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ABSTRACT 

Precisely monitoring the environmental conditions is an essential 
requirement for AmI projects, but the wealth of data generated by 
the sensing equipment may easily overwhelm the modules 
devoted to higher-level reasoning, clogging them with irrelevant 
details. The present work proposes a new approach to knowledge 
extraction from raw data that addresses this issue at different 
levels of abstraction. Wireless sensor networks are used as the 
pervasive sensory tool, and their computational capabilities are 
exploited to remotely perform preliminary data processing. A 
central intelligent unit subsequently extracts higher-level concepts 
represented in a geometrical space and carries on symbolic 
reasoning based on them. The same tiered architecture is 
replicated in order to provide further levels of abstraction.   

Categories and Subject Descriptors 

C.2.4 [Computer-Communication Networks]: Distributed 
Systems – distributed applications 

General Terms 

Measurement, Design 

Keywords 

Wireless Sensor Networks, Conceptual Spaces, Ambient 
Intelligence. 

1. INTRODUCTION 
Ambient Intelligence (AmI) is a new paradigm in Artificial 
Intelligence that introduces a shift in perspective as regards the 
role of the end user [1]. Unlike other well established approaches, 
such as the human-in-the-loop design, where the contribution 
resulting from the exploitation of the human factor is limited to 
facilitate the system design process, or to infer more accurate  

models for the environment state, Ambient Intelligence aims to 
fully integrate the user’s preference into the system. In this 
respect, the basic intrinsic requirement of any AmI system is the 
presence of pervasive and unobtrusive sensory devices [2], which 
is essential to ensure context-aware reasoning in order to act upon 
the environment, modify its state, and react to user-driven stimuli. 

Today’s advances in technology allow for cheap and unintrusive 
sensors that may be profitably employed as a distributed sensory 
means permeating the whole environment under observation. In 
this work, we discuss the use of Wireless Sensor Networks 
(WSNs) [3] to get precise and continuous monitoring of the 
physical quantities of interest; not only does this novel technology 
allow to perform remote sensing without causing disruption, but it 
may also perform basic in-network pre-processing of sensed data 
thanks to the limited computational capabilities of the nodes. 

WSNs are however just one part of a comprehensive architecture 
aimed at overcoming the difficulty of efficiently managing the 
enormous stream of sensed data without overwhelming the upper-
level reasoner with irrelevant details. The present proposal 
describes a multi-level cognitive architecture, where the process 
of knowledge extraction is carried on by several modules at 
increasing degrees of abstraction; this organization aims to 
gradually reduce the amount of data to be processed at each level, 
while increasing the information content of each information 
element. 

The remote, distributed sensory device thus acts as the termination 
of a centralized sentient reasoner, where actual intelligent 
processing occurs; sensed data is processed in order to extract 
higher-level information, carrying on symbolic reasoning on the 
inferred concepts, and producing the necessary actions to adapt 
the environment to the users’ requirements. A set of actuators 
finally takes care of putting the planned modifications to the 
environment state into practice. 

The architecture described here has been purposefully designed so 
as to be easily specialized in different application scenarios such 
as industrial, social, or home environments. In particular, we 
consider here the issue of efficiently managing the premises of a 
University Department in order to  accurately monitor the ambient 
conditions of office rooms, and common spaces, with the aim of 
taking proper actions for meeting the users’ requirements, while 
satisfying energy constraints at the same time. 

The remainder of the paper is organized as follows. Section 2 
briefly discusses some related works presented in literature, 
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Figure 1. The three-tier paradigm for knowledge extraction. 

 

Section 3 presents our idea for multi-tier knowledge 
representation, and Section 4 describes the full architecture. 
Finally, Section 5 discusses a specific case study, and Section 6 
presents our conclusion. 

2. RELATED WORKS  
Many works in AmI-related literature have explored different 
approaches to the extraction of knowledge from the surrounding 
environment, and to inferring the behavior of the user from the 
raw data collected by ad hoc sensory systems. 

In [4], the authors focus on the use of contextual knowledge for 
event classification in order to ease intrusion detection, exploiting 
heterogeneous sensors; in particular, the prototype integrates the 
information obtained by two coupled cameras and a badge reader 
in order to estimate the number of user log-ins within the area 
under observation, and mouse and keyboard activity sensors for 
controlling the users’ behavior. In [5], the authors propose an 
application of an unsupervised learning technique based on fuzzy 
logic to the intelligent agents constituting the AmI system. The 
fuzzy rules are learned by examining the users’ behavior and are 
dynamically adapted so that long-term goals may be satisfied. The 
system was developed to be integrated within the iDorm testbed, 
composed by a dorm equipped with a large number of embedded 
sensors.  

In our work, we have selected the Wireless Sensor Networks 
technology as the underlying sensory system, also thanks to the 
technical and theoretical expertise acquired by our research group 
during the development of past projects in several application 
scenarios [6]. Their use both as a distributed sensory tool, and as a 
wireless network infrastructure has been widely documented also 
in AmI literature; however, to our best knowledge, none of those 
works fully exploits the potential computational capabilities of the 
sensor nodes; rather they are typically used as a mere data 
collection tool, with distributed sensors and communication 
capabilities. In [7][8], for instance, systems for healthcare are 
proposed, especially targeted to monitoring chronic illness, or for 
assistance to the elderly. Such works employ WSNs as the support 
infrastructure for biometrical data collection toward a central 
server; sensor nodes are thus required to simply route data packets 
through multiple hops without operating any distributed 
processing on them. In the work by Han, et al. [9], WSNs are 
used to provide inputs to an ambient robot system. Inside what the 
authors define a ubiquitous robotic space, a semantic 

representation is given to the information extracted from a WSN, 
but again this is used only as a sense-and-forward tool. Unlike 
those projects, the approach we are proposing here exploits an 
innovative architecture that regards the AmI system as a complex 
organism whose peripheral nervous system is represented by the 
WSN that acts as a preliminary filter and pre-processes raw sensed 
data in order to reduce the overall amount of collected data; the 
central nervous system, on the other hand, is realized according to 
a multi-tier cognitive architecture that allows for a compact 
representation of knowledge thanks to a progressive abstraction 
mechanism. The seminal idea underlying this kind of cognitive 
approach was originally presented in [10][11], where a three-tier 
cognitive architecture for artificial vision was proposed. 

3. MULTI-TIER KNOWLEDGE 

REPRESENTATION 
The proposed system is based on a multi-tier paradigm for 
performing knowledge extraction starting from sensory data. As 
shown in Figure 1, this paradigm provides three tiers of 
knowledge representation, corresponding to different abstraction 
degrees. Starting from the rightmost block in the figure, 
knowledge is represented at linguistic level, where information is 
described symbolically via a high-level language, whose input is 
provided by a conceptual level where grounding of symbols 
occurs, and used to connect the system to the lower, subsymbolic 
tier, where sensory data is first acquired. This structure resembles 
the ideas presented in [10][11] that were applied to an  artificial 
vision scenario; our system enhances this knowledge 
representation paradigm with the introduction of WSNs as the 
lowest-level pervasive data acquisition means, and by reproducing 
the same 3-tier schema so that the abstract information extracted 
by the low-level modules of the architecture may be used as input 
for higher-level modules, thus producing more and more 
abstracted vision of the world surrounding the system itself. 

The subsymbolic tier is devoted to process measurements 
collected by the pervasive sensory subsystem, although in specific 
cases part of this task may be delegated to the WSN. Data handled 
at the subsymbolic level may be continuous or discrete; in the 
former case, it is passed to the intermediate conceptual tier, where 
it will be provided with a representation in terms of continuous 
quality dimensions, otherwise it is outright handed over to the 
symbolic tier, where a linguistic representation will be given.  
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At the conceptual tier, data is endowed with a geometrical 
representation that allows for a straightforward management of the 
notion of concept similarity; measurements generated by the 
underlying measurement space are represented as vectors along 
some quality dimensions of interest. Concepts thus naturally arise 
from the geometric space as regions, identifiable through an 
automated classification process. 

The symbolic tier finally produces a concise description of the 
environment by associating regions individuated inside the 
conceptual space to linguistic constructs, thus identifying basic 
concepts, while relations necessary to infer more complex 
concepts are described through an opportune ontology. 

4. THE SYSTEM ARCHITECTURE 
The architecture described here work is inspired to the structure 
and behavior of the nervous system of a complex organism, as 
preliminarily discussed in [12]. Such system may be regarded as 
an intelligent organism, immersed into the physical world; its 
actuator and sensory extremities are intertwined with the 
surrounding environment just like the terminations of the 
peripheral nervous system, whereas a single intelligent subsystem 
represents the central nervous system, and mimics the activity of 
the brain as regards the collection and processing of the sensory 
inputs, by performing high-level reasoning, and by planning the 
sequence of actions to be executed in order to satisfy some goals. 

Four main components may be identified in our architecture: a 
sensory component, implemented as a WSN in order to allow for 
precise and continuous environmental monitoring; a component 
for understanding, representing part of the system’s “brain” and 
implemented by reproducing our multi-tier knowledge extraction 
architecture over multiple levels, as detailed in Section 3; a 
planning component, that completes our artificial “brain” and 
uses the extracted knowledge to plan the necessary actions to steer 
the environmental conditions towards a desired state; finally, an 
actuation component translating the high-level inference of the 
intelligent system into actions that modify the physical 
environment. 

4.1 Environmental Sensing through WSNs 
In the proposed architecture, as well as in the human peripheral 
nervous system, some parts of the sensory organ may perform a 
preliminary pre-processing in order to filter, and possibly 
aggregate, data before forwarding it to the central system; the 
overall amount of transmitted data is thus reduced, although the 
information content is  not affected. 

The collected information is used to construct an internal 
representation of the surrounding environment, as well as to 
observe the user’s behavior and learn their preferences. The 
former goal requires data for such physical quantities as 
temperature, relative humidity, and ambient noise, while the latter 
requires sensors able to monitor users’ activities, such as the 
interaction with the air conditioning system, via a remote control. 

As already mentioned, WSNs have been chosen as the sensory 
component, also in consideration of the possibility of executing 
limited on-board processing. We propose here for the network a 
clustered structure, in which each small cluster, constituted by 
heterogeneous nodes with different computational capabilities, 
distributedly processes homogeneous data. This pre-processing 

phase exploits spatio-temporal correlation of data, in order to 
compute a model that nodes will share thanks to their cluster 
coordinator, similarly to the approach proposed in [13]. This 
process serves the two-fold purpose of reducing the number of 
unnecessary transmissions (only data not fitting the model will be 
transmitted in order to update the model itself), and of performing 
a dimensionality reduction that is used to preserve only relevant  
features. It is also useful in this phase to extract statistical 
informations about specific physical quantities in order to obtain 
aggregate measures of the relative environmental features, while 
also getting rid of noisy data. For instance in our application 
scenario, ambient light measurements are preprocessed by all the 
sensor nodes deployed in one room in order to compute the 
average light exposure and the standard deviation among 
measurements, which the central system may use to infer the 
overall lighting degree and homogeneity. 

4.2 Understanding the Environment: the 

Intelligent Core 
The understanding component processes the collected data so as 
to obtain a higher-level representation of the environment at 
different abstraction degrees used to merge different types of 
perceptual stimuli, in a way functionally resembling the 
organization of the human brain. 

Several studies in neurosciences [14] proved that different brain 
areas are functionally specialized for well-defined tasks for 
sensory signal processing. Besides functional specialization, also 
functional integration is performed in the different areas, and at 
different spatial and temporal scale. This suggests the design of a 
hierarchical and modular architecture, whose parts operate 
independently and in parallel on different environmental stimuli 
in order to provide a symbolic representation of them.  

Figure 2 shows how the understanding component is in fact split 
into multiple levels, each implemented according to a 3-tier 
structure of interconnected modules for representing knowledge, 
as described in Section 3. Each module in a level belongs to one 
of the tiers, and the connections specify how the information must 
flow from bottom to top, i.e. from the subsymbolic toward the 
symbolic tier, through the conceptual one. 

Knowledge extracted from the symbolic tier of a given level 
provides the input for upper levels, where it is regarded as a kind 
of “higher-level sensory data”; information is actually originated 
at the sensor network only for the lowest-level modules, but this 
approach allows us to reproduce the same multi-tier knowledge 

Figure 2. Layered architecture of the understanding 

component. 
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management scheme at  different levels, or in other words the 

knowledge base created by a given level is used to iterate the 

same knowledge extraction mechanisms at higher abstraction 

levels. 

The lowest-level subsymbolic modules are in most cases directly 
implemented on the WSN. It is in fact the sensor network that 
addresses the extraction of aggregate information from the wealth 
of collected sensory data, in the form of qualitative dimensions. 
This process is carried on at the central system, instead of the 
WSN, only for some particular kinds of sensors, such as software 

sensors used to monitor the user’s activity at their workstation. 

4.3 Planning and Acting 
Besides constructing a faithful representation of the current state 
of the environment, our system is also able to plan a sequence of 
actions that will modify this state in order to bring it as close as 
possible to the users' desires, taking into account both the internal 
representation and the goals derived from the users’ requirements. 

The planning component of the system needs to reconcile 
possibly opposed goals, through an accurate constrained planning 
system. In the case study we are proposing here, such goals are for 
instance related to maintaining pleasantness in room ventilation, 
or an adequate lighting, while at the same time minimizing the 
overall energy consumption, or guaranteeing that other user-
defined constraints are satisfied, and that the WSN lifetime is 
maximized. 

The planning component exploits particular sensory information 
to adapt its internal representation of the user’s requirements, such 
as information about the interaction of the user with the system 
actuators, through which an indirect indication of the user’s 
preferences may be inferred. For instance, by switching on the 
light, the user is implicitly informing the system that the current 
lighting degree is inadequate; if this new piece of information is 
not consistent with the previous representation of the user’s 
preferences, then it may be used to adapt the system’s planning 
goals. Further details on the implicit feedback collection system 
are contained in [12]. 

The output of the planning system consists of a sequence of 
actions to be executed in order to reach the goals, while fulfilling 
the constraints. A toy example may be the case when the internal 
representation of the environment produced by understanding 
component indicates an insufficient ambient lighting for the user’s 
desires, and an external light index superior to the internal one. 
Knowing that the actions of “opening the curtains” and 
“switching on the light” may both restore an adequate ambient 
lighting for the user, and that the energy consumption derived 
from the former action is lower than for the latter, the planning 
component outcome will be the action of “opening the curtains”, 
which will trigger the actuators for the relative automatic engine. 

5. CASE STUDY 
The described architecture has been tested on a specific 
application scenario consisting in the management of an office 
environment, namely a University Department, in order to fulfill 
constraints deriving both from the specific user’s preferences 
about the air quality, and room lighting and occupancy, and from 
considerations on the overall energy consumption. The present 

section focuses on a few specific understanding subsystems and 
the relative modules and sensory equipment; in particular the 
subsystem dealing with room occupancy and with the presence of 
a target user in their own office, and its integration with the 
subsystem that monitors lighting conditions will be considered. 

5.1 The Deployed Sensory Component 
The sensory component of this system is implemented through a 
WSN, whose nodes are equipped with off-the-shelf sensors for 
measuring such quantities as indoor and outdoor temperature, 
relative humidity, ambient light exposure and noise level. Sensor 
nodes have been deployed in various rooms close to “sensitive” 
indoor areas: by the door, by the window, and by the user’s desk; 
additional nodes have also been installed on the building facade, 
close to the office windows, for monitoring outdoor temperature, 
relative humidity, and light exposure. Moreover, other nodes carry 
specific sensors, such as RFId readers, in order to perform basic 
access control. In our prototype, RFId tags have been embedded 
into ID badges for the department personnel, while RFId readers 
are installed close to the main entrance and to each office door; 
readings from each tag are collected via their coupled nodes, and 
forwarded by the WSN to the intelligent core, that will process 
them and will reason about the presence of users in the different 
areas of the department. RFId-triggered reasoning about users’ 
locations is inherently imprecise and requires the integration with 
other sensory information, such as those collected by specialized 
software demons acting as virtual software sensors and used to 
detect the users’ activity on their workstations. The users’ 
interaction with actuators is also captured via ad-hoc sensor 
monitors. For instance, if the user manually triggers any of the 
provided actuators (e.g. the air conditioning, the motorized 
electric curtains, or the lighting systems) via the remote controls 
or traditional switches, specialized sensors capture the relative IR 
or electric signals so that the system may use them as implicit 
feedback. Finally, the overall energy consumption is also 
monitored by a sensor providing instantaneous information about 
active and reactive power, voltage and current. By analyzing 
specifically values related to active power, the system will be able 
to tune and modify its planned actions in order to satisfy some 
predefined energy consumption constraints. 

5.2 Room Occupancy 
A specific subsystem whose modules belong to the understanding 
component has been devised to reason on room occupancy. This 
subsystem only needs information directly obtainable from the 
sensory component, so it belongs to Level 0; the outcome of this 
subsystem provides an estimate about the number of people 
present in the user’s office room, and a probability for the user’s 
presence as well; this information will form part of the input for 
subsystems at higher levels. 

Processing sensory data in order to extract the 
<RoomOccupancy> concept inevitably involves reasoning with 

uncertainty, therefore we decided to consider a model based on 
probabilistic Bayesian networks (as opposite, for instance, to 
logical inference engines). Indeed, rule-based expert systems are 
not suitable for dealing with environmental features characterized 
by a large uncertainty, as the set of logical rules constituting them 
is exclusively deterministic; our domain, on the other hand, 
requires the integration of intrinsically noisy sensory information 
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Figure 3. Markov chain for room occupancy evaluation. 

 

that, moreover, can only  provide partial observations of the 
system state. 

Classical Bayesian networks [15], however, may only provide a 
static model for the environment, which would not be suitable for 
the proposed scenario; we therefore chose dynamic Bayesian 
networks or, more specifically, Markov chains to implement our 
models which thus allow for probabilistic reasoning on dynamic 
scenarios, where the estimate of the current system state depends 
not only on the instantaneous observations, but also on past states. 

Figure 3 shows the Bayesian network designed for our case study, 
and clearly shows that sensory information are the only 
measurable manifestation of the system hidden state. State is here 
represented by the presence of the considered user in their own 

office room (associated to the UserInRoom variable), and the 

number of people in the same room (PeopleInRoom). The state is 
observable through sensory information associated to the noise 

level in the room (SoundSensor), to the sensed interaction of the 

user with the room actuators (ActivitySensor), to the open / 

closed / locked status of the room door (DoorStatus), to the 

RFId-based naive user localization (Localization-Sensor-RFId), 
and to the user’s activity at their workstation monitored via 

software sensors (SoftwareSensor). Variables modeling this 
sensory information are connected with state variables through 
sensor probabilistic models, expressed by conditional probability 
tables that were learned from an opportune training data set. 

 

Figure 4. The subsystems for lighting adequacy and room 

occupancy. 

Almost all of the above mentioned sensory information is discrete 
and does not require conceptual modules for extracting factual 
information from qualitative data, with the exception of the noise 
level, whose attached conceptual module uses a statistical 
characterization of room noise to classify it as Negligible 

Noise, LowNoise, MediumNoise, or HighNoise. 

Level 0, depicted in Figure 4, shows those architectural modules. 

The information outcome of the Activity (SS), DoorStatus (SS), 

RFId (SS), SW activity (SS) subsymbolic modules is directly 

handed over to the Room Occupancy (S) symbolic module  that 
implements the previously described Bayesian network, while 
qualitative information produced by the subsymbolic module 

Sound (SS) needs preliminary classification through the Sound 

(C) conceptual module, before passing to the Room Occupancy 

(S) module. 

5.3 Lighting Adequacy 
It is worth considering the subsystem reasoning on the adequacy 
of lighting in order to get a deeper understanding of the interplay 
of different levels for knowledge management. This subsystem 
takes into account current indoor lighting, estimated through 
ambient light sensor readings, and the presence of the considered 
user, estimated via the outcome of the room occupancy 
subsystem. As shown in Figure 4 input to the lighting adequacy 
subsystem are the outputs of lower-level modules, thus placing 
this system at Level 1 of our architecture. The processing of the 
sensory information about current lighting follows the previously 
described multi-tier knowledge representation scheme. The 

subsymbolic module dealing with lighting data (Light0(SS)) 
extracts statistical information, such as the average value and the 
variance of sensory readings, to provide a global qualitative 
description of the lighting of the room. The information about 
indoor and outdoor lighting constitutes the qualitative dimensions 
for the conceptual module dealing with the overall lighting 

(Light0(C)), which classifies the actual lighting degree and 
translates this concept in factual knowledge for the connected 

symbolic module (Light0(S)). The information generated by Level 

0-symbolic modules Light0(S) and Room Occupancy (S) is 
passed onto the upper level where it is interpreted as higher-level 
subsymbolic information. In general, each Level i-symbolic 
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module connected to Level i+1 corresponds to a Level i+1-
subsymbolic module whose input virtually derives from those 
“pseudo-sensors”; the back translation from low-level-symbolic to 
high-level-raw information is performed by an ad-hoc mapping 

mechanism. The outcome of the Room Occupancy (S) module 
are the probability of the presence of the considered user is in 
their own office, and the estimated number of people in the same 
room; this kind of information can be directly interpreted as a 

qualitative dimension, so the Level 1 Room Occupancy (SS) 

module only needs to bridge the gap with the Level 1 Lighting 

Adequacy (C) conceptual module. The information about lighting 

extracted by the Light0(S) module in symbolic form, requires a 
translation to numeric form through an ad-hoc mapping from 
logic predicates to numeric indices. This task is performed by the 

Light1(SS) module that produces the needed qualitative 

dimension to complete the input for the Lighting Adequacy (C) 
conceptual module, which in turn classifies the obtained 
information about lighting in the room, in relation with its 
occupancy, as InsufficientLighting, Sufficient- 

Lighting, or OptimalLighting. Based on this factual 

knowledge, and on a room state representation in terms of the 

status of light switches and motorized curtains, the Lighting 

Adequacy (S) symbolic module is able to provide the planning 
component with a concise description of the current room 
lighting. The planning component will use this information and a 
description of the desired target state to carry on its reasoning and 
select the most appropriate sequence of actions. 

6. CONCLUSION 
The present work describes the design and implementation of a 
comprehensive architecture for knowledge management in the 
context of AmI applications. A precise representation of the state 
of the environment can be obtained only through continuous and 
pervasive monitoring, but this makes the management of the 
stream of sensory data very challenging, due to its huge amount. 
The discussed case study shows how the low-level sensory 
subsystem may be effectively implemented with the wireless 
sensor networks technology, and how a multi-level structure for 
the system may help to cope with the issue of knowledge 
extraction, by addressing different abstraction degrees at different 
levels. A multi-tier structure at each level is also used to keep the 
problem manageable. 
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