investment

choice leads to a less ambitious project, with scaled down costs and revenues, but with higher

probability of success: p+ δ (it was p− δ in the previous versions).

We assume for simplicity p = s = 0.5. So at the last chance node demand is in good or

bad state with equal probabilities, and after the �rst H/L decision node the probability of
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success is 1/2 for H and 1/2 + δ for H (with 0 < δ < 1/2).

Under initial choice H we assume loss of 50 if failure and if N chosen at the marketing

choice node; and for demand we assume you get 1000 in good state and −900 in bad state

(with s = 1/2 this has expected value of 50). Under initial choice L all payo�s are divided by

10 (so they become −5, 100 and −90). It is then easy to conclude that L is chosen at the initial

node now. Again let's denote by DH and DL the marketing decision nodes corresponding to

successful H and L.

Now we again introduce the possibility of buying a demand survey at cost c if investment

is successful, giving as before g or b answer. Of course, given that revenues under L are much

smaller than under H it may be the case that it is worth taking the survey only under the

larger project. We shall con�rm that there is a range of c's for which this is actually the case.

We assume P (g | G) = 0.9 and P (g | B) = 0.2. Again the marketing nodes become DH ′ and

DL′ to include the survey choice S/NS . And again you have to update probabilities using

Bayes rule.

Show that at the DH ′ node you choose S if c ≤ 289.4 while at DL′ you choose S if

c ≤ 28.94. Assume that 28.94 < c < 289.4 - so that you choose S only under H. If you did

not �nd the above bounds on c, just assume you choose S only under H.

Then show that for 28.94 < c < 279.4 you choose H at the initial node for all 0 < δ < 1/2.

Now the bigger scale works in favor of the high investment even if the success probability is

smaller than in the low investment case. The survey's cost becomes small relative to the scale

of the larger project, and with the results on hand you enter the market only if the (updated)

probability of good state is high.
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Appendix 1: proof of the EU theorem

The splitting step in the proof We can write P as a mixture as follows:

P =

p1

p2

pn

x1

x2

xn

=

p1

1− p1

x1

C

with C =

x2

x3

xn

p2/(1− p1)

p3/(1− p1)

pn/(1− p1)

You can easily check that the equality (the second, in green) is true. In the proof a

splitting like this is applied repeatedly.

The proof on [m,M ] The result of the procedure - for distributions with values in the

interval [m,M ] - is the following, where we use consistency and the de�nition of u at each

step:

P =

p1

pi

pn

x1

xi

xn

∼

p1

pn

x1

xn

M

m

u(xi)

∼

pn

M

m

u(xi)

M

m

u(x1)

M

m

u(xn)

pi pi

p1

But the latter is the two-outcome distribution

M

m

∑
i u(xi)pi = Eu(P )

1− Eu(P )

so for any P we have P ∼ MEu(P )m. By transitivity we get P ≽ Q i� MEu(P )m ≽ MEu(Q)m;

and then from monotonicity we deduce P ≽ Q ⇐⇒ Eu(P ) ≥ Eu(Q).

Extension and uniqueness Extension from [m,M ] to R. Call m0,M0 the starting pair

above and u0 the vNM utility obtained on [m0,M0], with u0(m0) = 0, u0(M0) = 1. We

repeat the process for a sequence of pairs mn,Mn with mn → −∞ and Mn → ∞, each time
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selecting un on [mn,Mn] such that un(m0) = 0, un(M0) = 1. The lemma below implies that

un+1 = un on [mn,Mn], for each n. Therefore the un's are extensions of each other, and since

∪n[mn,Mn] = R the procedure gives a vNM utility u on R, with u(m0) = 0, u(M0) = 1. The

same lemma establishes that any other vNM utility u∗ for ≽ must be an increasing linear

transformation of u, that is of the form u∗ = τ + σu with τ ∈ R and σ > 0.

Lemma. (i) Let u be a vNM utility for ≽ on a domain A ⊆ R which includes the interval

[m,M ]. Then u(x) is uniquely determined by the two values u(m) and u(M), for each x ∈ A.

(ii) Suppose u(m) = 0, u(M) = 1; then there are τ ∈ R and σ > 0 such that any other vNM

u∗ is of the form u∗ = τ + σu.

Proof. (i) For x ∈ [m,M ] let p solve x ∼ Mpm; then u(x) = pu(M) + (1 − p)u(m).

For x > M let q solve M ∼ xqm; then u(M) = qu(x) + (1 − q)u(m) so that u(x) =

[u(M)− (1− q)u(m)] /q; for x < m let r solve m ∼ Mrx; then u(m) = ru(M) + (1− r)u(x)

so that u(x) = [u(m)− ru(M)] /(1− r).

(ii) Suppose u∗(m) = τ, u∗(M) = τ + σ. On [m,M ] we know that u is de�ned by

x ∼ Mu(x)m, so u∗(x) = u(x)∗ (τ +σ)+(1−u(x))∗τ = τ +σu(x). Next, part (i) implies that

for x > M , with q solving M ∼ xqm we have u(x) = 1/q and u∗(x) = [τ + σ − (1− q)τ ] /q =

[qτ + σ] /q = τ + σu(x); and that for x < m we have u(x) = −r/(1 − r) and u∗(x) =

[τ − r(τ + σ)] /(1− r) = τ + σu(x) again.

Appendix 2: Straight Lines

The equation for a line through (x0, y0) is

r(x) = y0 +m(x− x0) (1)

where m is the slope of r. Note that

r(x+ h)− r(x) = [y0 +m(x+ h− x0)]− [y0 +m(x− x0)] = mh (2)

In other words, if ∆x = h then ∆r = mh. In particular, for any h we get

m =
r(x+ h)− r(x)

h
. (3)

The other point to note is that for any x1, x2 and 0 ≤ p ≤ 1 we have

r(px1 + (1− p)x2) = pr(x1) + (1− p)r(x2). (4)

To see this just write y0 = py0 + (1− p)y0 and x0 = px0 + (1− p)x0.

Now consider the line through (x0, f(x0)) and (x1, f(x1)) as in the �gure below.
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x

y

f (x)

r(x)

x0 x1

y0 = f (x0)

y1 = f (x1)

From (3) we see that the slope is

m =
y1 − y0
x1 − x0

=
f(x1)− f(x0)

x1 − x0

so from (1) we have

r(x) = f(x0) +
f(x1)− f(x0)

x1 − x0
(x− x0).

If z is between x0 and x1, say z = px0 + (1− p)x1 with 0 ≤ p ≤ 1 (please check that with

these values for p we actually have x0 ≤ z ≤ x1) then from 4

r(px0 + (1− p)x1) = pr(x0) + (1− p)r(x1)

= pf(x0) + (1− p)f(x1).
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