MEASURING DOWNSIDE RISK AVERSION
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ABSTRACT. We provide comparative global conditions for downside risk aver-
sion, which are similar to the ones studied by Ross for risk aversion. We define
a coefficient of downside risk aversion, and study its local properties.
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1. INTRODUCTION

Identified by Menezes, Geiss and Tressler [10], an increase in downside risk is
defined as a mean—variance preserving transformation —a mean—preserving spread
plus a mean—preserving contraction— which shifts dispersion from the right to the
left of a distribution (this is to be precise an ‘elementary’ change, a general one
being given by a sequence of such transormations). To visualize we recall their
introductory example: on the set {0,1,2,3} consider the two lotteries given by the
probability vectors p = (0,3/4,0,1/4) and p' = (1/4,0,3/4,0); they have same
mean and variance, and most people report preference for the former. In fact
p' =p+s+cwheres=(1/4,-1/2,1/4,0) is a spread and ¢ = (0,—1/4,1/2,-1/4)
is a contraction occurring on the right of the spread; thus p' is obtained from p by
shifting dispersion from right to left, and the change from p to p' is the prototype
increase in downside risk.

It is proved in [10] that all the functions with convex derivative dislike a prob-
ability change if and only if it is an increase in dowside risk; and accordingly, u
is defined to be downside risk averse if it has convex derivative (if smooth: posi-
tive third derivative). On the other hand there is in the literature no measure of
downside risk aversion, resulting either from an analysis paralleling the classical
Arrow—Pratt development which lead to the risk aversion coefficient r, = —u" /v’
(cfr. Pratt [11]), or following the subsequent approach by Ross (ref. [13]), which
resulted in a ‘stronger measure’ of risk aversion. We show in this note that the
latter (global) approach generalizes to the case of downside risk, while the former
does not (section 2). However the analogue of r,, namely "' /u' = d,, has some
natural, and interesting, local properties, which we report in section 3. In sec-
tion 4 we briefly spell out the connection between d,, and the concept of local risk
vulnerability defined by Gollier-Pratt [2]. *
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I\We mention that two measures appear in the literature related to the third derivative of the
utility function, but both apply to specific two—period problems. One is Prudence, introduced
by Kimball [7] as —u'” /u"’; he shows that prudence is a measure of the strength of an investor’s
motives to make precautionary savings in the standard two—period consumption—savings decision
under uncertainty. On this see also Menegatti [9]. The other is Cautiousness: Huang [5, 6] defines
it as v/ - u'/(u'")? and uses it to analyse option buyers and sellers in a two-period equilibrium
model, contrasting his conclusions with those of Leland [8].
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2. COMPARATIVE DOWNSIDE RISK AVERSION

We provide here a comparative criterion for downside risk in the spirit of Ross
[13]. The proposition which follows is the analogue of his main theorem for the case
of downside risk aversion, with third instead of second derivatives and 3-convex
instead of 2-convex order between random variables. For random variables X,Y
say that Y has more downside risk than X if all functions with convex derivative
prefer X to Y; from [10], equivalently Y is obtained from X via a sequence of mean
variance preserving transformations. In the following proposition we take smooth
functions defined on R. 2

Proposition 1. For u,v increasing functions with convex derivative the following
three conditions are equivalent:

(i) IXA > 0 Vz,y %%2)\234(%

(i) 3¢: R —» R with ¢' <0,¢" >0 and A > 0 such that u= v+ ¢
(i3) If Y has more downside risk than X, Eu(Y) = Eu(X —7y) and Ev(Y) =
Ev(X —my), then my, > my.

Proof. That (i) implies (ii) is evident: defining ¢ = u — v and differentiating one
obtains ¢' = «' — Av' and ¢ = v — A", both non-positive given the signs of the
derivatives of u and v.

(ii) = (iii) is as in Ross, noting that E¢(Y) < E¢(X) < E¢(X — my,) (first
inequality from ¢"' > 0, second from ¢' < 0). To spell it out:

Eu(X — my) =Eu(Y) = AEu(Y) + E¢(Y)
< AEv(Y) + E¢(X) = AEv(X — mp) + Ed(X)
SAEu(X —my) + EH(X — 7)) = Bu(X — 7).

We turn to (iii) = (i). X,Y will be finite lotteries, and to facilitate comparison
we describe their distributions on the union of their supports, which is, with z,y €
R, v = z+3eand € > 0, the set {x —¢€,z, x+€,v—¢€,v,v+¢€,y}; the probabilities are,
for X and Y respectively, (0,p/2,0,p/4,0,p/4,1—p) and (p/4,0,p/4,0,p/2,0,1—p),
with p € (0,1). So Y is obtained from X via a mean preserving spread plus
a contraction on its right, offsetting the change in variance; it can be checked
directly that the change from X to Y is a mean—variance preserving transformation
according to the definition of Menezes, Geiss and Tressler [10]; hence, according to
their result, Y has more downside risk than X.

By differentiating the equality Eu(Y') = Eu(X —m,) with respect to € one easily
finds, with 7, = m,(€): 7,(0) = 7/(0) =0, and

u
W) = PO
pu'(z) + (1 - p)u'(y)
Given this, the conclusion is again as in Ross. Indeed given this, from 7, > 7, it
follows that for any choice of z,y, p it must be
pue) o p"(a)
pu'(z) + (1 —p)u'(y) — pv'(z) + (1 —p)v'(y)

)

that is

2A word of caution on the fact that we take functions defined on all of R: the remarks of Pratt
[12] on Ross obviously apply to the present setting too. For example, if v and v have constant
risk aversions a > b > 0, it is easily checked that condition (i) in the proposition which follows
cannot be satisfied for all z,y, for it requires z — y < [2In(a/b)]/(a — b).
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which is true for all z,y, p iff for all z,y it is

u"(z) _ u'(y)
v"(z) T v'(y)’
which implies (i). O

This result suggests analyzing the global properties of what seems the most
natural candidate for an analogue of the Arrow—Pratt coefficient r,, namely the
‘downside risk aversion coefficient’ defined as

u///(x)

Does this measure have the analogue of the global property which the Arrow-
Pratt coefficient r,, has (namely, that for u,v vonNeumann-Morgenstern utilities,
ry > 1y if and only if u = k(v) with k increasing concave)? The answer to this
is no: neither of the transformations k¥ and h defined respectively by u = k(v)
and v’ = h(v") behave as one would hope. As for k, the relation v = k(v) with
k increasing concave with positive third derivative, which is the natural candidate
for an equivalence with d,, > d,, is in fact stronger than it. Precisely, one can show
that k is increasing concave with positive third derivative iff r,, > r, and

dy — dy > 3ry(ry — 14)-

Looking at the transformation w' = h(v') one finds that d,, > d, is stronger than
ry > Ty and weaker than p, > p,, where p, is the prudence coefficient defined by
Kimball [7] as p, = —u"'/u". But again, the global properties of h equivalent to
d, > d, are untidy; we shall not present the details.

However, the coefficient d,, does have some interesting local properties, which
we find worth reporting.

3. LOCAL ANALYSIS: d,, AND DOWNSIDE RISK PREMIUM

We relate d,, to a downside risk premium, paralleling the result connecting the
Arrow—Pratt coefficient of risk aversion to the classical risk premium. Notation: a
lottery wich takes values z1,...,z, with respective probabilities p1,...,p, will be
written as (p1,21; P2, 2;- - -} Pn, Tn)-

3-convex stochastic order. Consider the class of the random variables X (in-
terpreted as portfolios) with support contained in an interval [—a,a] with mean
zero and second moment fixed at po (< a2?). On this set consider the 3-convex
order %= defined via preference by all downside risk averse u’s, that is X »= Y if
Eu(X) > Eu(Y") for all u with convex derivative. By Denuit, De Vylder and Leféevre
[1] Proposition 4.1, there are =—best and =—worst elements in the given set, call
them X, X, (dependence on a and s suppressed). Precisely,

= (e _pa. _po —(_p2 g4 _d® p2) 3
XM— (a2+p2’_a’a2+u2’a ’ Xm_ a2+u2’_a’ a®Fuz’ a )

Since Xj; and X, are the lotteries with least and most downside risk, the
downside risk aversion of u should be reflected in the strength of preference of Xy
over X,,. To obtain such a link we construct a downside risk premium as follows:
take a downside risk averse u, and define 7, (w, a, u2) as the premium which makes

3In [1] an equivalent definition of »> in terms of finite differences is given. Incidentally, no-
tice that given fixed first and second moments, the order is equivalently defined by the class of
increasing concave downside risk averse u’s.
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Xy —m and X, + 7 indifferent at income level w, i.e. as the number 7 solving the
equation
Eu(w + Xp — ) = Eu(w + X, + 7). (2)

The following relation between 7, and d, then holds:

Proposition 2. Fiz income w and sufficiently small a. Then dy(w) > d,(w) iff
Wu(w,a,/j,g) > //T’v(w:aal‘@) fOT' all po < a’.

Proof. LettingY = Xpr = — X, equation (2) reads Eu(w+Y —7) = Eu(w+7-Y);
expand this around w up to third order to find d,, (w) = 67/E(Y —m)3. By Menezes—
Geiss—Tressler [10], Theorem 2 and Proposition 2, EY'® > 0; so E(Y — 7)3/n =
EY3/m — 3us — 7 decreases with 7, and the proposition follows. O

Betting interpretation. Consider the following two fair bets on a 0-1 valued
coin which falls 1 with probability 8 (and 0 with probability 1 —8). The first, which
we call B, for ‘buying’, is betting 6 on the coin falling 1, that is, winning (net)
1 — 6 with probability 8 and losing 6 with probability 1 — ; in lottery notation,
B =(0,1-0;1—0,—0). The second is S = —B, ‘selling’, where one bets 1 — 6
on0: S =(6,—-(1-6);1-6,0). For 6 small B involves losing little with high
probability, S losing much with low probability; for large 6 the roles are reversed.
Now suppose 8 is small: do you prefer B or S?

It turns out that neither of B, S 1st— or 2nd—order stochastically dominates the
other, and B 3rd-order dominates S iff § < 1/2, the opposite occuring for § > 1/2.
So (Menezes—Geiss—Tressler [10] Proposition 3) all downside risk averse individuals
would prefer B (resp. S) for § < 1/2 (resp. > 1/2); that is, they would always
prefer to put down, and stand to lose, the minimum between 6 and 1 — 6.

Taking 6 < 1/2 to fix ideas, it is again natural to say that the downside risk
effect is more marked the stronger the preference for B over S. To make this
precise consider, at fixed § < 1/2, betting on 1 the amount p > 6, i.e. the lottery
B(0,p) :== (0,1 — p;1 — 0, —p); the larger p, the worse this becomes; and the better
becomes S(0,p) = —B(6, p). By downside risk aversion B(f) = B(0, ) is preferred
to S(0) = S(0,0); this preference is stronger the higher the price p(8) = 8 + 7 ()
which makes B(6,p) indifferent to S(8,p); so the premium w(f) appears to be
the appropriate downside risk premium in this context. Notice incidentally that
B(6,0 + ) = B(f) —m, and S(0,6 + w) = S(8) + w. The proposition which follows
shows that modulo rescaling, the () just defined is the same as the m, defined
previously via the 3—conxex order. *

Lemma. Xy (a,p2) = aB(0) and X,,(a,u2) = aS(@), with (a,us) and (a,0) in
the one-to—one correspondence (for 8 <1/2) given by

a=a+psfa, 0=pz/(a®+ ps).

Proof. Just check that supports and probabilities are the same for the lotteries
claimed to be equal. Notice § < 1/2 (since pa < a?). O

Defining 7, (w, ,0) as the 7 such that w + aB(#) — 7 is u—indifferent to w +
aS(0) + 7, we then have the following direct consequence of the lemma and the
previous proposition:

Proposition 3. Fiz income w and a sufficiently small. Then 7y (w,a,8) is higher
for all 6 < 1/2 iff my(w, a, p2) is higher for all pa < a® (in u—space).

4The case § > 1/2 is in all symmetric. In fact B(1 — 8,p) = S(6,1 — p) and S(1 — 8,p) =
B(0,1—p); so also, via the indifference B(8,p(6)) ~ S(8,p(0)), p(1—8) = 1—p(8), and therefore
w(1 —8) = —m(#). Hence the right half-interval is a copy of the left one, and we will restrict
attention to the latter in the text.
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Links to Literature. Hanson and Menezes [3] characterize the sign of the third
derivative of u through preference between pairs of two—point lotteries in a family,
namely of Xi(h) = (.25,2h;.75,0) over Xo(h) = (.75, h; .25, —h). We characterize
its size using the family aB(4), aS(6).

A pair of two-point lotteries was used by John Hicks ([4], p.118) to point out
the relevance of skewness (i.e. as we now know of third derivatives), namely: X; =
(.9,4;.1,14), X5 = (.9,6; .1, —4); this is an (aB(6),aS(0)) pair. Reference to Hicks’
work is in footnote 5 of Hanson—-Menezes [3].

4. THE COEFFICIENT d, AND LOCAL RISK VULNERABILITY

We conclude by observing that decreasing d,, is equivalent to the concept of local
risk vulnerability introduced by Gollier-Pratt in [2]. Recall that risk vulnerability
means that any unfair background risk increases risk aversion; the local version
refers to sufficiently small risks (at each income level). Gollier—Pratt [2] show that
local risk vulnerability is equivalent to 2rr' —r” < 0 and ' < 0. Since d = 72 — 7/,
this is the same as d’ < 0 and ' < 0; now by elementary analysis one can show
that under positive and bounded risk aversion d' < 0 implies ' < 0. So we have:

Proposition 4. Assume r,(z) > 0 and bounded as x — co. Then decreasing d,, is
equivalent to local risk vulnerability.
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