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Abstract. We study a dynamic incentive–constrained problem facing a firm
wishing to outsource R&D activity. The problem is how to release information

to the innovator over time, with concurring profit-sharing contract. Optimal

policy involves knowledge transfer and innovator’s profit share both increasing
with time.
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1. Introduction

The practice of contracting out research about technological advancement of its
product on the part of a firm develops during the nineties in response to the need
to expand research capabilities in the face of increasing competitive pressure. As
both Holmström–Roberts [6] and Kimsey–Kurokawa [7] report, one often observes
strategically critical research being contracted out, as in the case of product design
in automobile industry. Of this “something of a trend today toward disintegration,
outsourcing, contracting out, and dealing through the market” ([6] p.80) one finds
more circumscribed evidence in Thayer [14] and Birch [5] respectively for the chem-
ical and the pharmaceutical industry, where the R&D outsourcing market in has
grown at an average annual rate of 14.6% between 1997 and 2001. In other cases,
for example in the case of development of a computer’s operating system, research
activity is usually pursued within the firm.

From a theoretical point of view the first paper dealing with the problem of
research outsourcing is to our knowledge Aghion–Tirole [1], who study optimal al-
location of property rights on innovation in a one–shot interaction between firm
and innovator; they conclude that control should be allocated to the innnovator,
in terms of the present paper that R&D outsourcing is more efficient than inter-
nal product development, if the innovator’s effort is ‘important enough’ (ibidem
p.1191). Assuming that this is the case, and also that there are no problems with
ex-ante definability of the nature of innovation, we highlight a further potential
obstacle to outsourcing, which is the following: to make the innovator productive,
the firm has to transmit her some information about its existing technology and
internal processes; but this information may be valuable to the innovator indepen-
dently of her relationship with the firm, possibly so much that she might just walk
away with it and default on her contractual obligations with the firm.

Knowledge management is a problem of increasing relevance already within the
firm; Rajan–Zingales [11], who make it the main ingredient of their theory of the
firm, report for example that 71% of the firms included in the Inc 500, a list made
up of young firms, were founded by people who replicated or modified an idea
encountered in their previous employment. Information leaking being a problem
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within a firm, it can only get worse when it comes to transferring knowledge to third
parties. In the extreme it can become a deadlock, when critical bits of information
need to be revealed to give the outside innovator the chance to produce valuable
results. The remedy is often to establish a long term relationship, a ‘preferred-
client relationship’ in business language. 1 This is what the present paper studies,
formalized as a multi-period principal-agent incentive constrained problem, where
principal and agent are respectively firm and innovator. By and large, we find that
the firm’s optimal plan, when it is not the null contract, involves knowledge transfer
and agent’s profit share both increasing in time.

Optimal contract is the null contract in those cases where the amount of knowl-
edge that the innovator needs to be productive is so large to make default more
appealing than cooperation. This may be the case of the development of a com-
puter’s operating system: to work on it one has to know it all. From this perspective
one may argue that the recent advancement of Linux, an operating system whose
code is public domain, at the expenses of the privately owned Microsoft Windows,
might be due to the fact that the Linux community, made up of several thousand
developers scattered around the world, did not face the knowledge–transfer prob-
lem that prevented Microsoft from hiring all those smart programmers with ad hoc
outsourcing contracts. 2

Related Literature. The present paper studies optimal release of R&D-related
information over a long horizon, a dynamical aspect of a problem which is usually
modelled as a one-shot or two-stage game. Some papers, like Anton–Yao [2] or
the more recent Baccara–Razin [3], address the problem which an inventor who
has already produced an idea faces of how to approach others who may help him
to translate the idea into a produced good. Others, like Rajan–Zingales [11] and
Zábojńık [15], analyse information protection and circulation in a hierarchical struc-
ture within a firm. Explicitly dealing with R&D outsourcing is a paper by Lai,
Riezman and Wang [9] who consider a two-dimensional contract between firm and
innovator specifying a fixed payment to the latter besides a profit-sharing rule. The
informational constraint on the firm is more gentle than in our case, in the sense
that information protection is not vital to the firm, and in fact leakage may occur
(and be common knowledge) in the equilibrium relationship; the authors examine
in a comparative static framework various factors which influence the decision on
the part of the firm about whether conducting R&D in-house or via outsourcing.

From the mathematical point of view the problem we analyze is one of finding,
in Ray [12] terminology, a sequence of Self–Enforcing Agreements. Compared to
the class of problems studied by Ray we have more special forms of agreements, but
on the other hand impose no stationarity on the functions involved. Ray identifies
a general qualitative property of the efficient feasible sequences in this type of
problems, namely that after some time the continuation sequence will maximize
the agent’s payoff over all efficient sequences. We explicitly solve the principal’s
problem for a class of cases, and in some of them find counterexamples to the above
property (which is consistent with Ray’s theorem given the non–stationarity of the
environment).

The problem we study is stated in the next section and analysed in the following
two. Section 5 summarizes, and an appendix contains proofs.

1See Birch [5], reporting on the success of this strategy in the pharmaceutical industry in the

U.S. On the long–term nature of R&D outsourcing relationships in the U.S. and Japan see also
Kimsey–Kurokawa [7] and Holmström–Roberts [6].

2Some notes and related material on the Linux story are contained for ease of reference in an
appendix to this paper, available at www.unipa.it/modica.
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2. Statement of the Problem

There are two actors in the model, a firm and an innovator. The innovator can
improve her performance if she has some knowledge of the firm’s internal processes.
Abstracting altogether from uncertainty, we assume there is an exogenous process
of knowledge base in the hands of the firm, {Kt}t=0,1..., Kt ∈ R+, increasing and
bounded. At time t, if the firm transfers knowledge kt ∈ [0,Kt] to the innovator,
net benefit from the latter’s work is Vt(kt); on the other hand the innovator has
also the option of just walking away with kt instead of working for the firm, and if
he does this he gets a default value Dt(kt). The firm proposes a long term contract
to the inovator, by choosing for each t a knowledge transfer kt and a sharing rule
(φt, 1− φt), where φt and 1− φt are its own and the innovator’s shares of Vt. The
firm’s problem we formally analyse is then the following (with β discount factor):

max{kt,φt}t≥0

∑
t≥0

βt φtVt(kt)

subject to, for all t,

0 ≤ kt ≤ Kt, kt ≤ kt+1 φt ≤ 1, (P)∑
s≥t

βs-t(1− φs)Vs(ks) ≥ Dt(kt) , and∑
s≥t

βs-t φsVs(ks) ≥ 0.

Besides the self-explaining constraints on the kt sequence, the last two constraints
are the innovator’s incentive constraint and the firm’s participation constraint, for
discussion of which the reader may consult Ray [12]. It is imposed φt ≤ 1 but not
φt ≥ 0 because we imagine the innovator to be liquidity constrained, but not the
firm. The structural assumptions are that, for all t, Vt is increasing concave, Dt

is increasing convex, and Vt(0) = Dt(0) = 0; we shall also assume that the default
value does not grow too fast: βDt+1 ≤ Dt. Since the sequence {Kt} is bounded
the problem is set up in `∞ (and its dual; details about this are in Appendix).

We are well aware that we are studying a much simplified problem. We sidestep
in particular the issues addressed by Aghion–Tirole [1] of contractibility of effort
and ex–ante definability of innnovation, which in a dynamic setting become highly
relevant hold–up problems (How can the firm walk away if it suspects that the
innovator’s effort is too low, with strategic knowledge already in the latter’s hands?
See Kultti–Takalo [8] for a concrete instance of this); and the problem of observ-
ability of costs and values. Also, equally important is uncertainty in this context,
in theory as well as in practice: uncertainty about research output given k, and
uncertainty about the quality of the innovator.

Problem (P) above has the same structure of the one studied by Ray [12]; as we
said in the introduction we have more special strategy sets (forms of agreements),
but on the other hand impose no stationarity on the functions involved; and, while
Ray identifies a general qualitative property of the efficient feasible agreement se-
quences in this type of problems, we explicitly solve the one in hand (when the
feasible set is non-empty) for a class of cases. In the sequel we may call the two
actors principal and agent.

3. No–contract Feasible set, and Linux–vs–Windows

The feasible set in problem (P) is never empty, because it contains all sequences
{φt, kt} with kt = 0 all t (and φt ∈ [0, 1]); if it contains no other points, the optimal
contract between firm and innovator is the null contract. The conditions under
which this occurs are easily spelled out. The extreme case is with Vt ≡ 0 ∀t > 0
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and V0 < D0, and the general case is then clear: the innovator’s productivity falls
rapidly with time, and the first–shot outcome is not as valuable as the knowledge
needed to produce it. This will be the case for example if the innovator’s produc-
tivity is low for all but near–full knowledge transfer, and for such transfers on the
other hand the default value is very high.

As mentioned in the introduction, it is our contention that the above scenario
fits well the Linux–v–Windows story. Indeed, to develop an operating system a pro-
grammer cannot do without knowing it deeply. Moreover it is often by inspecting
its various aspects that she finds the one whose improvement best fits her capabil-
ities —as in science. Finally, and the parallel to science is again inevitable, often
a programmer’s best shots are his first ones: in our notation, Vt decreases sharply
with time. The other part of the argument is that the magnitude of the default
value D0 may well be high compared to V0 for near-full knowledge transfer, and the
rationale for this is that the value of critical knowledge may be in the order of the
value of the firm itself; if this is the case, the order of magnitude of D0(K0) is the
discounted sum of all future Vt(Kt)’s; in particular, it seems reasonable to think
that the value of the source code of the Windows operating system is uncomparably
higher than the potential value of a developer’s contribution.

So an explanation of the technical explosion of the Linux operating system with
little reaction on the part of the incumbent Microsoft monopolist is that the latter,
owing to knowledge–transfer problems, was forced to hang on to relatively few
in-house programmers, and was therefore totally unfit to compete with the army
of open–source developers and testers who contributed, with no problems of that
sort, to make Linux the powerful operating system which it is today. We stress
that there was no knowledge problem on the Linux side, the reason being simply
that knowledge there is common property (cfr. e.g. the appendix cited in footnote
2).

4. Non–trivial Feasible Set: Optimal Outsourcing

We now assume that the zero knowledge–transfer path is dominated by other
feasible alternatives, and begin to analyse the problem by writing the Lagrangean
and imposing stationarity and complementary slackness conditions. Justification
of the procedure is in Appendix.

Inspection of problem (P) page 3 reveals that principal and agent have here
a common interest —that V be as high as possible; thus intuitively the solution
should call for as large a transfer of k as it is compatible with the agent’s incentive
constraint, and this is what formal analysis confirms. As for profit sharing, it is in
the spirit of Ray’s result that the principal should appropriate her total payoff in
finite time; we will find that this is indeed what happens when the agent’s default
value is ‘low’ relatively to the value of his research contribution, in which case in
fact the principal’s share is zero from some point on. On the contrary, when the
default option is more attractive the optimal contract calls for positive shares for
both players at all times. We turn now to formal analysis.

The Lagrangean of problem (P) without the non-negativity and increasingness
constraints on kt (which will be satisfied in all cases we consider) is

L =
∑

t≥0
βt

[
φtVt(kt) + ξt(Kt − kt) + ζt(1− φt)

]
+

∑
s≥0

λs

[∑
t≥s

βt-s(1− φt)Vt(kt)−Ds(ks)
]

+
∑

s≥0
µs

[∑
t≥s

βt-s φtVt(kt)
]
.

Letting

νt = λ0β
t + λ1β

t−1 + · · ·+ λt, ρt = µ0β
t + µ1β

t−1 + · · ·+ µt
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this becomes

L =
∑

t≥0
βt

[
ξt(Kt − kt) + ζt(1− φt)− β−tλtDt(kt)

]
+

∑
t≥0

Vt(kt)
[
(βt + ρt)φt + νt(1− φt)

]
.

Thus complementary slackness and FOC are

ξt(Kt − kt) = 0, ζt(1− φt) = 0 ∀t,

λs

[∑
t≥s

βt-s(1− φt)Vt(kt)−Ds(ks)
]

= 0, µs

∑
t≥s

βt-s φtVt(kt) = 0 ∀s,[
(βt + ρt)φt + νt(1− φt)

]
V ′

t (kt)− λtD
′
t(kt) = βtξt ,[

βt + ρt − νt

]
Vt(kt) = βtζt ∀t .

So the FOC with respect to kt is[
(βt + ρt)φt + νt(1− φt)

]
V ′

t (kt)− λtD
′
t(kt) ≥ 0,

= 0 if kt < Kt .
(1)

And given Vt(kt) > 0 ∀kt > 0, the one with respect to φt is βt + ρt − νt ≥ 0, equal
if φt < 1; this is more conveniently rewritten as

(λ0 − µ0) + (λ1 − µ1)β−1 + · · ·+ (λt − µt)β−t ≤ 1,

= 1 if φt < 1 .
(2)

Now observe that φt = 1 ∀t is not feasible, for it violates the agent’s incentive
constraint (we are dealing with solutions with non-zero {kt}, for which the Vt and
Dt functions are non-zero). Let t0 be the first t such that φt < 1. Then from (2),
after t0 the first s such that λs 6= µs should have λs < µs. This would imply that
inequality in (2) strict at s, whence φs = 1; it would also imply µs > 0, which by
complementary slackness gives

∑
t≥s βt-s φtVt(kt) = 0; and the latter, with φs = 1,

would then imply that the principal participation constraint is violated at s + 1.
Conclusion: after t0 one has λt = µt ∀t. Therefore,

for all t > t0: either (i) λt = µt = 0; or (ii) λt = µt > 0.

In case (i), νt − ρt = βt (for all t > t0): indeed at t0, since φt0 < 1, equation (2)
says νt0 − ρt0 = βt, so νt0+1 − ρt0+1 = β(νt0 − ρt0) + (λt0+1 − µt0+1) = βt0+1,
etc. Thus (1) becomes (βt + ρt)V ′

t (kt) ≥ 0, equal if kt < Kt. But both factors on
the left side of the inequality are positive, so kt < Kt cannot be. Thus in case (i)
kt = Kt ∀t > t0.

In case (ii), from the complementary slackness conditions on λ and µ we get, for
each s > t0,∑

t≥s
βt-s φtVt(kt) = 0 and

∑
t≥s

βt-s Vt(kt) = Ds(ks) .

The first set of equalities imply that φt = 0 ∀t > t0; so after t0 all value goes to the
agent, and {kt}t>t0 is chosen so that this value just covers default value Dt at each
t (recalling that Vt are concave and Dt convex, this means that he chosen k’s could
not be higher without violating the agent’s incentive constraint). In this case the
structure of the solution is the same as that found by Ray in [12] in the stationary
case.

In both cases, the picture for t < t0 is that since φt = 1, the principal’s individual
rationality constraints are met with strict inequality, whence µt = 0; so (1) becomes

βtV ′
t (kt) ≥ λtD

′
t(kt),

= if kt < Kt.
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We next explicitly describe the solution in three special cases, which will differ in
the optimal amount of knowledge which can be transferred in equilibrium. Letting
Vt denote the highest value the innovator could possibly realize from time t onwards,
i.e.

Vt =
∑

s≥t
βs-t Vs(Ks) ,

we consider the situations where one of the following conditions holds for all t:

Dt(Kt) = Vt; Dt(Kt) > Vt; Dt(Kt) < Vt.

The last is a case where innovating has more value than defaulting, so intuitively
the solution should have kt = Kt all t; we shall confirm formally that this is so,
except possibly for a finite number of initial periods. In the second, opposite case
such full knowledge transfer is clearly not feasible: the feasible set can be ‘thin’,
so the first step is to impose conditions which guarantee that it is large enough
for the problem to be interesting; here stationarity seems to be the single most
natural assumtption to make. The first case is obviously a measure–zero set, but it
is instructive for the solutions of the others, and with it we start.

Case Dt(Kt) = Vt ∀t. We shall see that this case falls under heading (ii) above.
We make here two assumptions. First, in keeping with the spirit of the present
section that no–knowledge–transfer is dominated, we assume that V ′

0(0) > D′
0(0);

since D0(0) = V0(0) = 0 and D0(K0) = V0(K0) + βV1 > V0(K0), we then have

0 < argmaxk0
V0 −D0 < K0. (3)

The second is a technical assumption, in the spirit of the `∞ setup:

The sequence (Vt)t≥0 is bounded . (4)

In the next proposition optimal policy is characterized. The idea is that the
principal wants to push knowledge transfer kt up to Kt as soon as she can and
leave all value to the agent from then on (feasibility and kt = Kt implies φt = 0),
conditional on being able to appropriate the value coming out of the initial phase.
The optimal policy would be to do this in period 1 if the agent were not liquidity
constrained (that is if there were no constraint φ0 ≤ 1); with this constraint the
initial phase may last longer.

To get some intuition we may start by observing that the agent’s incentive con-
straint at t = 0 is just∑

t≥0
βt φtVt(kt) ≤

∑
t≥0

βt Vt(kt)−D0(k0) ; (5)

so if the right member is maximized subject to the other constraints and to being
equal to the left member (which is the principal’s payoff), the solution to (P) is
found. To see how the optimization process goes observe that the highest value the
right side of (5) can take is [maxk0 V0−D0]+βV1; and that setting kt = Kt ∀t ≥ 1
forces φt = 0 ∀t ≥ 1 by the assumption Dt(Kt) = Vt; the latter also implies that
the sequence φt = 0, kt = Kt ∀t ≥ 1 satisfies all incentive constraints for such t’s.
Therefore if there is a φ0 ≤ 1 such that the incentive constraint at t = 0 holds with
equality, that is such that

φ0V0(k0) = V0(k0)−D0(k0) + βV1 with k0 = argmax(V0 −D0),

then (5) holds with equality and the problem is solved: k0 = argmax(V0−D0), kt =
Kt ∀t ≥ 1, φ0 defined by the last equation displayed, and φt = 0 ∀t ≥ 1. In this
case the principal obtains all of her payoff in the first period. Problem is that a
φ0 ≤ 1 as required above may not exist, that is, it may be that

D0(k0) ≥ βV1, k0 = argmax(V0 −D0) (6)
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fails. In the latter case the next step is to try and maximize the right member of
(5) with respect to k0 and k1, leaving kt = Kt ∀t ≥ 2, while respecting the agent’s
incentive constraints and subject to finding φ0 and φ1 (φt = 0 ∀t ≥ 2) such that
at the maximizing values of k0, k1 relation (5) hold with equality. this problem,
optimal φ0 = 1; so if the optimal unconstrained value of φ1 is ≤ 1 then again we
have found the solution of (P), and the principal gets all her payoff in the first two
periods. We shall show in appendix that the process stops in a finite number of
stages, and this leads to the proposition which follows.

As to the statement below, observe that given Dt(Kt) = Vt, problem (P) reduces
to the one appearing there when after t0 one imposes φt = 0 and kt = Kt (and
neglects φt0 ≤ 1). Again, proof is in appendix.

Proposition 1. In the case Dt(Kt) = Vt ∀t, assuming V ′
0(0) > D′

0(0) and that the
sequence (Vt)t≥0 is bounded, there exists a first time t0 < ∞ such that the problem

max{kt,φt}t=0,...,t0

∑t0

t=0
βtVt(kt) + βt0+1Vt0+1 −D0(k0)

subject to

kt ≤ Kt, t = 0, . . . , t0 φt ≤ 1, t = 0, . . . , t0 − 1∑t0

s=t
βs−tφsVs(ks) =

∑t0

s=t
βs−tVs(ks) + βt0+1−tVt0+1 −Dt(kt), t = 0, . . . , t0

has optimal φt0 ≤ 1 (from the last of the above constraints, this φt0 is defined by
the equation φt0Vt0(kt0) = Vt0(kt0) + βVt0+1 −Dt0(kt0)). The problem has optimal
φt = 1 for all t < t0.

Optimal policy for problem (P) is given by the solution to the above problem,
followed by φt = 0 and kt = Kt for all t > t0.

Remark. It is shown in the proof that for all t < t0 the optimal policy has
Dt(kt) = βDt+1(kt+1); thus the optimal amount of knowledge transfer is increasing
for all t (using the assumption βDt+1 ≤ Dt for the initial phase).

Case Dt(Kt) > Vt ∀t. This case also falls under heading (ii) of page 5. In this
case the vaule of the default option is relatively high, and so it is the closest to
the no–contract feasible set. To guarantee that a non–trivial set of contracts is
feasible, as we said before we find that imposing stationarity is the single more
natural assumption. We then assume here that:

Vt = V, Dt = D, Kt = K, ∀t ≥ 0. (7)

Thus the inequality Dt(Kt) > Vt ∀t becomes

D(K) > (1− β)−1V (K).

Given this, V (0) = D(0) = 0 and concavity of V − (1 − β)D, if the derivative
at zero of the latter function is non–positive the only stationary sustainable level
of knowledge transfer is zero even with φ = 0, because it would be D(k) > (1 −
β)−1V (k) ∀k > 0. We then also assume that V ′(0) > (1− β)D′(0) (this is weaker
than the corresponding assumption in the previous case). Hence there exist a largest
level of stationary sustainable knowledge transfer 0 < k∗ < K, defined by

D(k∗) = (1− β)−1V (k∗). (8)

As in the previous case the idea is that the principal wants to push up kt as soon
as she can; but now not up to Kt, which is unfeasible, but up to k∗.
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Proposition 2. In the case Dt(Kt) > Vt ∀t, assuming stationarity (7) and that
V ′(0) > (1 − β)D′(0), all of Proposition 1 can be restated, with the following two
modifications: Vt0+1 in the problem there described replaced by (1−β)−1V (k∗), and
the final statement “ kt = Kt for all t > t0” changed to “ kt = k∗ for all t > t0”.

Case Dt(Kt) < Vt ∀t. This case will fall under heading (i) of page 5. As we
already observed one would guess that full knowldege transfer is optimal; this is
only partially true, because as we shall see it may happen that full transfer does
not begin at time zero. To ease exposition we shall again make two simplifying
assumptions. The first is in the spirit of stationarity:

Vt = V ∀t ≥ 0. (9)

This is equivalent to assuming Vt(Kt) = V0(K0) ∀t ≥ 0 ((9) is obviously implied
by the latter; but given (9) one has Vt = Vt(Kt) + βVt+1 = Vt(Kt) + βVt whence
Vt(Kt) = (1−β)Vt = (1−β)V ∀t). Next, although default value is ‘small’ here, we
still find it natural to imagine that the gap between V and Dt(Kt) would shrink
with time. We assume that this occurs at a constant rate, in the sense that for
some γ ∈ (0, 1) one has

Vt −Dt(Kt) = γ
[
Vt−1 −Dt−1(Kt−1)

]
, t > 0, (10)

which given (9) is obviously equivalent to Dt(Kt) = (1− γ)V + γDt−1(Kt−1).
Now define

φ̂t =
1− βγ

1− β

V −Dt(Kt)
V

.

Since V −Dt(Kt) = γt
[
V −D0(K0)

]
, clearly φ̂t = γtφ̂0. Call t0 ≥ 0 the first t such

that φ̂t ≤ 1. Optimal policy is then as follows (proof in appendix):

Proposition 3. In the case Dt(Kt) < Vt ∀t, under assumptions (9) and (10), for
the t0 ≥ 0 just defined, optimal policy has kt = Kt and φt = φ̂t ∀t > t0. Optimal
kt and φt for t ≤ t0 are specified in the appendix.

For example, if φ̂t0 = 1 the policy for this initial phase is kt = Kt, φt = 1 ∀t ≤ t0;
otherwise the latter is usually not feasible (again details in appendix).

Notice that in the present case the principal’s continuation payoff, although
decreasing to zero, remains positive forever.

5. Conclusion

R&D outsourcing is a potentially unlimited source of expansion of a firm’s re-
search activity. Of course its implementation is limited by the difficulty of writing
appropriate contracts, because of the uncertainty surrounding the nature of re-
search output and its true value and costs, and of the limited information about
the research capability of the potential innovator. Considering situations where all
this is overcome, we highlight a further problem that a firm outsourcing R&D must
deal with, namely how to release information about its internal processes to the
research firm over time, trading off the innovator’s productivity against the risk of
her default (both increasing with knowledge transfer). The general result emerging
from analysis is that the optimal long term contract involves knowledge–transfer
and innovator’s share of profits both increasing with time; so in equilibrium the
firm appropriates its total payoff in early stages while the innovator keeps working
in view of higher profits in the more distant future.



KNOWLEDGE–TRANSFER IN OUTSOURCING 9

Appendix: Mathematical Arguments

Justifying the Lagrangean. There are two steps involved in writing the La-
grangean the way we have done (i.e. the ‘usual’ way) and imposing its stationarity
in this context. The first concerns existence of multipliers in the dual of `∞; the
second regards conditions ensuring that those multipliers are in fact in `1 (a subset
of the above dual), i.e. expressible as a sequence of real numbers. For both we shall
merely invoke existing theorems.

Existence of multipliers in the positive cone of `∗∞ such that at the optimal
solution the lagrangean is stationary follows for instance from theorem 1.10 of
chapter 3 (p.190) of Barbu–Precupanu [4]. The regularity condition (ib. p.191) in
our case amounts to the requirement that the inequality hold for s sufficiently large
along the optimal sequence. Conditions ensuring this are easy to write in all cases
considered in the paper (a simple, but unappealing one is that β be close enough
to one).

As to the `1 problem, we can apply corollary 5.6 of Rustichini [13] directly;
validity of its hypotheses in our case is immediate to check.

Proof of Proposition 1. We resume the argument where it was interrupted, after
(6). As we were saying, if that relation fails one turns to the two–period problem,
which is the following:

max(φ0,φ1),(k0,k1) V0 + βV1 + β2V2 −D0

subject to

φ0 ≤ 1, kt ≤ Kt, t = 0, 1 (P2)

φ0V0 + βφ1V1 = V0 + β(V1 + βV2)−D0 (a)

φ1V1 = V1 + βV2 −D1. (b)

Substituting the last constraint the problem can be written as

max(k0,k1) V0 + β [V1 + βV2]−D0

subject to D0 ≥ βD1, kt ≤ Kt, t + 0, 1. (P ′
2)

Suppose that the solution to this problem has D1 ≥ βV2; then the value of φ1

defined by (b) satisfies φ1 ≤ 1, so that (φ0, φ1) defined by (a) and (b) together
with the solution (k0, k1) of (P ′

2) solve (P ): to wit, the solution of the latter is
φ0 = 1 (which follows from the fact that the constraint D0 ≥ βD1 in (P ′

2) is
binding, as will be verified shortly), φ1 defined by (b), (k0, k1) solving (P ′

2), and
φt = 0, kt = Kt ∀t ≥ 2. In this case the principal gets her payoff in the first two
periods, and from then on only the agent’s payoff is positive.

If the solution to (P ′
2) has D1 < βV2, then we pass to the obvious next step, which

is the three–period try. We shall show that this process ends in a finite number of
steps, but before moving on we must check that the constraint D0 ≥ βD1 is binding
in (P ′

2). The lagrangean is

V0 −D0 + β [V1 + βV2] + λ(D0 − βD1) + µ0(K0 − k0) + βµ1(K1 − k1);

so FOC and complementary slackness give

V ′
0 − (1− λ)D′

0 ≥ 0, = 0 if k0 < K0, (F2 i)

V ′
1 − λD′

1 ≥ 0, = 0 if k1 < K1. (F2 ii)

If k1 < K1 then from (F2 ii) λ = V ′
1/D′

1 > 0, so the constraint in question binds.
Thus it may be non–binding only if k1 = K1; with this and λ = 0, (F2 i) reads
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V ′
0 −D′

0 ≥ 0, = 0 if k0 < K0. But since the max of the concave function V0 −D0

is interior by (3) one has V ′
0 −D′

0 < 0 at K0, so it cannot be k0 = K0; so it should
be k0 < K0; but then V ′

0 −D′
0 = 0, i.e. k0 = argmax(V0 −D0); on the other hand,

for this pair (k0,K1) we have by failure of (6) D0 < βV1 = βD1, i.e. the pair is not
feasible for the problem in hand. We conclude that the constraint is binding, and
so optimal φ0 = 1 in (P2). We observe for future reference that it has also been
shown that λ > 0; this implies, via (F2 i), that k0 > argmax(V0 −D0) > 0.

To see what is involved in showing that the the process ends in a finite number
of steps let us look again at the inequality D1 ≥ βV2 in (P ′

2); since we have just
found D0 = βD1 at the optimum, this is

D0(k0) ≥ β2V2, k0 solving (P ′
2). (11)

Comparing this with (6) we guess that the s-period try will be the successful one if
the inequality D0(k0) ≥ βsVs holds for k0 optimal solution of the relevant problem.
Since it will be shown that this k0 will always be not smaller than argmax (V0 −
D0), by the boundedness assumption (4) the inequality will be satisfied for s large
enough.

We turn to the (s+1)–period problem, in the variables k0, . . . , ks. The hypothesis
is that for the sequence k0, . . . , ks−1 solving the s–period problem, one has Ds−1 <
βVs; and that similarly for k0, . . . , ks−2 solving the (s− 1)–period problem one has
Ds−2 < βVs−1; and so on down to the one–period problem. In words, the induction
hypothesis is that problem (P) cannot be solved by the principal appropriating all
of her payoff in less than s + 1 periods.

We consider the (s+1)–period analogue of problem (P2) and arrive at the (s+1)–
period version of problem (P ′

2), which is, omitting the constant term βs+1Vs+1,

max(k0,...,ks)

∑s

t=0
βtVt −D0

subject to (P ′
s)

kt ≤ Kt, t = 0, . . . , s

Dt ≥ βDt+1, t = 0, . . . , s− 1.

Again our aim is to show that the constraints on D are binding. For then the ques-
tion whether φs ≤ 1, i.e. Ds ≥ βVs+1, becomes D0 ≥ βs+1Vs+1. The lagrangean
for (P ′

s) is

V0−D0+λ0(D0−βD1)+µ0(K0−k0)+β [V1 + λ1(D1 − βD2) + µ1(K1 − k1)]+. . .

+βs−1 [Vs−1 + λs−1(Ds−1 − βDs) + µs−1(Ks−1 − ks−1)]+βs [Vs + µs(Ks − ks)] .

Stationarity and complementary slackness give

V ′
0 − (1− λ0)D′

0 ≥ 0, = 0 if k0 < K0

V ′
1 − (λ0 − λ1)D′

1 ≥ 0, = 0 if k1 < K1

. . . . . . . . .

V ′
s−1 − (λs−2 − λs−1)D′

s−1 ≥ 0, = 0 if ks−1 < Ks−1

V ′
s − λs−1D

′
s ≥ 0, = 0 if ks < Ks.

As in the two–period case, from the last condition displayed we deduce that for
Ds−1−βDs not to be binding it must be ks = Ks, and λs−1 = 0. But then the rest
of the conditions are exactly the same as those of the s–period problem, in which
case the solution would be the same as that of the s–period problem followed by
ks = Ks; but then the hypothesis implies that Ds−1 < βVs = βDs, contradicting
feasibility; so Ds−1 = βDs.
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Next Ds−2−βDs−1. If ks−1 < Ks−1 then as before λs−2−λs−1 = V ′
s−1/Ds−1 > 0

which would imply that the constraint is binding. If on the other hand ks−1 = Ks−1

and λs−2 = 0, we are back to the (s− 1)–period problem, which with ks−1 = Ks−1

has Ds−2 < βDs−1, contradicting feasibility again. So Ds−2 − βDs−1 is binding,
and continuing this way we conclude that all the D constraints are binding. It has
also been shown, incidentally, that always λ0 > 0.

Now, as anticipated, given D0 = βD1 = · · · = βsDs (and φ0 = · · · = φs−1 = 1
in problem (Ps)), the question whether φs ≤ 1, i.e. Ds ≥ βVs+1, becomes

D0(k0) ≥ βs+1Vs+1, (12)

k0 being part of the solution to the s–period problem. And this holds for s suf-
ficiently large. Indeed, in any s–period problem either k0 = K0, or from comple-
mentary slackness V ′

0 −D′
0 = −λ0D

′
0 < 0, last inequality from λ0 > 0; thus in all

problems the optimal k0 > argmax(V0 − D0), whence the left member of (12) is
bounded away from zero; on the other hand, by assumption (4) the right member
tends to zero as s diverges. This concludes the argument.

Proof of Proposition 2. As we did in the previous case we rewrite the agent’s
incentive constraints, the first one binding:∑

t≥0
βt φtV (kt) = [V (k0)−D(k0)] +

∑
t≥1

βtV (kt) (13)∑
t≥s

βt-s φtV (kt) ≤
∑

t≥s
βt-s V (kt)−D(ks), s ≥ 1 . (14)

Forget as before the constraint φ0 ≤ 1. In the previous case it was then immediate
that the max the right member of (13) was [maxk0 V0 −D0] + βV1, and that this
choice of {kt}t≥0 satisfied (with equality) the other incentive constraints. In the
present case the situation is slightly more complex: the choice kt = K ∀t ≥ 1
is unfeasible, and then maximization of

∑
t≥1 βtV (kt) with respect to {kt, φt}t≥1

subject to the constraints (14) is non–trivial. We shall now show that it is solved
by kt = k∗, φt = 0 ∀t ≥ 1. Thus if for this choice (with k0 = argmax(V −D)) the
φ0 defined by φ0V (k0) = V (k0) − D(k0) + β(1 − β)−1V (k∗) happens to be ≤ 1,
problem (P) is solved.

If not, as before the principal has to try and appropriate his payoff in two periods.
In this case again the difference compared to the case Dt(Kt) = Vt ∀t is that we
have a non–trivial maximization, of

∑
t≥2 βtV (kt) under the constraints in (14) for

s ≥ 2; but again it is be proved by the same argument as the one we are about to
give that the solution to this maximum problem is kt = k∗, φt = 0 ∀t ≥ 2. Thus
at stage two we are again in a position analogous to that of case Dt(Kt) = Vt ∀t,
with V2 replaced by (1 − β)−1V (k∗) in problem (P2) of page 9. At this point the
argument parallels the previous one: optimal φ0 = 1, and if the φ1 defined by the
equation φ1V (k1) = V (k1)−D(k1)+β(1−β)−1V (k∗), with k1 part of the solution
of the modified (P2), is ≤ 1, then problem (P) is solved. Otherwise one goes to
stage three, etc. until payoff appropriation is possible. The concluding part of the
argument is as before.

It is thus left to analyse maximization
∑

t≥1 βtV (kt) over the set defined by (14).
We shall show that the sequence kt = k∗ ∀t ≥ 1 maximizes the given function on a
larger set, namely that it solves the problem

max{kt}t≥1

∑
t≥1

βtV (kt)

subject to
∑

t≥s
βt-s V (kt)−D(ks) ≥ 0, s ≥ 1 .

To this end observe that to improve upon the choice kt = k∗ ∀t ≥ 1 one has to
raise at least one kt from k∗. We show that this cannot be done without violating
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some constraint (keep in mind that if kt = k∗ ∀t ≥ 1 all the constraints hold with
equality). Without loss of generality suppose k1 is raised, say to k∗ + h1. By
definition of k∗, cfr. equation (8), it will be ∆D > (1 − β)−1∆V , so if one keeps
kt = k∗ ∀t ≥ 2, since

∆
(∑

t≥1
βt−1V (kt)

)
= ∆V < (1− β)∆D < ∆D

the constraint at s = 1 is violated (∆ refers here to raising k1 from k∗ to k∗ + h1

of course); hence to restore it one should raise k2 —or some other kt t ≥ 2, the
argument does not change. But by the same token, if one raises k2 one then has
to raise k3 (or kt3 . . . ) to restore the (s = 2)–constraint, and so on: that is, if k1

is raised from k∗ one should keep raising k’s farther and farther away. Can this be
done ad infinitum? The question here is, by how much does k2 need to be raised
to restore feasibility at s = 1? From the above displayed inequalities it follows that
the needed increment of k2 would be larger than the increment needed if the first
inequality there were instead an equality, i.e. the h2 such that

β
(
V (k∗ + h2)− V (k∗)

)
= β

(
D(k∗ + h1)−D(k∗)

)
.

But V (k∗ + h2) − V (k∗) < V ′(k∗)h2, D(k∗ + h1) − D(k∗) > D′(k∗)h1, and from
(8) one has V ′(k∗) < (1− β)D′(k∗); therefore

h2 >
D′(k∗)
V ′(k∗)

h1 > (1− β)−1 h1 > h1.

Analogously, to restore feasibility at t = 2 one should then have to raise k3 by
an amount h3 > h2, and by so doing it is clear that one hits the upper bound K in
a finite number of steps. The conclusion is that it is in fact impossible to improve
upon the choice kt = k∗ ∀t ≥ 2, as was to be shown.

Proof of Proposition 3. We first put on record an observation:

Lemma. Fix a time τ , and assume kt = Kt ∀t > τ . Then all incentive constraints
for s > τ are satisfied with equality if φt = φ̂t ∀t > τ .

Proof. Recall that by assumption (9) Vt(Kt) = V0(K0), which in turn implies
Vt(Kt) = (1 − β)V ∀t. Then for s > τ , given that kt = Kt and φt = φ̂t for
t ≥ s, the incentive constraint at s is (1− β)V

∑
t≥s βt−sφ̂t ≤ V −Ds(Ks), which,

by assumption (10) and the fact that φ̂t = γ(s−τ)+(t−s)φ̂τ , can be written as
(1− β)V
1− βγ

γs−τ φ̂τ ≤ γs
(
V −D0(k0)

)
.

We just have to plug in the definition of φ̂τ , page 8 to verify that equality holds. �

Consider now the case t0 = 0, i.e. φ̂0 ≤ 1. Start again from observing that the
incentive constraint at t = 0 has the objective function on the left. As before,
try to maximize the right member and subject to have equality in the constraint.
Since the right member is

∑
t≥0 βt V0(kt) −D0(k0), set first kt = Kt ∀t ≥ 1, and

then φt = φ̂t ∀t ≥ 1 to have the other constraints satisfied (with equality, from the
lemma). This way the constraint at zero becomes

φ0V0(k0) + β
(
V −D1(K1)

)
≤ V0(k0)−D0(k0) + βV.

If we set k0 = K0 and φ0 = φ̂0 we have equality by definition, so from φ̂0 ≤ 1,

V0(K0) + β
(
V −D1(K1)

)
≥ V0(K0)−D0(K0) + βV. (15)

Suppose first that φ̂0 < 1, so that the above inequality is strict; if we lower k0

from K0 towards argmax(V0−D0) the right member goes up, the left one down, and
two possibilities arise: (i) equality is reached at some k∗ ∈

(
argmax(V0−D0),K0

)
;
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in this case the value V0(k∗) − D0(k∗) + βV is the highest possible principal’s
payoff, attainable with φ0 = 1 (if we lower k0 further the left member, i.e. the
principal’s payoff, decreases, with φ0 = 1 and even more for any φ0 < 1); thus
optimal policy is here k0 = k∗ (defined by the equality D0(k) = βD1(K1)), kt =
Kt ∀t ≥ 1, φ0 = 1, φt = φ̂t ∀t ≥ 1; (ii) at argmax(V0 −D0) inequality in (15) is
still strict; in this case the maximum possible value of

∑
t≥0 βt Vt(kt)−D0(k0), i.e.

max
[
V0 − D0

]
+ βV, is attainable with the φ0 < 1 defined by φ0V (argmax(V0 −

D0)) + β
(
V −D1(K1)

)
= max [V0 −D0] + βV, and optimal policy has the φ0 just

defined, k0 = argmax [V0 −D0], and continuation for t ≥ 1 as in the previous case.
If on the other hand φ̂0 = 1, so (15) is an equality, then lowering k0 from K0 can

only do harm (period–zero incentive constraint would hold with strict inequality,
and the left member, i.e. the principal’s payoff, would be lower than with k0 = K0).
Hence optimal poicy in this case is kt = Kt ∀t ≥ 0, φ0 = 1, φt = φ̂t ∀t ≥ 1. This
ends the case t0 = 0.

We now turn to the case t0 > 0; recall that this means φ̂t0 ≡ γt0(1 − βγ)(V −
D0(K0))/(1− β)V ≤ 1, but φ̂t > 1 ∀t < t0. Let us write the principal’s payoff as∑t0−1

t=0
βtφtVt(kt) + βt0

∑
t≥t0

βt−t0φtVt(kt). (16)

Taking into account the constraints for t ≥ t0, which still have to be met, we know
from the previous case what the constrained maximum of the second sum is, and
the policy which achieves it.

Suppose first that φ̂t0 = 1. Then if kt0 = Kt0 , the incentive constraints for
t ≥ t0 are all satisfied with equality (those for t > tt0 from the lemma, the one at
t0 checked easily). Moreover, in this case we shall now verify that it is feasible to
set kt = Kt, φt = 1 ∀t < t0; since this is the best one can hope for, optimal policy
is found: kt = Kt ∀t, φt = 1 ∀t ≤ t0 and φt = φ̂t ∀t > t0. To verify feasibility of
the policy for t < t0 consider the constraint at t0 − 1, which with the given policy
becomes

Vt0−1(Kt0−1) + β
∑

t≥t0
βt−t0φtVt(Kt) ≤ V −Dt0−1(Kt0−1);

but
∑

t≥t0
βt−t0φtVt(Kt) = V −Dt0(Kt0) = γt0(V −D0(K0)), so the left member is

equal to (1−β)V+βγt0(V−D0); and since the right member is γt0−1(V−D0(Kt0)),
the constraint is (1− β)V + βγt0(V −D0(K0)) ≤ γt0−1(V −D0(Kt0)); rearranging,
this is just φ̂t0−1 ≥ 1, true by hypothesis. Analogously, the (t0–2)–constraint
becomes φ̂t0−2 ≥ 1, and so on down to zero.

Consider now the case φ̂t0 < 1. Here as we know the policy maximizing the
second sum in (16) calls for kt0 < Kt0 , and this creates a trade–off: for a lower kt0

implies a lower Vt0 , and this in turn tightens the incentive constraints for t < t0.
For example, it makes the policy of full transfer knowledge and full appropriation
for t < t0, found optimal just above when φ̂t0 = 1, generally unfeasible. Given that
optimal policy for t > t0 remains the one defined before (kt = Kt, φt = φ̂t), choice
for t ≤ t0 solves the finite–dimensional problem just introduced, of maximizing∑t0

t=0 βtφtVt(kt) subject to the constraints for t ≤ t0 (the values of kt, φt for t ≥ t0
being fixed). This ends the proof.
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