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Abstract: A joint derivation of utility and value for two-person zero-sum games is obtained using 
a decision theoretic approach. Acts map states to consequences. The latter are lotteries over prizes, 
and the set of states is a product of two finite sets (m rows and n columns). Preferences over acts 
are complete, transitive, continuous, monotonic and certainty-independent (Gilboa and Schmeidler 
(1989)), and satisfy a new axiom which we introduce. These axioms are shown to characterize 
preferences such that (i) the induced preferences on consequences are represented by avon Neumann- 
Morgenstern utility function, and (ii) each act is ranked according to the maxmin value of the 
corresponding m x n utility matrix (viewed as a two-person zero-sum game). An alternative statement 
of the result deals simultaneously with all finite two-person zero-sum games in the framework of 
conditional acts and preferences. 

1 Introduction 

In their "Theory  of  Games  and Economic  Behavior" ,  von N e u m a n n  and Morgens tern  

(1944) present  the theory of  two-person zero-sum games  as an extens ion of  the ax- 
iomat ic  theory of  decis ion under  risk, which f rom their point  of  v iew is a theory o f  
rational behav ior  in one-person games.  

Al though  von  Neumann  and Morgens tern  (1944) do not define preferences  on 

games,  they ' sugges t '  a ranking of  two-person zero-sum games  by their (maxmin)  
value  by asserting (in sect ion 17.8) that the ' good '  way of  p laying such games  is to 

choose,  f rom among  the al ternative feasible strategies, the ones which ensure for each 
game  the at tainment o f  its value. However ,  as already noted by M c C l e n n e n  (1976), 
val idi ty  of  this assert ion is not  impl ied  by the von  Neumann-Morgens te rn  axioms.  
Thus there is a gap be tween  the axioms character izing expected  utility maximiza t ion  
in individual  decis ion under  risk and the presumpt ion  that expected  utility maximizers  
evaluate  two-person  zero-sum games  by their  value. 

The  purpose o f  this paper is to fill this gap by means  o f  a unified decis ion theo- 
retic analysis result ing in a s imultaneous derivat ion o f  utility and value. 

We are indebted to Jacques Dr~ze, Andreu Mas-Colell, Roger Myerson and Reinhard Selten for 
helpful comments. 
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Ellsberg (1956) and Aumann and Maschler (1972) also criticize the completeness 
of the von Neumann-Morgenstern argument justifying the use of  maxmin strategies, 
but they do not discuss the relation - or lack of it - between utility theory and be- 
havior in two-person games. Roth (1982) refers to the above mentioned gap, but his 
work is more in the direction of  Vilkas (1963) and Tijs (1981) who characterize the 
'value' as a functional on matrices. 

The basic decision model we use is Anscombe and Aumann's  (1963) simplified 
version of Savage's (1954) model, consisting of  a set of acts and a preference rela- 
tion ~> over it, where acts are mappings from a space S of  states into a space C of  
consequences, and the latter are 'roulette lotteries', i.e. probability distributions with 
finite supports over a fixed set of  outcomes. A state is interpreted here as a state of  
the world and not as a state of  nature. The distinction was first introduced by Mertens 
and Zamir (1985): a state of  nature is chosen by a neutral nature according to some 
(additive) probability distribution which may be unknown to the decision-maker(s), 
and nature is thought of  as beyond the decision maker(s)' control. The worm may 
include in addition to neutral nature several decision makers each having his own 
goal, and a state of the world is a consequence of a joint selection by all the world, 
so that in this case occurrence of  events may be partially under the control of the 
decision maker(s). Moral hazard is an example of such a situation, special in that, in 
addition to nature, only the single decision maker under study has influence on events. 
In the general case different decision makers, possibly with conflicting interests, may 
partially influence events. 

In the next section, after describing the model, we posit a set of  basic axioms 
of (individual) choice, borrowed from Gilboa and Schmeidler (1989). These axioms 
imply in particular (i) (Lemma 2.6 below) existence of  a v o n  Neumann-Morgenstern 
utility u : C ---+ IR on consequences, and (ii) (Lemma 2.7) existence of a real val- 
ued mapping I : ~ s  ___+ 1R such that for any acts f, g : S ---+ C one has f ~> g iff 
I(u o f )  >_ I(u o g). 

Then (section 3) we make the structural assumption that S is a product space, 
S = S 1 x S 2, and also assume that it is finite, so that an a c t f  can be viewed as a game 
form with outcomes f ( s  1, sZ), S 1 and S 2 being interpreted as (pure) strategy sets and 
the decision maker being identified with player 1 (the row player). In this case, the 
set {(u of ) ( s  1, s 2) I ( sl, s2) E S} is an #S 1 by #S 2 real matrix, and a c t f  corresponds to 
the matrix game with payoffs u(f(s l, s2)), for (s 1, s 2) E S ~ • S 2. Within this structure 
we present an axiom which, as we show, together with the basic axioms of  section 2 
characterizes preferences ranking game forms (with fixed S) by the value of the cor- 
responding two-person zero-sum games. Formally the result is that the map I above, 
now defined on the space of  #S 1 by #S 2 real matrices, is the 'value' map assigning 
to each such matrix its maxmin value. Notice however that justifying evaluation of 
games by value does not automatically imply rationalization of  maxmin strategies. 

In section 4 we recast the model with the purpose of simultaneously considering 
all finite two-person zero-sum games, i.e. S is no longer fixed. We consider all finite 
rectangular subsets S = S 1 • S 2 of a 'universal' state space, and define conditional acts 
as pairs (f, S) where f is the map as before and S its domain. We do not assume that 
all pairs of acts (f, S), (g, T) are comparable (i.e. we do not assume completeness), 
and show that the basic axioms of  section 2 for each S separately plus the appro- 
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pilate version of the axiom of section 3 characterize, as before, preference relations 
represented by the 'value' function, defined in this case on the set of  all finite real 
matrices. 

A few words on terminology. The term neobayesian was used by Savage to de- 
scribe his and related work which based statistical inference on subjective or personal 
probability. The neo 2 (i.e. neoneo) term is used here to denote the last decade's de- 
parture from Savage's sure thing principle and from the independence axiom of von 
Neumann-Morgenstem utility theory. (We imitate here Stanley Reiter's "New 2 Wel- 
fare Economics"). The term act dependent subjective probability describes many neo 2 
bayesian axiomatizations including non-additive and non-unique priors (surveyed by 
Karni and Schmeidler (1991)) as well as the present paper. This terminology is con- 
sistent with the term bayesian used in game theory where the primitive is existence of 
prior probability as opposed to the primitive being preferences on acts in neobayesian 
theory, 

2 Decision Theoretic Framework 

Let X be a non-empty set and let A(X) be the set of  probability distributions over X 
with finite supports 

A(X) ={y : X  ---+ [0, 1] ly(x) :~ 0 for only finitely many 

x's in X and ~ y(x) = 1 }. 
xEX 

For notational simplicity we identify X with the subset {y E A(x) l y(x) = 1 for some 
x in X} of  A(X). 

Let S be a finite non-empty set, and denote by L = A(X) s the set of all functions 
from S to A(X) and by Lc the constant functions in L. Note that A(X) can be viewed 
as a subset of a linear space, so A(X) s = L can also be considered a subset of  a 
linear space. It should be stressed that convex combinations in A(X) s are performed 
pointwise, i.e. f o r f  and g in A(X) s and a in [0,1], h = a f  + (1 - a)g when 
h(s) = of(s)  + (1 - a)g(s), for all s E S. 

In the neobayesian nomenclature elements of  X are (deterministic) outcomes, 
elements of  A(X) are random outcomes or consequences and elements of  L are acts. 
Elements of S are states (of the world) and subsets of  S are events. 

The primitive of  a neobayesian decision model is a binary (preference) relation 
on L to be denoted by ~>. On >~ we shall impose the following axioms. 

2.1 Weak Order 

(i) Completeness. For all f and g in L : f  ~> g or g ~> f .  
(ii) Transitivity. For all f, g and h in L: I f f  ~> g and g ~> h t h e n f  ~> h. 
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As usual, > and -~ denote the asymmetric and symmetric parts, respectively, of 
~>. The relation >~ on L induces a relation on A(X) also denoted by ~>: y ~> z iff 
y* >~ z* where x*(s) = x for all x E A(X) and s C S. When no confusion is likely to 
arise, we shall not distinguish between y* and y. 

2.2 Certainty-Independence 

(C-independence for short). For all f, g in L and h in Lc and for all c~ in ]0, l [ : f  > g 
iff c~f + (1 - c0h > ctg + (1 - c0h. 

2.3 Continuity 

For all f, g and h in L: i f f  > g and g > h then there are c~ and/3  in ]0, 1[ such that 

c~f + (1 - ~)h > g and g > / 3 f  + (1 - / 3 )h .  

2.4 Monotonicity 

For a l l f  and g in L: i f f ( s )  ~> g(s) for all s E S t h e n f  ~> g. 

2.5 Non-Degeneracy 

Not for all f and g in L , f  >~ g. 

All these assumptions except C-independence, introduced and discussed in 
Gilboa-Schmeidler  (1989) (but see also Dr~ze (1987) who in effect used it in a 
slightly different context), are common and essentially define the setup. We have 
included non-degeneracy for ease of  exposition. C-independence is a (quite) weak 
version of the standard independence axiom which allows h to be any act in L rather 
than restricting it to be a constant act in Lc. 

We shall now state some implications of the above assumptions which will be 
useful in the presentation of the main result as well as in its proof. 

2.6 Lemma 

Assumptions 2.1, 2.2 and 2.3 imply that there exists an affine u " A(X) --+ IR such 
that for all y, z E A ( X )  : y ~ z iff u(y) >-- u(z). Furthermore, u is unique up to positive 
linear transformations. 

This is (an immediate consequence of) the von Neumann-Morgenstern theorem, 
since the independence assumption for Lc is implied by C-independence. 

We shall henceforth choose a specific u : A(X) -~ N.  We denote by B the space 
of all real valued functions on S, i.e. B = IR s. For "/C IR, "7* ~ B denotes the constant 
function on S the value of  which is % 
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2.7 Lemma 

Under assumptions 2.1, 2.2, 2.3, 2.4 and 2.5, there exists a function I : B ~ lR such 
that: 

(i) For a l l f  g E L , f  ~> g iff l(u o f )  ~ l(u o g). 
(ii) For all "7 E IR, 1(7") = 7. 
(iii) I is monotonic (i.e. for a, b c B : a >- b ,=~ I(a) >- l(b)). 

This follows easily from Gilboa-Schmeidler  (1989), section 3. 

3 Game Theoretical Setting 

In section 2 the state space S was arbitrary. We now introduce the structural assumption 
that S is a product space: 

S = S 1 x S 2. (3.1) 

For any state of the world s = (s  1, S 2) E S, s I C S 1 will be the component influenced 

- in fact determined - by the decision maker, and s 2 E S 2 the component beyond his 
control. 

Notice that under assumption 3.1, act f E L may be viewed as an #S 1 by #S e 

rectangular array of  outcomes (consequences) f ( s  1, se), (s 1, s 2) E S, and u o f  E B as an 
#S 1 by #S 2 real matrix. 

We are going to characterize the decision maker who perceives act f as a game 
form and u o f as a two-person zero-sum game in which he is player 1 (the row 
player), and evaluates this game according to its maxmin value. In other words, we 
will characterize preferences on L whose representing map I (of Lemma 2.7) is the 
'value function' V : B --+ I1 defined as 

V(b) = max min ~ p(sl)b(sl, s2)q(s2), 
pEA(s  1) qEz2~(S 2) (sl,s2)cS 

(3.1.1) 

where b E B and A ' s  are simplexes. For this purpose, we shall need the axioms of  
section 2 plus the following: 

3.2 

(i) 

Strategic Uncertainty Aversion/Appeal (SUAA for short) 

For all r 2, t 2 C S 2, c~ E [0, 1],f  E L: 
if  g E L is defined by 

f f ( s  1, s 2) if  s 2 r r e, t 2 
g(sl' $2) = [ o~f(s 1, re) + (1 -- cOf(s l, t 2) if S 2 = re,  t 2, 

then g ~> f .  
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(ii) For all r I, t 1 E S 1, og E [0~ 1],f  ~ L: 
if g C L is defined by 

( f ( s  1, s 2) 
g(sl '  s2) = ]. o~f(r 1, s 2) + (1 - oz)f(t l, S 2) 

if S 1 :~ r 1, t 1 

if s I = r 1, t 1, 

then f ~> g. 

This axiom says that the decision-maker (row player) is (i) indifferent or better off 
if any two columns are both substituted with their (arbitrary) weighted average, and 
(ii) indifferent or worse off if any two rows are both substituted with their weighted 
average. 

Axiom 3.2 is the only axiom that links, in this context, the decision theoretic 
model with two-person zero-sum games. It will imply (together with the axioms of  
section 2) that the decision maker behaves 'as if '  he were playing two-person zero- 
sum games against an opponent (Theorem 3.3 below). It is implicit in the result that 
the decision maker believes that such an opponent exists, but such existence is not 
dealt with explicitly in the model. 

In order to elucidate the decision theoretic origin of  axiom 3.2 and give the 
intuition which leads to it, we shall briefly recall the concepts of  uncertainty aversion 
and uncertainty appeal introduced in Schmeidler (1984, 1989) (also Drbze (1961, 1987 
ch.3) effectively introduced the latter concept, in a slightly different context). In the 
notation of section 2, the axiom of uncertainty aversion (resp. appeal) says that f ~> g 
implies c~f + (1 - c~)g >~ g (resp. f ~> c~f + (1 - cog). In Gilboa and Schmeidler (1989) 
it is shown that preferences satisfying uncertainty aversion together with the axioms 
of  section 2 are represented by functionals of  the f o r m f  ~-~ minqcQ ~s  u([(s))q(s), for 
some closed convex set Q c A(S). So the uncertainty averse decision maker behaves 
'as if' there were an opponent who could partially influence occurrence of states to 
his disadvantage (i.e., think of  the opponent as choosing q E Q). Thus to equivalent 
acts f and g he prefers the mixture c~f + (1 - cog where dependence of  outcomes 
on states is 'averaged out' ,  for this makes the opponent's control less effective. Now 
the most extreme form of uncertainty aversion obtains when Q = A(S) in the above 
representation, in which case the opponent has complete control on states. And the 
corresponding form of the axiom needed for this case is: g ~> f whenever g is obtained 
from f by 

[ f ( s )  if s r I; t 
g(s) = [ a f ( r )  + (l  _ a) f ( t )  i f s = r , t  

for some t; t E S. 
This last axiom has the same structure as 3.2(i), except that the latter is formulated 

within the framework of product space S 1 x S 2 and mixing is restricted to columns 
only - reflecting the fact that player 2 (completely) controls S 2. 

The heuristics of  3.2(ii) is analogous, starting from the axiom of uncertainty 
appeal and the representation f ~-+ maxp~e~sp(s )u ( f ( s ) ) ,  with P C A(S) closed 
convex. 
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Axiom 3.2 results from the conjunction of  these extreme forms of  uncertainty 
aversion with respect to S 2 and uncertainty appeal with respect to S 1 . 

The result of  this section can now be stated: 

3.3 Theorem 

Let a binary relation >~ on L be given and S satisfy the structural assumption 3.1. 
Then the following two statements are equivalent. 

(i) The binary relation >~ satisfies transitivity and completeness 2.1, certainty- 
independence 2.2, continuity 2.3, monotonicity 2.4, nondegeneracy 2.5, and SUAA 
3.2. 

(ii) There exists an affine, non-constant function u : A(X) --+ IR, unique up to positive 
linear transformations, such that the funct ional f  ~-+ V(u o f )  represents >~ on L 
(i.e. f >~ g iff V(u of )  >_ V(u o g)), where V is the maxmin value function defined 
in 3.1.1. 

To prove the theorem, we need a lemma which follows by induction from the SUAA 
axiom 3.2. 

3.4 Lemma 

Given f E L and p C A(S  1) (respectively q E A(S2)) define g E L : g(s 1, s 2) = 
~ 1  E s~p(3l)f(31, s2), (respectively g(s t, s 2) = ~ 2  c s2 q(32)f(sl, 32)), for all (s 1, s 2) E S. 
Then f >~ g (respectively g ~> f) .  

Proof." Let m = #S 1 and denote the elements of S 1 as Sl, S2,t .... Sml where p(sl) > O. 
Definef2ELby:f2(sl, s2)= 1 2 f2(s 2, s ) = Lo(sl f(sl, s2)+p(sl)f(s 1, s2)]/(p(sl)+p(sl)) and 
f2(s~, s 2) = f(s~, s 2) if k 4: 1, 2. We proceed by induction. Suppose that j~, for 2 -< j -< 

m, has been defined. Now define J~+l E L as follows: j~+l(s I, s 2) = fj+l(s)+ 1, s2) = 

l P(S])~(s)+ 1, s2) and 3~+ 1(@ s 2) = [~{=1P(S])/~Ji+11P(Sl)]Jej(SI, S 2) 4- [p(S)+ l ) / 2 { :  1 
fj(s~,s 2) i f k  r 1,j + 1. By axiom 3.2(ii), f ~>f2 andj~ ~>J~+l for 2 -<j  < m. Hence, 

f ~> f , .  Note also that for j as above, f~(s)+ 1, s2) = f(s)+ 1, s2) �9 So by our definition 

f,n(sl, s 2) = ~7'=lp(s])f(s],s 2) for all s 2 E S 2, i.e. the first row of fro coincides with 
the rows of  g, which are all identical. 

We now apply consecutively the special case of  axiom 3.2.(ii) with a = I. 
Specifically, we replace all rows of fm with its first row, thus obtaining act g and 
fm ~ g. By transitivity, f >~ g. The proof for S 2 is analogous and omitted. [] 

Proof of  Theorem 3.3: The direction (i) ~ (ii): Lemma 2.6 guarantees the existence 
of the required utility u : A(X) ~ N.  By Lemma 2.7 it suffices to prove that for 
all f E L : I(u o f )  = V(u o f ) .  Let q E B(S 2) be a minmax strategy o f  player 2 
in the game u o f .  Define g ~ L as follows: g(s 1, s 2) = ~2Es2 q(sZ)f(sl, ~2), for all 
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(S 1, S 2) E S, thus g has constant rows, i.e. identical columns. By Lemma 3.4, g ~>f so 
by Lemma 2.7(i) I(u o g) >_ I(u of). From the von Neumann (1928) minmax theorem 
(uog)(s 1, S 2) --< V(uof)  for all (s 1, s2)ES. By Lemma 2.7(ii) and (iii), I(uog) <- V(uof). 
Hence I(u of)  <_ V(u of). 

To prove the other inequality, I(uof) >_ V(uof), l e tpEA(S  1) be a maxmin strategy 
of player 1 in the same game u o f .  This time define g(s 1, S 2) = ~'~ ~S l p(~l)f(~t ,  S 2) 

for all (s I, s 2) C S and apply Lemma 3.4. The same arguments as previously, except 
the use of  the minimax theorem, complete the proof of  the other inequality. (The lack 
of symmetry in the use of  the minmax theorem reflects the lack of  symmetry in our 
definition of  V in 3.1.1.) So (i) ~ (ii). 

The proof of  the direction (ii) ~ (i) is straightforward, hence omitted. (It uses 
elementary properties of  the value and the trivial direction of  the von Neumann- 
Morgenstern expected utility theorem). [] 

4 Conditional Acts and Matrix Games 

In the previous section all games or game forms considered were of  fixed dimension, 
i.e. with fixed number of strategies for each player. In this section we recast the theory 
to deal simultaneously with all finite game (forms) in the framework of conditional 
acts. 

Let 691, 692 be two infinite sets and let A = {S = S 1 • S e IS i C O i, i = 1, 2 and 
0 < #S < eo} be the set of  events or conditions. Conditional acts are elements of  
the set F = {(f,, S) IS C A a n d f  : S ---, A(X)}, and our primitive in this context is a 
binary relation ~> on F.  

Let Fs denote all acts in F conditioned on a given S c A, and ~s  the restriction 
of ~ on Fs. For each S E A, we shall impose on ~s the axioms of  section 2. On 
we do not impose completeness, which is a very restrictive axiom when applied to 
comparisons of acts conditioned on different events. We shall impose transitivity, and 
an axiom which allows comparisons between different but not too different conditions. 
In a sense to be made precise in Proposition 4.3, this axiom is the counterpart of axiom 
3.2, SUAA, in the framework of  conditional acts. It says that eliminating a column is 
(weakly) advantageous for the decision maker, whereas eliminating a row is (weakly) 
disadvantageous for him; and that furthermore, the decision maker is indifferent to 
addition of  a row (or a column) which is a convex combination of two existing rows 
(or columns). 

To state formally the new axiom we impose on ~,  we need to consider the 
restriction of  an act (f, S) to an event T C S. With slight abuse of  notation, the 
resulting conditional act will be denoted by (f 7). 

4.1 Conditional SUAA 

(i) Let (f,, S) C F and T = S 1 • (S 2 \ {r2}) for some r 2 E S 2. Then (f 7) ~> (f,, S). 
(ii) Let (f S) E F and T = (S 1 \ {r 1 }) • S 2 for some r 1 C S 1 . Then 05, S) ~> 05, 7). 
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(iii) Let ~ S) E F, c~ E [0, 1], r g, t i E S ~, and w i E O i \ S  i for i = 1, 2. Define (g, S 1 • (S 2 t3 
{w2})) ~ F by: g(s) = f ( s )  for s E S, and g(s 1, W 2) = o~f(s 1, r 2) + (1 -- o ! ) f ( s  1, t 2)  f o r  

s l ES 1. Then (g, $1• (S 2 t3 {w2})) _~ ~ 53. Similarly, define (h, (SlU {w 1 })• S2)EF 

by: h(s) = f ( s )  for s C S, and h(w 1, s 2) = ~f (r  1, s 2) + (1 - ~)f( t  1, s 2) for s 2 E S 2. 

Then (h, (S 1 t3 {w 1 }) • S 2) "~ (f, 53. 

Notice the special case of  4.1(iii) with c~ = 0 or 1, by which if two conditional acts 
are such that one is obtained from the other by eliminating one of two identical rows 
or columns, then they are indifferent. We will use this special case later, so we state 
it separately for future reference. 

4.1.1 Irrelevance of Duplications 

Let (f,, 53 E F,  and r i, t i E S i, i = 1, 2. I f f ( r  1, s 2) = f ( t  1, s 2) for all s 2 C S 2 and r 1 =~ t I , 
then ~ S) ~ ~, (S 1 \ {r 1 }) • $2). Analogously, i f f ( s  1, P)  = f ( s  1, t 2) for all s I E S ~ and 
r 2v~t  2 , t h e n ~ S ) ~ - ~ S  1 •  2 \ { p } ) ) .  

Now we state the central result of  this section. Its proof is given at the end of  
the section. 

4.2 Theorem 

Let a binary relation >~ on F be given. Then the following two statements are equiv- 
alent: 

(i) The binary relation >~ on F is transitive and satisfies conditional SUAA 4.1, and 
for  each S E A  the induced binary relation ~s  on Fs satisfies completeness 2.1(i), 
C-independence 2.2, continuity 2.3, monotonicity 2.4 and non-degeneracy 2.5. 
(Transitivity 2(ii) o f  >~s is implied by that o f  ~.)  

(ii) There exists an affine non-constant function u : A(X) ---+ IR, unique up to positive 
linear transformations, such that (f, S) ~-+ V(u o f  S) represents >~ on F. 

Remark: (a) The notation (u o f  S) is self-explanatory. (b) Implicit in the theorem 
(4.2(ii)) is the fact that the preference relation ~> between conditional acts in F is 
complete. I.e., completeness is implied by other conditions of 4.2(i). 

We presented the axiom of conditional SUAA 4.1 as a counterpart of axiom 3.2, 
SUAA, in the framework of conditional acts. In the following proposition we make 
explicit the formal relationship between the two axioms. We shall then exploit this 
relationship to prove Theorem 4.2. 

4.3 Proposition 

Let a transitive binary relation ~> on F be given. Then the following two statements 
are equivalent: 
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(i) The binary relation ~> on F satisfies conditional SUAA 4.1. 
(ii) The binary relation ~> on F satisfies irrelevance of duplications 4.1.1, and for 

each S C A the induced binary relation ~>s on Fs satisfies SUAA 3.2. 

Proof." (We omit some details which are conceptually easy but notationally heavy to 
add.) " I f ' :  suppose ~ satisfies irrelevance of duplications and within each S SUAA. 
By the special case of  the latter with c~ = 1, replacing a row with another existing row 
makes the decision maker weakly worse off. By irrelevance of duplications we can 
eliminate one of  the now two indentical rows, obtaining 4.1(ii). The same goes for 
columns (4.1(i) from 3.2(i) with c~ = 1 and 4.1.1). To derive 4.1(iii), say for rows, i.e. 
for i = 1, let ~ S), c~, r 1 and t I be given. Apply irrelevance of duplications twice to 
duplicate rows r 1 and t 1, obtaining an indifferent act. Then apply 3.2(ii) for the given 
c~ and the added rows, obtaining a conditional act with two equal (new) rows which 
is weakly inferior to the original one. Eliminate one of  the two new rows, obtaining 
the conditional act (h, (S 1 U {wl}) • S 2) of  4.1(iii), and observe that by irrelevance of  
duplications (f, S) is weakly preferred to it. Finally, apply 4.1(ii) to obtain the weak 
preference in the opposite direction. This gives 4. l(iii) for rows, and again the parallel 
argument yields 4. l(iii) for columns. 

"Only i f ' :  given conditional SUAA 4.1, we have already noticed that irrelevance 
of duplication is a special case of  4.1(iii) for c~ = 0 or 1. We now prove SUAA 
for rows (3.2(ii)). For any two rows and c~, apply twice 4.1(iii) to add two identical 
rows each of  which is the required convex combination. Then eliminate the two orig- 
inal rows, obtaining a weakly inferior conditional act, by 4.1(ii). We now 'almost'  
have 3.2(ii), in the sense that in the conditional act obtained the two original rows 
are 'empty'  and the required convex combinations are in the newly created places. 
We then use 4.1.1 (already proved) to duplicate the new rows and put them in the 
'empty'  places, where they should be. Now we have two rows too many, which we 
just eliminate by 4.1.1 again, and this is 3.2(ii). Once more, the analogous argument 
for columns gives 3.2(i). [] 

Notice that in terms of  the statements of Theorem 4.2 we have proved the fol- 
lowing: 

4.4 Corollary 

Condition (i) in Theorem 4.2 is equivalent to: 
(i') The binary relation ~> on P is transitive and satisfies irrelevance of duplication 

4.1.1, and for each S C A the induced binary relation ~>s on Fs satisfies the con- 
ditions in statement (i) of  Theorem 3.3 (i.e. completeness 2.1(i), C-independence 
2.2, continuity 2.3, monotonicity 2.4, non-degeneracy 2.5 and SUAA 3.2). 

Proof of Theorem 4.2: In view of corollary 4.4 it suffices to prove equivalence of  
statements (ii) of  the theorem and (i') of  the corollary. The direction (ii) ~ (i') is 
trivial (as in Theorem 3.3) and its proof is omitted. 

We prove the direction (i') ~ (ii). For any S E A and y C A(X), denote by (y*, S) 
the constant conditional act with y*(s) = y for all s E S. The relation ~>s induces a 
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relation on A(X), also denoted by >~s, defined by y ~>s z iff (y*, S) >~s (z*, S), where 
y, z E A(JO. It is easy to see that to this relation we can apply Lemma 2.6, obtaining 
an affine non-constant Us : A(X) ~ • such tha ty  ~>s z iff us(y) >- Us(Z). 

We also have 

4.2.1 Claim: For all y E A(X) and R, T C A, (y*, R) ~-- (y*, T). 
To prove this claim, apply repeatedly transitivity of  ~ and irrelevance of duplica- 

tions 4.1.1 (adding one row or column at a time) to show that both (y*, R) and (y*, T) 
are indifferent to (y*, (R 1 U T 1) x (R 2 U T2)). 

Claim 4.2.1 implies, by transitivity again, that for any y, z E A(X) and R, T C 
A, (y*, R) ~> (z*, R) iff (y*, T) ~> (z*, T). Hence by uniqueness of von Neumann- 
Morgenstern utility, uR is a positive linear transformation of ur. So we can choose an 
element from {Us IS c A},  say u : A(X) ~ IR, such that for y, z c A(X),  u(y) >- u(z) 
iff (y*, S) ~>s (z*, S) for all S E A. 

From theorem 3.3 and the fact that V is covariant with u, it then follows that the 
functional (f, S) H V(u o f  S) represents ~>s on Fs for all S E A. 

To complete the proof we have to show that for any given conditional acts 
(g, R), (h, T) E F,  one has (g, R) ~> (h, T) if and only if V(u o g, R) >- V(u o h, T). First 
observe that by affinity of u and convexity of  A(X), for any conditional act (f, S) 
there is y E A(X) such that u(y) = V(u o f  S), which in turn implies (y*, S) --~ (f, S), for 
V(u o y*, S) = u(y). 

Now given (g, R), (h, T) E F,  let w, z E A(X) be such that (w*, R) --~ (g, R) and 
(z*, T) ~ (h, T), and suppose V(uog, R) >- V(uoh, T). We will show that (g, R) ~> (h, T). 

The inequality and the definitions just given imply: u(w) = V(u o w*, R) = 
V(u o g, R) >- V(u o h, T) = V(u o z*, T) = u(z). In turn, claim 4.2.1 and u(w) >- u(z) 
imply: (g, R) _~ (w*, R) _~ (w*, T) ~> (z*, T) _~ (h, T). 

On the other hand, weak inequalities and weak preferences can be replaced in the 
above arguments by their strict counterparts. Hence it is also true that if (g, R) ~> (h, T) 
then V(u o g, R) >- V(u o h, T). This concludes the proof. [] 

5 Concluding Remark 

The purpose of this paper was to fill a conceptual gap left by von Neumann and 
Morgenstern. Our approach was in the decision-theoretic spirit of  their chapter 1, 
based on axioms on a preference relation leading to a numerical representation. As 
mentioned in the introduction, our goal has not been completely achieved, in that 
we have rationalized evaluation of  zero-sum games by their value, but we have not 
proved that 'rationality' implies playing maxmin strategies. The axiomatic addition of  
the paper is 'Strategic Uncertainty Aversion / Appeal'  (axiom 3.2 or 4.1 above). It says 
that 'tying the hands' of the decision maker cannot make him better off, and 'tying 
the hands' of  the other side cannot make him worse off. This intuitively characterizes 
zero-sum conflict. 
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