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Abstract— Recent developments in technology have permitted
the creation of cheap, and unintrusive devices that may be effec-
tively employed for instrumenting an intelligent environment.
The present work describes a modular framework that makes
use of a class of those devices, namely wireless sensors, in order
to monitor relevant physical quantities and to collect users’
requirements through implicit feedback. A central intelligent
unit extracts higher-level concepts from raw sensory inputs,
and carries on symbolic reasoning based on them. The aim of
the reasoning is to plan a sequence of actions that will lead the
environment to a state as close as possible to the users’ desires,
taking into account both implicit and explicit feedback from
the users.

I. INTRODUCTION

Systems for Ambient Intelligence (AmI) usually maintain
a central role for the user, and they aim to reach the
most favorable conditions for the users. This novel design
paradigm relies on the capability of sensing the environment,
extracting its relevant characteristics, and of controlling the
environmental conditions through specialized actuators.

Wireless Sensor Networks (WSNs) allow for pervasive
and unintrusive deployment of relatively cheap nodes, and
are thus suitable for instrumenting an intelligent environ-
ment [1], [2]. They are made of a potentially large number
of distributed computational units; those small sensor nodes
are programmable, energetically autonomous, and able to
wirelessly communicate with each other; moreover, they
may be equipped with different sensors in order to measure
the required physical quantities, and ad-hoc sensors may
be devised for specialized tasks; for instance, sensor nodes
may be integrated with sensors for IR signals, sensors for
monitoring polluting agents, or RFId readers.

This papers describes an advanced approach to AmI, and
describes the design of a modular framework that analyzes
raw data sensed through a WSN, processes them in order
to extract higher-level information, carries on symbolic rea-
soning on the inferred concepts, and produces the necessary
actions to adapt the environment to the users’ requirements.
The proposed framework arranges lower-level components
into an extensible architecture that implements an intelligent
system for monitoring and controlling the environment where
sensors are deployed. The lower level is represented by the
sensory system permeating the environment, where sensed
data are collected and pre-processed before being forwarded
to the upper levels, where the actual intelligent processing
occurs. Besides providing basic information about environ-
mental conditions, the WSN allows to observe the inter-

action between the user and the surrounding environment,
in order to model the users’ actions, and to infer users’
requirements about environmental conditions. According to
the constructed model, the system will plan the sequence of
actions to be performed in order to achieve the desired status;
specialized actuators will act according to the derived rules.
Our system also allows users to provide explicit feedback
that will be used to refine and validate its reasoning.

This generic architecture may be easily specialized to
improve the management of industrial, social, or home
environments. This paper describes a case study regarding
the management of a University Department premises; in
this scenario, the main goal consists in accurately monitoring
the ambient conditions of office rooms, and common spaces,
and in taking proper actions that result in meeting the users’
requirements, while satisfying energy constraints at the same
time.

The remainder of the paper is organized as follows.
Section II briefly describes other WSN-based or feedback-
based approaches to AmI as reported in literature. Section III
outlines the architecture of the proposed system, and Sec-
tion IV describes the design of a prototype for a real scenario.
Finally Section V gives some information about our on-going
work.

II. RELATED WORKS

Many works presented in Ambient Intelligence literature
make use of WSNs both as a distributed sensory tool, and
as a wireless network infrastructure. However, to our best
knowledge, none of them fully exploits the potential com-
putational capabilities of the sensor nodes; rather they are
typically used as a mere data collection tool, with distributed
sensors and communication capabilities. In [3], [4], systems
for healthcare are proposed, especially targeted to monitoring
chronic illness, of for assistance to the elderly. Such works
employ WSNs as the support infrastructure for biometrical
data collection toward a central server; sensor nodes are thus
required to simply route data packets through multiple hops
without operating any distributed processing on them. In the
work by Han, et al. [5], WSNs are used to provide inputs
to an ambient robot system. Inside what the authors define a
ubiquitous robotic space, a semantic representation is given
to the information extracted from a WSN, but again this
is used only as a sense-and-forward tool. In [6], a WSN-
based infrastructure is described targeting the development
of wildfire prevention system, whose architecture is based on
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three layers, the lowest of which relies on a sensor network
for measurement gathering. Also the work presented in [7]
employs a WSN, but the goal is the collection of information
about the occupancy of the monitored premises; collected
data are aggregated in order to compute predictions about
the occupant behaviour.

Several works on Ambient Intelligence exploit the capabil-
ity of learning from the interaction with the surrounding en-
vironment, and with the user. In [8], a logical structure for an
Ambient Intelligence system is proposed for the classification
of events occurring in the considered environment, with the
aim of facilitating intrusion detection. The classification step
is based on an initial off-line training, based on a significant
amount of training data, followed by an on-line phase,
where a human operator provides explicit feedback about the
quality of classification, so that the system may dynamically
adapt its parameters. The same architectural scheme has
been proposed in [9] and applied to the “classification of
risk zones in a smart space”; the learning phase of the
classifier is inspired here on the biological mechanisms
that exploit memory of the past interactions between the
intelligent entity and the other entities in the environment
for learning. In [10], the authors propose an application of
an unsupervised learning technique based on fuzzy logic to
the intelligent agents constituting the Ambient Intelligence
system. The fuzzy rules are learned by examining the users’
behavior and are dynamically changed so that long-term
goals may be satisfied. The inputs for the learning machine
are gathered via the interactions between the user and the
actuators allowing for manual environmental control.

Our proposal roughly resembles some of the previously
cited works in that feedback from users is exploited in order
to adapt the system behaviour. In particular, we devised a
system based both on explicit feedback, similarly to what
proposed in [8], [9], and on implicit feedback, similarly
to [10], although none of them takes advantage of a pervasive
sensory system such as the one we describe here.

III. SYSTEM ARCHITECTURE

The core of the entire architecture is represented by a
centralized intelligent system that collects pre-processed data
coming from the pervasive sensory system, carries on some
reasoning in order to build an internal representation of the
surrounding environment, and finally plans the proper actions
taking into account both the internal representation and the
goals derived from the users’ requirements, as preliminarily
described in [11].

The overall system is organized according to a layered
architecture that allows to carry on specific reasoning on
the environment at different levels of abstraction, and on
different kinds of perceptions. From the designer’s point of
view, the layered organization allows for the realization of a
scalable sofware architecture, able to effectively manage the
huge amount of sensory data. This architecture implements a
three-layer knowledge representation paradigm as in [12]; as
shown in Figure 1, the lower subsymbolic layer deals with
raw sensed quantities and provides only basic pre-processing,

and the higher symbolic layer provides a linguistic represen-
tation of knowledge; those two layers are connected through
an intermediate layer where ground concepts are represented
in a geometric space. The whole system is implemented on
a central node with no strict resource constraints, with the
exception of the subsymbolic tier that is localized on the
WSN.

The WSN employed here is not used as a mere tool
for data sensing and retransmitting, rather the computational
resources of its constituting nodes are exploited; albeit lim-
ited, such capabilities may be effectively used to implement
distributed algorithms for data filtering and aggregation. We
propose a clustered network structure in which each small
cluster, consituted by heterogeneous nodes with different
computational capabilities, distributedly processes homo-
geneous data. This pre-processing phase exploits spatio-
temporal correlation of data, in order to compute a model
that nodes will share thanks to their cluster coordinator,
similarly to the approach proposed in [13]. This process
serves the two-fold purpose of reducing the number of
unnecessary transmissions (only data not fitting the model
will be transmitted in order to update the model itself),
and of performing a dimensionality reduction that is used
to preserve only relevant features.

Sensed measurements collected at the subsymbolic tier can
be classified into two main categories, namely continuous or
discrete; data belonging to the former class are fed to the
intermediate conceptual layer, where they will be provided
with a representation in terms of continuous quality dimen-
sions. On the other hand, discrete data are outright handed
over to the symbolic layer, where a linguistic representation
will be given.

The conceptual tier is based on the idea of conceptual
spaces introduced by Gärdenfors in [14]; data are endowed
with a geometrical representation that allows for a straight-
forward management of the notion of concept similarity, as
long as a proper metric is chosen for the quality dimensions.
Points populating the conceptual space, originally generated
by the underlying measurement space, are represented as vec-
tors, whose components are the quality measurements of in-
terest. Concepts thus naturally arise from the geometric space
as regions, identifiable through an automated classification
process, that in our implementation occurs after a supervised
training of the classifier. The classifier is also devised so
that it can dynamically adjust its internal representation of
the concepts based on direct feedback provided by the user;
a graphical interface will allow users to explicitly provide
the system with an evaluation of the current conditions, so
that it may adapt its classification engine to reflect the way
users associate qualitative concepts to specific environmental
conditions.

Finally, the symbolic tier produces a concise description of
the environment by means of a high-level logical language.
At this level, regions individuated inside the conceptual space
are associated to a linguistic construct, thus identifying basic
concepts, while relations necessary to infer more complex
concepts are described through an opportune ontology. A
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Fig. 1. The three-tier structure of the proposed system.

logical engine will operate on the knowledge base in order
to trigger a set of actuators that will eventually modify the
environment according to the system goals. Those devices
may also be directly maneuvered by the user; the user’s
will of modifying the ambient conditions indicates that the
current goal of the system is not completely satisfactory;
by observing the users’ actions, the system is able to obtain
implicit feedback that may guide further planning. The WSN
devoted to ambient monitoring also includes specialized
sensors for perceiving the interactions of the users with
the actuators, as will be detailed during the case study
description.

IV. CASE STUDY

The system described here will be assessed by testing
its behavior on a specific case study; the present section
describes the specialization of the proposed architecture
for an office environment, namely for the management of
a University Department rooms. The goal of this specific
prototype will include reasoning on such concepts as “air
quality”, “lighting conditions”, or “room occupancy”, taking
into account the specific user’s preferences, as well as energy
consumption constraints. The sensory component of this
system is implemented through a WSN, whose nodes are
equipped with off-the-shelf sensors for measuring such quan-
tities as indoor and outdoor temperature, relative humidity,
and ambient light exposure; moreover, additional specific
sensors may be installed on some nodes. For instance, RFId
readers may be integrated on a few nodes in order to perform
basic access control; also, simple software daemons may act
as virtual “software sensors”, and detect the users’ activity
on their workstations. As already explained, the system can
adapt its planning in order to match the user’s requirements,
and as a consequence trigger the proper actuators controlling,
for instance, the air conditioning, heating, and lighting sys-
tems, or the automated control of curtains; in the following,
more details are provided about the sensor and actuator
subsystems.

Our implementation makes use of MICAz nodes and Star-
gate microservers for the indoor WSN infrastructure; nodes
have been deployed in various rooms close to “sensitive”

areas: by the door, by the window, and by the user’s desk; ad-
ditional nodes will be installed on the building facade, close
to the office windows, for monitoring outdoor temperature,
relative humidity, and light exposure. Comparing indoor and
outdoor measurements may guide the selection of the more
appropriate actions in some cases; for example, when indoor
ambient light is not sufficient to ensure optimal working
conditions according to the user’s specifications, whereas
outdoor sensors report a considerably higher value of light
exposure, the system will conclude that the most efficient
action in terms of energy saving would require activating
the automated curtain control.

As regards more specific sensors, the present case study
describes the integration of RFId readers into a few nodes
of the WSN. Such readers enable automated identification
of any object carrying an RFId tag, through wireless com-
munication between the two devices; in case passive tags
are employed, no independent energy source is required for
their functioning, so that they are particularly suitable for
use on everyday objects. In our prototype, RFId tags have
been embedded into ID badges for the department personnel,
while RFId readers are installed close to the main entrance
and to each office door. Readings from each tag will be
collected via their coupled nodes, and forwarded by the WSN
to the intelligent core, that will process them and will reason
about the presence of users in the different areas of the
department. RFId-triggered reasoning about users’ locations
is inherently imprecise, but in our prototypal system it is
integrated with additional information derived by the above
mentioned “software sensors” that may signal the presence
of the user at their desk.

The user may optionally decide to directly trigger any
of the provided actuators; namely, the air conditioning, and
automated curtain systems may be controlled via customized
IR remotes, whose signals may be also sensed by the system
that will infer a mismatch between the user’s desires and
the current environmental conditions, and act accordingly.
The observation of those signals will be performed by the
WSN itself, that will be enhanced with specific sensors; the
resulting implicit feedback will represent the input of the
learning process underlying the adaptive planning.

Besides implicit feedback collected via the sensor network,
transparently to the user, our system includes a module for
allowing users’ direct interaction in the form of explicit
feedback. In particular, the users may explicitly feed their
assessment of the environmental conditions to the system
through a graphical interface. By exploiting this information,
the system may tune its classification engine to the users’
evaluation. For instance, users may label air quality as
“pleasant”, “neutral”, or “unpleasant”, thus providing explicit
grounding to the concepts of the geometric space, thus
steering the classification process.

Finally, the overall energy consumption is also monitored
via an ad-hoc sensor, that provides instantaneous information
about active and reactive power, voltage and current. By
analyzing specifically values related to active power, the
intelligent subsystem will be able to tune and modify its
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TABLE I
THE MAIN SENSORS USED IN THE PROTOTYPE AND THEIR CHARACTERISTICS.

Measure Sensor Characteristics
Temperature range: -40 ◦F (-40 ◦C) to +254.9 ◦F (+123.8 ◦C)

Temperature Temp. accuracy: +/- 0.5 ◦C @ 25 ◦C
and Sensirion SHT11 Humidity range: 0 to 100% RH

relative humidity Absolute RH accuracy: +/- 3.5% RH
Low power consumption (typically 30 µW)
Pressure range: 300 to 110 mbar

Barometric pressure Pressure accuracy: +/- 3.5%
and Intersema MS5534 Temperature range: -10◦C to 60◦C

temperature Temperature accuracy: +/- 2◦C
Operating range 3.6 to 2.2 volts
Si Photodiode with spectral response range λ: 320 – 730 nm

Outdoor Light Hamamatsu S1087 Peak sensitivity wavelength λp 560 nm
Photo sensitivity S (A/W)
Infrared sensitivity ratio 10%

Ambient Light Taos TSL2550 Range: 400 to 1000 nm
Operating range 3.6 to 2.2 volts
Standard ISO 15693

RFId LabId RWOSS Reading range: ∼15 cm
Microcontroller RISC 8 bit, Flash 32KB, RAM 2KB
Interface: RS-232, USB

planned actions in order to satisfy some predefined energy
consumption constraints; optionally, the user may be notified
via the graphical interface.

V. CONCLUSION AND ON-GOING WORK

This paper described the structure of a modular framework
for Ambient Intelligence exploiting Wireless Sensor Net-
works as a pervasive sensory system. WSNs are not merely
used for data sensing and gathering purposes, rather their
computational capabilities are effectively exploited in order
to perform an initial preprocessing phase that constitutes the
preliminary step for the overall reasoning. Besides providing
basic information about environmental conditions, the WSN
additionally allows to observe the interaction between the
user and the surrounding environment, in order to infer users’
requirements about environmental conditions. Users may
also provide explicit feedback that will be used to refine and
validate the system reasoning. The paper described a scenario
where the system is employed in an office environment;
currently, experiments are being carried on in order to test
the basic behavior of the deployed WSN, and to collect a
sufficient amount of data to be used to train the classifier of
the intelligent system.
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