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Abstract

Practical applications of Ambient Intelligence cannot
leave aside requirements about ubiquity, scalability, and
trasparency to the user. An enabling technology to com-
ply with this goal is represented by Wireless Sensor Net-
works (WSNs); however, although capable of limited in-
network processing, they lack the computational power to
act as a comprehensive intelligent system. By taking inspi-
ration from the sensory processing model of complex bio-
logical organisms, we propose here a cognitive architecture
able to perceive, decide upon, and control the environment
of which the system is part. WSNs act as a transparent in-
terface that allows the system to understand human require-
ments through implicit feedback, and consequently adapt its
behavior. A central unit will carry on symbolic reasoning
based on the concepts extracted from sensory inputs col-
lected and pre-processed by pervasively deployed WSNs.

1 Introduction

From an Ambient Intelligence perspective [1, 10], the
human user is the center of a pervasive digital intelligent
environment, whose primary goal consists in satisfying
users’ requirements as regards controlling the conditions
of their surroundings. One of the enabling technologies
in this field is represented by Wireless Sensor Networks
(WSNs) [3, 11], thanks to their capacity of providing a per-
vasive and unintrusive means for sensing the environment.

A WSN is made up of a potential large number of dis-
tributed computational units; those small sensor nodes are
programmable, energetically autonomous, and able to wire-
lessly communicate with each other; moreover, they may
be equipped with different sensors in order to measure sev-
eral environmental characteristics. By exploiting the co-
operation among nodes, a WSN allows for low-level pre-
processing of the sensed data, in order to select, for in-
stance, only relevant information from the huge amount
of measurements. The possibility of a low-cost and low-

intrusiveness, but pervasive deployment paves the way for
the development of a ubiquitous and scalable system which
is one of the primary requirements for Ambient Intelligence
applications [5]. The sensory subsystem permeates the en-
vironment almost transparently to the users; moreover, the
possibility of tuning the execution of the program running
in the sensor nodes on the fly, allows us to modify the be-
havior of the WSN without a direct intervention. However,
despite their potential, WSNs cannot by themselves be a
tool for collecting and, above all, understanding all of the
sensed data.

Our work proposes a novel cognitive system able to per-
ceive, decide upon, and control the environment of which
it is part. Such a system may be regarded as an intelligent
entity embodied in the environment itself, and whose deci-
sions are guided by goals related to the well-being both of
the system, and of the other entities populating the environ-
ment.

This intelligent organism employs WSNs as its sensory
organ in order to perceive precise information on the en-
vironment. This technology enables the system to collect
measurements at the preferred rate regardless of space con-
straints. The difficulty of managing the generated large
amount of data requires the design of a new architectural
scheme capable to make full use of the programmability
of the sensor nodes. The idea underlying our work is in-
spired to the nervous system of complex biological organ-
isms, that typically include some peripheral pre-processing
mechanisms for extracting more significative information
from the wealth of data. Striking examples may be found
in some parts of the human nervous system, whose periph-
eral component deals with collecting sensory inputs, filter-
ing them, and transferring them in an aggregated form to the
central nervous system, where high-level processing will be
performed.

The cognitive architecture we propose here exploits its
distributed sensory component in order to obtain necessary
information to carry on cognitive, decision, and control ac-
tivities. The middle-layer component of our system is also
inspired to the functional organization of human brain. Sev-
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eral studies in neurosciences [21, 16] proved that differ-
ent brain areas are functionally specialized for well-defined
tasks for sensory signal processing. Besides functional spe-
cialization, also functional integration is performed in the
different areas, and at different spatial and temporal scale.
This suggests the design of a hierarchical and modular ar-
chitecture, whose components operate independently and in
parallel on different environmental stimuli in order to pro-
vide a symbolic representation of them. The interconnec-
tion among the different modules lets lower-lever modules
transfer their knowledge as input for higher-level ones that
accept several simpler information streams and integrate
them to provide a complex representation of the environ-
ment. Modules are organized according to a multi-tier cog-
nitive scheme, similarly to what happens in the functional
areas of the brain that are divided into functional clusters
of neurons operating at increasing abstraction degrees [21];
our scheme comprises three tiers representing knowledge in
a subsymbolic, conceptual, and symbolic way respectively.

Also from a biological inspiration comes the possibility
of learning by interacting with the external world. In our
case, the external world is represented by the users popu-
lating the intelligent environment. Their interactions with
the system are in fact used to steer a learning process able
to adapt the mechanisms of knowledge representation and
management, and the decision processes, to the users’ re-
quirements.

Our main contribution lies in the design of a cognitive
architecture relying on a flexible and scalable paradigm
for knowledge representation in order to efficiently extract
environmental information from a pervasive sensory sys-
tem and to turn it into a symbolic representation of the
environment. The case study proposed in this paper re-
gards the management of an indoor environment, namely
the premises of a university department, where clashing
goals are present, such as keeping a pleasant temperature,
minimizing the overall power consumpion and maxizing the
WSN time of life.

The remainder of the paper is organized as follows.
Section 2 briefly describes other approaches to the use of
WSNs and biologically inspired behavior for Ambient In-
telligence. Section 3 presents the overall organization of
the proposed architecture; details about the knowledge rep-
resentation model and the learning scheme are given in Sec-
tions 4 and 5 respectively. Finally, Section 6 summarizes
our conclusions.

2 Related Works

Many works presented in Ambient Intelligence litera-
ture make use of WSNs both as a distributed sensory tool,
and as a wireless network infrastructure. However, to our
best knowledge, none of them fully exploits the potential

computational capabilities of the sensor nodes; rather they
are typically used as a mere data collection tool, with dis-
tributed sensors and communication capabilities.

In [17, 15], systems for healthcare are proposed, espe-
cially targeted to monitoring chronic illness, of for assis-
tance to the elderly. Such works employ WSNs as the sup-
port infrastructure for biometrical data collection toward
a central server; sensor nodes are thus required to simply
route data packets through multiple hops without operating
any distributed processing on them.

In the work by Han, et al. [14], WSNs are used to provide
inputs to an ambient robot system. Inside what the authors
define a ubiquitous robotic space, a semantic representation
is given to the information extracted from a WSN, but again
this is used only as a sense-and-forward tool.

In [20], a WSN-based infrastructure is described target-
ing the development of wildfire prevention system, whose
architecture is based on three layers, the lowest of which re-
lies on a sensor network for measurement gathering. Also
the work presented in [2] employs a WSN, but the goal is the
collection of information about the occupancy of the mon-
itored premises; collected data are aggregated in order to
compute predictions about the occupant behaviour.

Several works on Ambient Intelligence are inspired to bi-
ological models for reasoning and learning. In some cases
the biological model is taken as an example for the formal-
ization of a logical architecture reflecting the logical struc-
tures that concur to the arising of consciousness, as de-
scribed by cognitive science research; in other works, the
starting point is the capability of learning through the inter-
action with the surrounding environment that is typical of
complex biological systems.

In [18], a logical structure for an Ambient Intelligence
system is proposed that is inspired to the neuro-biological
model of human brain, The authors focus on the use of con-
textual knowledge for the classification of events occurring
in the considered environment, with the aim of facilitating
intrusion detection. The classification step is based on an
initial off-line training, based on a significant amount of
training data, followed by an on-line phase, where a hu-
man operator provides explicit feedback about the quality
of classification, so that the system may dynamically adapt
its parameters. The same architectural scheme has been pro-
posed in [9] and applied to the “classification of risk zones
in a smart space”; the learning phase of the classifier is in-
spired here on the biological mechanisms that exploit mem-
ory of the past interactions between the intelligent entity
and the other entities in the environment for learning.

In [8], the authors propose an application of an unsuper-
vised learning technique based on fuzzy logic to the intel-
ligent agents constituting the Ambient Intelligence system.
The fuzzy rules are learned by examining the users’ behav-
ior and are dynamically changed so that long-term goals
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may be satisfied. The inputs for the learning machine are
gathered via the interactions between the user and the actu-
ators allowing for manual environmental control.

With respect to the previously mentioned works, we also
refer to a biological model to design our architecture. Un-
like [18] and [9], we do not delve into the deep mechanisms
regulating the arising of consciousness, rather we propose
an architecture inspired to the hierarchical model for pro-
cessing sensory stimuli in the human nervous system. On
the other hand, a higher similarity between our proposal and
the previously cited works is represented by the idea of ex-
ploiting feedback from users in order to adapt the system
behaviour. In particular, we devised a system based both on
explicit feedback, similarly to what proposed in [18, 9], and
to implicit feedback, similarly to [8].

3 System Architecture

As already mentioned, the architecture proposed in this
work is inspired by the human nervous system, in which
signals gathered by the peripheral system are filtered, ag-
gregated and then sent to the central system for high-level
processing.

We consider as case study a home automation applica-
tion instantiated for a work environment, with the aim to
provide constant monitoring of the environmental condi-
tions in the rooms of the teaching staff of our department.
After describing the designed WSN, representing the pe-
ripheral system that permeates the environment, and allows
for distributed data pre-processing, this section outlines the
modular structure of the intelligent system.

3.1 Peripheral Information Processing -
WSN

We regard the aggregation and selection of environmen-
tal data as analogous to the processing of perceptual sig-
nals occurring in the human nervous system. Some compo-
nents of the peripheral system filter perceptual information
by means of distributed processing among several neurons.
A remarkable example is the processing of visual informa-
tion occurring in the retina [16]: in the human eye, photore-
ceptors convert light into electrical signals that are passed to
a network of retinal neurons, and are modified before being
transmitted to gangliar neurons; eventually, they are handed
to the optic nerve that carries the information up to the brain.
The retinal neuron network does not restrict itself to carry-
ing signals from photoreceptors, but rather combines them
to obtain an aggregate heavily dependent on the spatial and
temporal features of the original light signal.

In our architecture the terminal sensory component per-
forming is represented by WSNs pervasively deployed in
the environment. Figure 1, partially drawn from [19, 22],

Figure 1. Comparison between the structures
of the human retina and the proposed WSN.

highlights the similarity between the structures of the hu-
man visual organ and of the WSN employed here.

We propose a clustered network structure in which each
small cluster, constituted by heterogeneous nodes with dif-
ferent computational capabilities, distributedly processes
homogeneous data. This pre-processing phase exploits
spatio-temporal correlation of data, in order to compute a
model that nodes will share, thanks to their cluster coor-
dinator, similarly to the approach proposed in [13]. This
process serves the two-fold purpose of reducing the num-
ber of unnecessary transmissions (only data not fitting the
model will be transmitted in order to update the model it-
self), and of performing a dimensionality reduction that is
used to preserve only relevant features.

The implemented WSN is equipped with off-the-shelf
sensors for measuring such quantities as temperature, rel-
ative humidity, noise, and ambient light exposure. Sensor
nodes (in our implementation we have used MICAz nodes
and Stargate microservers) have been deployed in various
rooms close to “sensitive” areas: by the door, by the win-
dow, and by the user’s desk. Moreover, we are integrat-
ing this basic infrastructure with more specific sensors, i.e.
RFId readers, that will provide information to be used for
access control, and naive localization of people inside the
premises.

3.2 Central Information Processing -
Modular Architecture

The proposed system is organized according to a hier-
archical structure whose modules are combined together in
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Figure 2. The human language comprehension model vs the proposed hierarchical reasoning model.

order to carry on specific reasoning on the environment at
different levels of abstraction and on different kinds of per-
ceptions. The overall behavior mimics that of the human
brain, where the emerging complex behavior is the result of
the interaction among smaller subsystems. From the design
point of view, the modular organization allows for the real-
ization of a scalable sofware architecture, able to effectively
manage the huge amount of sensory data.

Figure 2, partially taken from [4], draws a parallel be-
tween the human brain model and our system model. In our
modular architecture, the outcome of lower-level reasoning
is fed into the upper levels, that deal with the integration
of information originated by multiple lower-level modules.
Each module independently measures environmental quan-
tities, conceptualizes them, and describes the extracted con-
cepts linguistically, as will be detailed in the following sec-
tion where the multi-tier knowledge representation is pre-
sented. Moreover various modules process both direct and
indirect measurements; the former occur at modules located
at the lowest level in the hierarchy, while the latter are car-
ried on at the upper layers, mediated by their lower-layer
counterparts.

Considering a particular scenario, the human language
comprehension model, described in [16], provides a signifi-
cant example of interaction patterns among specific areas of
the brain, as schematically presented in the left side of Fig-
ure 2. Different anatomic structures are devoted to different
phases of language processing: the primary auditory cor-
tex initially processes the auditory signals while at the same
time the primary visul cortex processes the visual signals.
Pieces of information separately obtained by each low-level
structure are sent to the areas devoted to phonetic and visual
coding respectively. The outcome of the two intermediate
modules are passed to the semantic association area, where
they are merged.

In our architecture, an analogous example may be rec-

ognized in the modules devoted to assess whether environ-
mental conditions are acceptable for a pleasant working ac-
tivity, as shown in the right side of Figure 2. Low-level
modules independently reason about air quality and room
quietness, and the produced information is aggregated by
a higher-level module; thanks to a broader knowledge of
the environment, it may perform more complex reasoning,
without being overwhelmed by the incoming information
thanks to the previous filtering.

4 Multi-tier Knowledge Representation

Each module of our architecture implements the three-
tier structure shown in Figure 3, in which the lower sub-
symbolic tier applies only basic preprocessing to raw sensed
quantities, and the higher symbolic tier provides a linguistic
representation of knowledge; those two tiers are connected
through an intermediate tier where ground concepts are rep-
resented in a geometric space, inspired by the “conceptual
spaces” described in [12].

This structure resembles the ideas presented in [6] that
were applied to an artificial vision scenario. The whole sys-
tem is implemented on a central node with no strict resource
constraints, with the exception of the subsymbolic tier of the
lowest module that is localized on the WSN. For clarity’s
sake we only focus here on the description of this lowest
architectural module.

The subsymbolic tier processes the measurements col-
lected by the pervasive sensory subsystem. As already men-
tioned, the purpose of the WSN-based infrastructure is not
limited to the basic gathering of sensed data, but comprises
also a preliminary processing aimed at the selection of the
relevant information. Sensed measurements can be classi-
fied into two main categories, namely continuous or dis-
crete; data belonging to the former class are fed to the inter-
mediate conceptual tier, where they will be provided with
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Figure 3. The three-tier structure of a low
level module.

a representation in terms of continuous quality dimensions.
On the other hand, discrete data are outright handed over to
the symbolic tier, where a linguistic representation will be
given.

At the conceptual tier, data are endowed with a geomet-
rical representation that allows for a straightforward man-
agement of the notion of concept similarity, as long as a
proper metric is chosen for the quality dimensions. Points
populating the conceptual space, originally generated by the
underlying measurement space, are represented as vectors,
whose components are the quality measurements of inter-
est. Concepts thus naturally arise from the geometric space
as regions, identifiable through an automated classification
process, and points will belong to one of those regions. In
our implementation the identification of regions associated
to concepts occurs after a supervised training of the classi-
fier. As will be detailed in the following, the classifier is
also able to dynamically adjust its internal representation of
the concepts based on direct and indirect feedback from the
user.

The symbolic tier in each module produces a concise de-
scription of the environment by means of a high-level log-
ical language. At this level, regions individuated inside the
conceptual space are associated to a linguistic construct,
thus identifying basic concepts, while relations necessary
to infer more complex concepts are described through an
opportune ontology. The gap between a concept and its
linguistic description is filled through two separate mech-
anisms inspired to the work of [6]: an “automated concept
extractor” deals with the translation of the regions in the
conceptual space into symbolic elements, whereas a “sym-
bolically guided concept search” identifies further points in
the conceptual space as a consequence of the activation of
some of the logical rules contained at the symbolic tier.

The created knowledge base is used to iterate the same
knowledge extraction mechanisms at a higher abstraction
level. In the considered case study, the concepts asserted at

the symbolic tier are also employed for the activation of the
control rules of the actuators, represented by the controllers
of the heat, air conditioning, and lighting systems. More-
over, a subset of those rules is devoted to providing feed-
back to the WSN in order to guide its self-maintenance ac-
tivity; for instance, under steady environmental conditions,
the higher tier will opt for a reduction of the sensor sampling
rate in order to reduce the overall energy consumption.

5 Learning from Human Interaction

The conceptual and symbolic layers of our knowledge
representation paradigm are based respectively on a classi-
fication system that associates qualitative concepts to sen-
sory data, and on a set of logic rules that, by carrying out
reasoning on the description of the environment, will trigger
the proper actions. Those cognitive layers enclose the high-
level modeling, and logical inference functionalities, that
together constitute the core of the central reasoning system.

In complex biological systems, such functionalities are
tipically refined by a learning process based on the inter-
action with the surrounding environment; analogously, the
architecture described here includes specialized learning
schemes that allow the system to acquire new information
from the users populating the intelligent environment. Ob-
ject of this further learning phase are both the classification
carried on at the conceptual layer, and the rules defined at
the symbolic one.

In the proposed system, two separate mechanisms are
provided for collecting feedback from people inside the
same intelligent environment; they are classified as explicit
or implicit, depending on the way the additional informa-
tion is collected. In the former case, the user is intention-
ally communicating their needs to the intelligent system, in
order to support the learning phase. In the latter case, this
explicit interaction is missing, so the system resorts to an-
alyzing the actions carried on by users, in order to extract
implicit knowledge.

The explicit feedback collection mechanism is based on
a simple GUI enabling the users to assess the current envi-
ronmental conditions so to express their likes and dislikes.
For instance, by entering the appropriate choices into a web-
based interface, any user may indicate that “air quality” is
“pleasant”, but “room quietness” is “unsatisfactory”. The
provided labeling will be referred to the geometrical repre-
sentation of the current environmental state and will con-
tribute as additional training samples for the classifier. In
the initial design phase, a sufficient number of previously
collected data will be used for off-line training; on-line as-
sessments, collected during normal operation, will then be
used to dynamically adapt the classification scheme. The
automated concept extractor, suited for the outcome of the
previously described WSN, includes a classifier employ-
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ing a kernel-based method, i.e. Support Vector Machines
(SVM) [7], designed to extract such concepts as “air qual-
ity”.

Implicit feedbacks, on the other hand, rely on the possi-
bility of “perceiving” the actions of the users in response to
the environmental conditions as decided by the intelligent
environment. Through specialized sensors installed on the
manual controls available to the user, the system is for in-
stance enabled to detect that a temperature decrease was re-
quested. This kind of information is useful to associate the
undertaken action (representing the user’s preference) to the
current environment state at the symbolic level; it will thus
be possible for the system to learn new logical rules that
better fit the intelligent environment inhabitants’ demands.

6 Conclusion

The cognitive architecture presented here is an example
of a flexible and scalable approach to knowledge extrac-
tion from the environment by means of the integration of
a pervasive sensory framework and a central intelligent en-
tity capable of symbolic reasoning. Unlike previous works,
WSNs here are not merely used for data sensing and gath-
ering purposes, rather their computational capabilities are
effectively exploited in order to perform an initial prepro-
cessing phase that constitutes the preliminary step for the
overall reasoning. The structure and functionalities of the
human nervous system have inspired us during the design of
this modular architecture so that reasoning at different lev-
els of abstractions was implemented. Preliminary tests con-
ducted with an initial prototype have shown the potential of
the proposed system in terms of expressivity for modeling
the environment.
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